JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models.
Oncotarget
PUBLISHED: 09-17-2014
Show Abstract
Hide Abstract
The aim of the present study was to examine the efficacy of tumor-targeting Salmonella typhimurium A1-R treatment following anti-vascular endothelial growth factor (VEGF) therapy on VEGF-positive human pancreatic cancer. A pancreatic cancer patient-derived orthotopic xenograft (PDOX) that was VEGF-positive and an orthotopic VEGF-positive human pancreatic cancer cell line (MiaPaCa-2-GFP) as well as a VEGF-negative cell line (Panc-1) were tested. Nude mice with these tumors were treated with gemcitabine (GEM), bevacizumab (BEV), and S. typhimurium A1-R. BEV/GEM followed by S. typhimurium A1-R significantly reduced tumor weight compared to BEV/GEM treatment alone in the PDOX and MiaPaCa-2 models. Neither treatment was as effective in the VEGF-negative model as in the VEGF-positive models. These results demonstrate that S. typhimurium A1-R following anti-angiogenic therapy is effective on pancreatic cancer including the PDOX model, suggesting its clinical potential.
Related JoVE Video
Tumor-targeting Salmonella typhimurium A1-R prevents experimental human breast cancer bone metastasis in nude mice.
Oncotarget
PUBLISHED: 09-13-2014
Show Abstract
Hide Abstract
Bone metastasis is a lethal and morbid late stage of breast cancer that is currently treatment resistant. More effective mouse models and treatment are necessary. High bone-metastatic variants of human breast cancer cells were selected in nude mice by cardiac injection. After cardiac injection of a high bone-metastatic variant of breast cancer, all untreated mice had bone metastases compared to only 20% with parental cells. Treatment with tumor-targeting Salmonella typhimurium A1-R completely prevented the appearance of bone metastasis of the high metastatic variant in nude mice (P < 0.001). After injection of the highly bone-metastatic breast cancer variant to the tibia of nude mice, S. typhimurium A1-R treatment significantly reduced tumor growth in the bone (P < 0.001). These data indicated that S. typhimurium A1-R is useful to prevent and inhibit breast cancer bone metastasis and should be of future clinical use for breast cancer in the adjuvant setting.
Related JoVE Video
Fluorescence-guided surgery improves outcome in an orthotopic osteosarcoma nude-mouse model.
J. Orthop. Res.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
In order to develop a model for fluorescence-guided surgery (FGS), 143B human osteosarcoma cells expressing red fluorescent protein (RFP) were injected into the intramedullary cavity of the tibia in nude mice. The fluorescent areas of residual tumors after bright-light surgery (BLS) and FGS were 10.2?±?2.4?mm(2) and 0.1?±?0.1?mm(2) , respectively (p?
Related JoVE Video
The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid.
PLoS ONE
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
We previously defined macrophages harvested from the peritoneal cavity of nude mice with subcutaneous human pancreatic tumors as "tumor-educated-macrophages" (Edu) and macrophages harvested from mice without tumors as "naïve-macrophages" (Naïve), and demonstrated that Edu-macrophages promoted tumor growth and metastasis. In this study, Edu- and Naïve-macrophages were compared for their ability to enhance pancreatic cancer malignancy at the cellular level in vitro and in vivo. The inhibitory efficacy of Zoledronic acid (ZA) on Edu-macrophage-enhanced metastasis was also determined. XPA1 human pancreatic cancer cells in Gelfoam co-cultured with Edu-macrophages proliferated to a greater extent compared to XPA1 cells cultured with Naïve-macrophages (P = 0.014). XPA1 cells exposed to conditioned medium harvested from Edu culture significantly increased proliferation (P = 0.016) and had more migration stimulation capability (P<0.001) compared to cultured cancer cells treated with the conditioned medium from Naïve. The mitotic index of the XPA1 cells, expressing GFP in the nucleus and RFP in the cytoplasm, significantly increased in vivo in the presence of Edu- compared to Naïve-macrophages (P = 0.001). Zoledronic acid (ZA) killed both Edu and Naïve in vitro. Edu promoted tumor growth and metastasis in an orthotopic mouse model of the XPA1 human pancreatic cancer cell line. ZA reduced primary tumor growth (P = 0.006) and prevented metastasis (P = 0.025) promoted by Edu-macrophages. These results indicate that ZA inhibits enhanced primary tumor growth and metastasis of human pancreatic cancer induced by Edu-macrophages.
Related JoVE Video
Efficacy of tumor-targeting Salmonella typhimurium A1-R on nude mouse models of metastatic and disseminated human ovarian cancer.
J. Cell. Biochem.
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
We report here the efficacy of tumor-targeting Salmonella typhimurium A1-R (A1-R) on mouse models of disseminated and metastatic ovarian cancer. The proliferation-inhibitory efficacy of A1-R on human ovarian cancer cell lines (SKOV-3-GFP, OVCAR-3-RFP) was initially demonstrated in vitro. Orthotopic and dissemination mouse models of ovarian cancer were made with the human ovarian cancer cell line SKOV-3-GFP. After tumor implantation, the mice were treated with A1-R (5?×?10(7) ?colony-forming units [CFU], i.v.), and there were no severe adverse events observed. In the orthotopic model, tumor volume after treatment was 276?±?60.8?mm(3), compared to 930?±?342?mm(3) in the untreated control group (P?=?0.022). There was also a significant difference in survival between treated mice and untreated mice in a peritoneal dissemination model (P?=?0.005). The results of this report demonstrate that A1-R is effective for highly aggressive human ovarian cancer in metastatic and dissemination mouse models and suggest its clinical potential for this highly treatment-resistant disease.
Related JoVE Video
Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness.
Cell Cycle
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We report here on the results of monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor intravitally using a fluorescence ubiquitination cell cycle indicator (FUCCI) before, during, and after chemotherapy. In nascent tumors in nude mice, approximately 30% of the cells in the center of the tumor are in G?/G? and 70% in S/G?/M. In contrast, approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G?/G? phase. Similarly, approximately 75% of cancer cells far from (> 100 µm) tumor blood vessels of an established tumor are in G?/G?. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after the cessation of chemotherapy. Our results suggest why most drugs currently in clinical use, which target cancer cells in S/G?/M, are mostly ineffective on solid tumors. The results also suggest that drugs that target quiescent cancer cells are urgently needed.
Related JoVE Video
Comparison of UVB and UVC effects on the DNA damage-response protein 53BP1 in human pancreatic cancer.
J. Cell. Biochem.
PUBLISHED: 04-23-2014
Show Abstract
Hide Abstract
We have previously demonstrated that ultraviolet (UV) light is effective against a variety of cancer cells expressing fluorescent proteins in vivo as well as in vitro. In the present report, we compared the DNA damage repair (DDR) response of pancreatic cancer cells after UVB or UVC irradiation. The UV-induced DNA damage repair was imaged with green fluorescent protein (GFP) fused to the DDR-related chromatin-binding protein 53BP1 in MiaPaCa-2 human pancreatic cancer cells growing in 3D Gelfoam® histoculture and in superficial tumors grown in nude mice. 53BP1-GFP forms foci during DNA damage repair. A clonogenic assay in 2D monolayer culture initially showed that UVC and UVB inhibited MiaPaCa-2 cell proliferation in a dose-dependent manner, with UVC having more efficacy. Three-dimensional Gelfoam® histocultures and confocal imaging enabled 53BP1-GFP foci to be observed within 1?h after UV irradiation, indicating the onset of DDR response. UVB-induced 53BP1-GFP focus formation was observed up to a depth of 120?µm in MiaPaCa-2 cells on Gelfoam® compared to 80?µm for UVC. UVB-induced 53BP1-GFP focus formation was observed up to a depth of 80?µm in MiaPaCa-2 cells, implanted within skin flaps in mice, at a significantly greater extent than UVC. MiaPaCa-2 cells irradiated by UVB or UVC in the skin-flap mouse model had a significant decrease in tumor growth compared to untreated controls with UVB having more efficacy than UVC. Our results demonstrate that UVB has greater tissue penetration than UVC because of its longer wavelength and has clinical potential for eradicating superficial cancer.
Related JoVE Video
Osteosarcoma cells enhance angiogenesis visualized by color-coded imaging in the in vivo Gelfoam® assay.
J. Cell. Biochem.
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
We previously described a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In ND-GFP mice, nascent blood vessels are labeled with GFP. We report here that osteosarcoma cells promote angiogenesis in the Gelfoam® angiogenesis assay in ND-GFP mice. Gelfoam® was initially transplanted subcutaneously in the flank of transgenic ND-GFP nude mice. Seven days after transplantation of Gelfoam®, skin flaps were made and human 143B osteosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in cytoplasm were injected into the transplanted Gelfoam®. The control-group mice had only implanted Gelfoam®. Skin flaps were made at days 14, 21, and 28 after transplantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small animal imaging system and confocal fluorescence microscopy. ND-GFP expressing nascent blood vessels penetrated and spread into the Gelfoam® in a time-dependent manner in both control and osteosarcoma-implanted mice. ND-GFP expressing blood vessels in the Gelfoam® of the osteosarcoma-implanted mice were associated with the cancer cells and larger and longer than in the Gelfoam®-only implanted mice (P?
Related JoVE Video
Fluorescence-guided surgery of prostate cancer bone metastasis.
J. Surg. Res.
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
The aim of this study is to investigate the effectiveness of fluorescence-guided surgery (FGS) of prostate cancer experimental skeletal metastasis.
Related JoVE Video
Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging.
Cell Cycle
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Invasive cancer cells are a critical target in order to prevent metastasis. In the present report, we demonstrate real-time visualization of cell cycle kinetics of invading cancer cells in 3-dimensional (3D) Gelfoam® histoculture, which is in vivo-like. A fluorescence ubiquitination cell cycle indicator (FUCCI) whereby G0/G1 cells express a red fluorescent protein and S/G2/M cells express a green fluorescent protein was used to determine the cell cycle position of invading and non-invading cells. With FUCCI 3D confocal imaging, we observed that cancer cells in G0/G1 phase in Gelfoam® histoculture migrated more rapidly and further than cancer cells in S/G2/M phases. Cancer cells ceased migrating when they entered S/G2/M phases and restarted migrating after cell division when the cells re-entered G0/G1. Migrating cancer cells also were resistant to cytotoxic chemotherapy, since they were preponderantly in G0/G1, where cytotoxic chemotherapy is not effective. The results of the present report suggest that novel therapy targeting G0/G1 cancer cells should be developed to prevent metastasis.
Related JoVE Video
Fluorescence-guided surgery in combination with UVC irradiation cures metastatic human pancreatic cancer in orthotopic mouse models.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The aim of this study is to determine if ultraviolet light (UVC) irradiation in combination with fluorescence-guided surgery (FGS) can eradicate metastatic human pancreatic cancer in orthotopic nude-mouse models. Two weeks after orthotopic implantation of human MiaPaCa-2 pancreatic cancer cells, expressing green fluorescent protein (GFP), in nude mice, bright-light surgery (BLS) was performed on all tumor-bearing mice (n?=?24). After BLS, mice were randomized into 3 treatment groups; BLS-only (n?=?8) or FGS (n?=?8) or FGS-UVC (n?=?8). The residual tumors were resected using a hand-held portable imaging system under fluorescence navigation in mice treated with FGS and FGS-UVC. The surgical resection bed was irradiated with 2700 J/m2 UVC (254 nm) in the mice treated with FGS-UVC. The average residual tumor area after FGS (n?=?16) was significantly smaller than after BLS only (n?=?24) (0.135±0.137 mm2 and 3.338±2.929 mm2, respectively; p?=?0.007). The BLS treated mice had significantly reduced survival compared to FGS- and FGS-UVC-treated mice for both relapse-free survival (RFS) (p<0.001 and p<0.001, respectively) and overall survival (OS) (p<0.001 and p<0.001, respectively). FGS-UVC-treated mice had increased RFS and OS compared to FGS-only treated mice (p?=?0.008 and p?=?0.025, respectively); with RFS lasting at least 150 days indicating the animals were cured. The results of the present study suggest that UVC irradiation in combination with FGS has clinical potential to increase survival.
Related JoVE Video
Light-scattering analysis of native wood holocelluloses totally dissolved in LiCl-DMI solutions: high probability of branched structures in inherent cellulose.
Biomacromolecules
PUBLISHED: 09-28-2011
Show Abstract
Hide Abstract
Three holocelluloses (i.e., cellulose and hemicellulose fractions) are prepared from softwood and hardwood by the Wise method. These holocelluloses completely dissolve in 8% lithium chloride/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) after an ethylenediamine (EDA) pretreatment. After diluting the holocellulose solutions to 1% LiCl/DMI, they are subjected to size-exclusion chromatography/multiangle laser-light scattering/photodiode array (SEC-MALLS-PDA) analysis. All holocelluloses exhibit bimodal molecular weight distributions primarily due to high-molecular-weight (HMW) cellulose and low-molecular-weight hemicellulose fractions. Plots of molecular weight vs root-mean-square radius obtained by SEC-MALLS analysis revealed that all the wood celluloses comprise dense conformations in 1% LiCl/DMI. In contrast, bacterial cellulose, which was used as a pure cellulose model, has a random coil conformation as a linear polymer. These results show that both softwood and hardwood HMW celluloses contain branched structures, which are probably present on crystalline cellulose microfibril surfaces. These results are consistent with those obtained by permethylation analysis of wood celluloses.
Related JoVE Video
The Reck tumor suppressor protein alleviates tissue damage and promotes functional recovery after transient cerebral ischemia in mice.
J. Neurochem.
PUBLISHED: 08-25-2010
Show Abstract
Hide Abstract
The extracellular matrix (ECM) is important for both structural integrity and functions of the brain. Matrix metalloproteinases (MMPs) play major roles in ECM-remodeling under both physiological and pathological conditions. Reversion-inducing cysteine-rich protein with Kazal motifs (Reck) is a membrane-anchored MMP-regulator implicated in coordinated regulation of pericellular proteolysis. Although patho-physiological importance of MMPs and another group of MMP-regulators, tissue inhibitor of metalloproteinases, in brain ischemia has been demonstrated, little is known about the role of Reck in this process. In this study, we found that Reck is up-regulated in hippocampus and penumbra of subventricular zone after transient cerebral ischemia in mice. Most of the Reck-positive cells found at day 2 after ischemia are positive for Nestin as well as Ki67 and localized to the CA2 region of the hippocampus. At day 7 after ischemia, the Reck-positive cells increased in number, extended processes, expressed the reactive astrocyte marker GFAP and the neuronal marker NF200, and were widely distributed in the hippocampus. In the mutant mice carrying single functional Reck allele (Reck+/-), tissue damage and cell death after cerebral ischemia were augmented, the recovery of long-term potentiation in the hippocampus was compromised, NR2C subunit of NMDA receptor was up-regulated, gelatinolytic activity of MMPs were up-regulated and laminin-immunoreactivity was reduced. Our data implicate Reck in protection of ECM/tissue integrity and promotion of functional recovery in the brain after transient cerebral ischemia.
Related JoVE Video
Involvement of the Reck tumor suppressor protein in maternal and embryonic vascular remodeling in mice.
BMC Dev. Biol.
PUBLISHED: 08-06-2010
Show Abstract
Hide Abstract
Developmental angiogenesis proceeds through multiple morphogenetic events including sprouting, intussusception, and pruning. Mice lacking the membrane-anchored metalloproteinase regulator Reck die in utero around embryonic day 10.5 with halted vascular development; however, the mechanisms by which this phenotype arises remain unclear.
Related JoVE Video
Antitumor effects of a water-soluble extract from Maitake (Grifola frondosa) on human gastric cancer cell lines.
Oncol. Rep.
PUBLISHED: 07-30-2009
Show Abstract
Hide Abstract
We investigated the effects of a water-soluble extract of Maitake (Grifola frondosa), a Japanese edible mushroom, on the proliferation and cell death of four human gastric cancer cell lines (TMK-1, MKN28, MKN45 and MKN74). The Maitake extract (ME) inhibited the proliferation of all four cell lines in a time-dependent manner. The inhibition was most pronounced in TMK-1 cells, which exhibited up to 90% inhibition after treatment with 10% ME for 3 days. Staining of ME-treated TMK-1 cells with Hoechst 33258 revealed increased numbers of nuclear condensations and apoptotic bodies. Induction of apoptosis was confirmed by fluorescence-activated cell sorting analyses. Western blot analyses of TMK-1 cells after ME treatment revealed increases in intracytoplasmic cytochrome c and cleavage of caspase-3 and poly(ADP-ribose) polymerase, but no expression of p21 or Bax. The caspase-3 protease activities in lysates of TMK-1 cells treated with 1% or 10% ME were about three times higher than those in control cells. The proliferation of TMK-1 cells was hardly affected by the caspase-3 inhibitor z-DEVD-fmk. Taken together, these results suggest that ME induces apoptosis of TMK-1 cells by caspase-3-dependent and -independent pathways, resulting in potential antitumor effects on gastric cancer.
Related JoVE Video
RECK forms cowbell-shaped dimers and inhibits matrix metalloproteinase-catalyzed cleavage of fibronectin.
J. Biol. Chem.
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
The membrane-anchored protease regulator RECK plays important roles in mammalian development and tumor suppression. The biochemical bases of these bioactivities, however, remain poorly understood. Here we report on the properties of a recombinant RECK protein expressed in mouse fibroblasts and purified to near homogeneity. Multiple lines of evidence indicate that RECK forms dimers. Single particle reconstruction using transmission electron microscopy revealed a unique cowbell-like shaped RECK dimer. RECK is cleaved by MMP-2 and MMP-7 and competitively inhibits MMP-7-catalyzed cleavage of fibronectin. Forced RECK expression in HT1080 cells, whose endogenous RECK expression is minimal, leads to an increase in the amount of fibronectin associated with the cell. Our data demonstrate the ability of RECK to protect fibronectin from MMP-mediated degradation.
Related JoVE Video
The transformation suppressor gene Reck is required for postaxial patterning in mouse forelimbs.
Biol Open
Show Abstract
Hide Abstract
The membrane-anchored metalloproteinase-regulator RECK has been characterized as a tumor suppressor. Here we report that mice with reduced Reck-expression show limb abnormalities including right-dominant, forelimb-specific defects in postaxial skeletal elements. The forelimb buds of low-Reck mutants have an altered dorsal ectoderm with reduced Wnt7a and Igf2 expression, and hypotrophy in two signaling centers (i.e., ZPA and AER) that are essential for limb outgrowth and patterning. Reck is abundantly expressed in the anterior mesenchyme in normal limb buds; mesenchyme-specific Reck inactivation recapitulates the low-Reck phenotype; and some teratogens downregulate Reck in mesenchymal cells. Our findings illustrate a role for Reck in the mesenchymal-epithelial interactions essential for mammalian development.
Related JoVE Video
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.