JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Bacillus invictae sp. nov., isolated from a health product.
Int. J. Syst. Evol. Microbiol.
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
A Gram-positive, rod-shaped, endospore-forming Bacillus isolate, Bi.FFUP1 (T), recovered in Portugal from a health product was subjected to a polyphasic study and compared with the type strains of Bacillus pumilus, Bacillus safensis, Bacillus altitudinis and Bacillus xiamenensis, the phenotypically and genotypically most closely related species. Acid production from cellobiose, d-glucose and d-mannose and absence of acid production from d-arabinose, erythritol, inositol, maltose, mannitol, raffinose, rhamnose, sorbitol, starch and l-tryptophan discriminated this new isolate from the type strains of the most closely related species. Additionally, a significant different protein and carbohydrate signature was evidenced by spectroscopic techniques, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Fourier transform IR spectroscopy with attenuated total reflectance. Using a chemometric approach, the score plot generated by principal component analysis clearly delineated the isolate as a separate cluster. The quinone system for strain Bi.FFUP1 (T) comprised predominantly menaquinone MK-7 and major polar lipids were diphosphatidylglycerol, an unidentified phospholipid and an unidentified glycolipid. Strain Bi.FFUP1 (T) showed ?99?% 16S rRNA gene sequence similarity to B. safensis FO-036b(T), B. pumilus (7061(T) and SAFR-032), B. altitudinis 41KF2b(T) and B. xiamenensis HYC-10(T). Differences in strain Bi.FFUP1 (T) gyrB and rpoB sequences in comparison with the most closely related species and DNA-DNA hybridization experiments with Bi.FFUP1 (T) and B. pumilus ATCC 7061(T), B. safensis FO-036b(T), B. altitudinis 41KF2b(T) and B. xiamenensis HYC-10(T) gave relatedness values of 39.6?% (reciprocal 38.0?%), 49.9?% (reciprocal 42.9?%), 61.9?% (reciprocal 52.2?%) and 61.7?% (reciprocal 49.2?%), respectively, supported the delineation of strain Bi.FFUP1 (T) as a representative of a novel species of the genus Bacillus, for which the name Bacillus invictae sp. nov. is proposed, with strain Bi.FFUP1 (T) (?=?DSM 26896(T)?=?CCUG 64113(T)) as the type strain.
Related JoVE Video
Phytochemicals preservation in strawberry as affected by pH modulation.
Food Chem
PUBLISHED: 03-05-2014
Show Abstract
Hide Abstract
Strawberries purées are incorporated in foods and subjected to pH modulation according to the expected final food matrix. The effect of pH on strawberry polyphenols stored at 4 and 23°C for 90days was evaluated. Total antioxidant activity and total phenolics content were only affected by time according to a first order model. The pH 4.5 induced higher decrease in (-)-epigallocatechin gallate (71% and 79%) and quercetin-3-glucoside (29% and 36%), for both storage temperatures. For pH 2.5 and 3.0, ellagic acid increased 84% for 4°C and 185% for 23°C. Anthocyanins concentration changes along storage were well described by first order model. The pH value of 2.5 presented the lower kinetic constant rate where cyanidin-3-glucoside, pelargonidin-3-glucoside and pelargonidin-3-rutinoside had a k=0.04, 0.05 and 0.03day(-1). Lower storage temperature (4°C) and lower pH (2.5) were the best condition for the preservation of polyphenols in pasteurized strawberry during a 90-day storage period.
Related JoVE Video
Phylogenetic and clonality analysis of Bacillus pumilus isolates uncovered a highly heterogeneous population of different closely related species and clones.
FEMS Microbiol. Ecol.
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Bacillus pumilus is a Gram-positive bacterium with a wide range of attributed applications, namely as a plant growth promoting rhizobacteria (PGPR), animal, and human probiotic. However, a rare putative role in human diseases has been reported, namely in food poisoning or as anthrax-like cutaneous infectious agent. This species is difficult to distinguish from its closely related species on the basis of phenotypic or biochemical characteristics and 16S rRNA gene sequences. In this study, the phylogenetic analysis of gyrB and rpoB gene sequences of a collection of isolates previously identified as B. pumilus, assigned most of them (93%, 38 of 41 isolates) to B. safensis or to the new recently described B. invictae. Moreover, we extended the previously reported recognized habitats of these species and unveiled a human health or biotechnological relevance (e.g. as implicated in food poisoning or PGPR) for them. Additionally, we demonstrated that both B. safensis and B. invictae species encompass a clonally diverse population, which can justify their great adaptation ability to different niches, with evidence of clonal-host specificity.
Related JoVE Video
Propensity for biofilm formation by clinical isolates from urinary tract infections: developing a multifactorial predictive model to improve antibiotherapy.
J. Med. Microbiol.
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
A group of biofilm-producing bacteria isolated from patients with urinary tract infections was evaluated, identifying the main factors contributing to biofilm formation. Among the 156 isolates, 58 (37.2%) were biofilm producers. The bacterial species (P<0.001), together with patient's gender (P = 0.022), were the factors with the highest influence for biofilm production. There was also a strong correlation of catheterization with biofilm formation, despite being less significant (P = 0.070) than species or gender. In fact, some of the bacteria isolated were biofilm producers in all cases. With regard to resistance profile among bacterial isolates, ?-lactam antibiotics presented the highest number of cases/percentages--ampicillin (32/55.2%), cephalothin (30/51.7%), amoxicillin/clavulanic acid (22/37.9%)--although the carbapenem group still represented a good therapeutic option (2/3.4%). Quinolones (nucleic acid synthesis inhibitors) also showed high resistance percentages. Furthermore, biofilm production clearly increases bacterial resistance. Almost half of the biofilm-producing bacteria showed resistance against at least three different groups of antibiotics. Bacterial resistance is often associated with catheterization. Accordingly, intrinsic (age and gender) and extrinsic (hospital unit, bacterial isolate and catheterization) factors were used to build a predictive model, by evaluating the contribution of each factor to biofilm production. In this way, it is possible to anticipate biofilm occurrence immediately after bacterial identification, allowing selection of a more effective antibiotic (among the susceptibility options suggested by the antibiogram) against biofilm-producing bacteria. This approach reduces the putative bacterial resistance during treatment, and the consequent need to adjust antibiotherapy.
Related JoVE Video
Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid.
Colloids Surf B Biointerfaces
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
During the last decade there has been a growing interest in the formulation of new food and nutraceutical products containing compounds with antioxidant activity. Unfortunately, due to their structure, certain compounds such as polyphenols, in particular rosmarinic acid (RA) are not stable and may interact easily with matrices in which they are incorporated. To overcome such limitations, the formulation of loaded polyphenols nanoparticles can offer an efficient solution to protect such compounds. Based on this rationale, the aim of this study was to prepare solid lipid nanoparticles (SLNs) loaded with RA using a hot melt ultrasonication method, where Witepsol H15 was used as lipid and Polysorbate 80 (Tween 80) as surfactant, following a 3(2) fractional factorial design, resulting in the use of 3 different percentages of surfactant (viz. 1, 2 and 3%, v/v) and lipid (0.5, 1.0 and 1.5%, w/v). The stability of the nanoparticles systems were tested during 28 d in aqueous solution stored at refrigeration temperature (ca. 5 °C), tracking the mean particle size of different formulations by photon correlation spectroscopy. To confirm RA entrapment, thermal analyses of the nanoparticles by DSC and FTIR were performed. The association efficiencies percentages (AE%) were determined using HPLC to quantitatively assess the RA in supernatants. Results showed that Witepsol H15 produced nanoparticles with initial mean diameters between 270 and 1000 nm, yet over time, a slight increase occurred, but without occurrence of aggregation. The AE% showed a high percentage of encapsulation (ca. 99%), which reveals low polyphenol releases from SLNs throughout storage time. In general, results showed a successful production of SLNs with properties that can be used to food applications.
Related JoVE Video
Incorporation of strawberries preparation in yoghurt: Impact on phytochemicals and milk proteins.
Food Chem
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
An immediate decrease in the total antioxidant activity (23%) and total phenolic content (14%) was observed after addition of strawberry preparations to yoghurt. The total anthocyanin content did not change immediately, but decreased 24% throughout the yoghurt shelf-life. The individual compounds, (+)-catechin (60%), (-)-epicatechin (60%), kaempferol (33%) and quercetin-3-rutinoside (29%) decreased after 24h in the yoghurt made with the strawberry preparation. During the remaining period of storage these compounds increased by 47%, 6%, 4% and 18%, respectively. Pelargonidin-3-glucoside decreased 49% after 28d. Immediately after the addition of the strawberry preparation to yoghurt, ?-lactoglobulin decreased to values lower than the limit of detection and ?-lactalbumin by approximately 34%, and was reduced further slowly throughout yoghurt self-life. An immediate interaction between the carrageenan present in the strawberry preparation and ?-LG was observed. The variations of both polyphenols and protein in the presence of carrageenan and the potential interactions were discussed.
Related JoVE Video
Docking studies in target proteins involved in antibacterial action mechanisms: extending the knowledge on standard antibiotics to antimicrobial mushroom compounds.
Molecules
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
In the present work, the knowledge on target proteins of standard antibiotics was extended to antimicrobial mushroom compounds. Docking studies were performed for 34 compounds in order to evaluate their affinity to bacterial proteins that are known targets for some antibiotics with different mechanism of action: inhibitors of cell wall synthesis, inhibitors of protein synthesis, inhibitors of nucleic acids synthesis and antimetabolites. After validation of the molecular docking approach, virtual screening of all the compounds was performed against penicillin binding protein 1a (PBP1a), alanine racemase (Alr), d-alanyl-d-alanine synthetase (Ddl), isoleucyl-tRNA sinthetase (IARS), DNA gyrase subunit B, topoisomerase IV (TopoIV), dihydropteroate synthetase (DHPS) and dihydrofolate reductase (DHFR) using AutoDock4. Overall, it seems that for the selected mushroom compounds (namely, enokipodins, ganomycins and austrocortiluteins) the main mechanism of the action is the inhibition of cell wall synthesis, being Alr and Ddl probable protein targets.
Related JoVE Video
Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris.
Plant Sci.
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Chitooligosaccharides (COS) - water soluble derivatives from chitin, are an interesting group of molecules for several biological applications, for they can enter plant cells and bind negatively charged molecules. Several studies reported an enhanced plant growth and higher crop yield due to chitosan application in soil grown plants, but no studies have looked on the effect of COS application on plant mineral nutrient dynamics in hydroponically grown plants. In this study, Phaseolus vulgaris was grown in hydroponic culture and the effect of three different concentrations of COS on plant growth and mineral accumulation was assessed. There were significant changes in mineral allocations for Mo, B, Zn, P, Pb, Cd, Mn, Fe, Mg, Ca, Cu, Na, Al and K among treatments. Plant morphology was severely affected in high doses of COS, as well as lignin concentration in the stem and the leaves, but not in the roots. Chlorophyll A, B and carotenoid concentrations did not change significantly among treatments, suggesting that even at higher concentrations, COS application did not affect photosynthetic pigment accumulation. Plants grown at high COS levels had shorter shoots and roots, suggesting that COS can be phytotoxic to the plant. The present study is the first detailed report on the effect of COS application on mineral nutrition in plants, and opens the door for future studies that aim at utilizing COS in biofortification or phytoremediation programs.
Related JoVE Video
Differentiation of Bacillus pumilus and Bacillus safensis Using MALDI-TOF-MS.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) despite being increasingly used as a method for microbial identification, still present limitations in which concerns the differentiation of closely related species. Bacillus pumillus and Bacillus safensis, are species of biotechnological and pharmaceutical significance, difficult to differentiate by conventional methodologies. In this study, using a well-characterized collection of B. pumillus and B. safensis isolates, we demonstrated the suitability of MALDI-TOF-MS combined with chemometrics to accurately and rapidly identify them. Moreover, characteristic species-specific ion masses were tentatively assigned, using UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases and primary literature. Delineation of B. pumilus (ions at m/z 5271 and 6122) and B. safensis (ions at m/z 5288, 5568 and 6413) species were supported by a congruent characteristic protein pattern. Moreover, using a chemometric approach, the score plot created by partial least square discriminant analysis (PLSDA) of mass spectra demonstrated the presence of two individualized clusters, each one enclosing isolates belonging to a species-specific spectral group. The generated pool of species-specific proteins comprised mostly ribosomal and SASPs proteins. Therefore, in B. pumilus the specific ion at m/z 5271 was associated with a small acid-soluble spore protein (SASP O) or with 50S protein L35, whereas in B. safensis specific ions at m/z 5288 and 5568 were associated with SASP J and P, respectively, and an ion at m/z 6413 with 50S protein L32. Thus, the resulting unique protein profile combined with chemometric analysis, proved to be valuable tools for B. pumilus and B. safensis discrimination, allowing their reliable, reproducible and rapid identification.
Related JoVE Video
Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis.
Drug Deliv
PUBLISHED: 11-26-2013
Show Abstract
Hide Abstract
Abstract Context: Chitosan nanoparticles were prepared to encapsulate daptomycin and proposed as a delivery system of this antibiotic to the eye for the treatment of bacterial endophthalmitis. Objective: The aim of this study was to develop daptomycin-loaded nanoparticles to apply directly to the eye, as a possible non-invasive and less painful alternative for the treatment of endophthalmitis, increasing the effectiveness of treatment and reducing toxicity associated with systemic administration. Materials and methods: Nanoparticles were obtained by ionotropic gelation between chitosan and sodium tripolyphosphate (TPP). Physicochemical and morphological characteristics of nanoparticles were evaluated, as well as determination of antimicrobial efficiency of encapsulated daptomycin and stability of the nanoparticles in the presence of lysozyme and mucin. Results: Loaded nanoparticles presented mean particle sizes around 200?nm, low polydispersity index, and positive zeta potential. Morphological examination by scanning electron microscopy (SEM) confirmed their small size and round-shaped structure. Encapsulation efficiency ranged from 80 to 97%. Total in vitro release of daptomycin was obtained within 4?h. Determination of minimum inhibitory concentrations (MICs) showed that bacteria were still susceptible to daptomycin encapsulated into the nanoparticles. Incubation with lysozyme did not significantly affect the integrity of the nanoparticles, although mucin positively affected their mucoadhesive properties. Discussion and conclusion: The obtained nanoparticles have suitable characteristics for ocular applications, arising as a promising solution for the topical administration of daptomycin to the eye.
Related JoVE Video
A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds.
Curr Top Med Chem
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
The present review reports the antifungal activity of mushroom extracts and isolated compounds including high (e.g. peptides and proteins) and low (e.g. sesquiterpenes and other terpenes, steroids, organic acids, acylcyclopentenediones and quinolines) molecular weight compounds. Most of the studies available on literature focused on screening of antifungal activity of mushroom extracts, rather than of isolated compounds. Data indicate that mushroom extracts are mainly tested against different Candida species, while mushroom compounds are mostly tested upon other fungi. Therefore, the potential of these compounds might be more useful in food industry than in clinics. Oudemansiella canarii and Agaricus bisporus methanolic extracts proved to be the most active mushroom extracts against Candida spp. Grifolin, isolated from Albatrellus dispansus, seemed to be the most active compound against phytopathogenic fungi. Further studies should be performed in order to better understand the mechanism of action of this and other antifungal compounds as well as safety issues.
Related JoVE Video
Development and validation method for simultaneous quantification of phenolic compounds in natural extracts and nanosystems.
Phytochem Anal
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
Sage and savoury (Salvia sp. and Satureja montana, respectively) are plants used in traditional medicine. The quality control of their herbal formulations is of paramount concern to guarantee the expected biological activity of their anti-oxidant compounds.
Related JoVE Video
Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks.
Food Chem
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
Chemical composition of Hibiscus drinks (Koor and Vimto varieties, commercial and traditional, infusions and syrups) (n=8) was related to sensory evaluation and acceptance. Significant correlations between chemical composition and sensory perception of drinks were found (i.e. anthocyanin content and Hibiscus taste) (p<0.05). Consumers (n=160) evaluated drink acceptability on a 9-point verbal hedonic scale. Three classes of behaviour were identified: (a) those who preferred syrup (43% of consumers); (b) those who preferred infusion (36%); and (c) those who preferred all of the samples (21%). Acceptability of syrup likers was positively correlated to sweet taste, reducing sugar content and inversely correlated to acidic taste and titratable acidity (p<0.10). Acceptability of infusion likers was positively correlated to the taste of Hibiscus drink and anthocyanin content. The study showed that the distinctions between the acceptability groups are very clear with respect to the chemical composition and rating of sensory attributes.
Related JoVE Video
Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues--a review.
Mater Sci Eng C Mater Biol Appl
PUBLISHED: 03-08-2013
Show Abstract
Hide Abstract
Different valuable compounds, which can be employed in medicine or in other industries (i.e. food, agrochemical, pharmaceutical) can be recovered from by-products and waste from the fish canning industries. They include lipids, proteins, bio-polymers, minerals, amino acids and enzymes; they can be extracted from wastewaters and/or from solid residues (head, viscera, skin, tails and flesh) generated along the canning process, through the filleting, cooking, salting or smoking stages. In this review, the opportunities for the extraction and the valorisation of bioactive compounds from sardine, sardine-type fish and mackerel canning residues are examined and discussed. These are amongst the most consumed fishes in the Mediterranean area; moreover, canning is one of the most important and common methods of preservation. The large quantities of by-products generated have great potentials for the extraction of biologically desirable high added value compounds.
Related JoVE Video
Influence of abiotic factors on the antimicrobial activity of chitosan.
J. Dermatol.
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosans capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosans action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.
Related JoVE Video
Evaluation of chitoligosaccharides effect upon probiotic bacteria.
Int. J. Biol. Macromol.
PUBLISHED: 09-28-2011
Show Abstract
Hide Abstract
The main objective of the present study was to evaluate the antibacterial effect - through the determination of minimum inhibitory (and lethal) concentrations, as well as the possible prebiotic potential of chitooligosaccharides (COS) - through the determination of growth curves, on Bifidobacterium animalis Bb12, Bifidobacterium animalis Bo and Lactobacillus acidophilus Ki. Atomic force microscopy was further used to obtain high resolution images of COS effects upon the cell morphology. Our results demonstrate that COS do not stimulate the growth of those strains, neither the strains are capable of using COS as a primary source of carbon. Analysis of morphology when exposed to inhibitory/bactericidal concentrations, suggested that COS do not exert any direct damage upon the bacteria structure, instead the bacteria are apparently covered by COS, which likely prevent nutrient uptake.
Related JoVE Video
Incorporation of probiotic bacteria in whey cheese: decreasing the risk of microbial contamination.
J. Food Prot.
PUBLISHED: 07-12-2011
Show Abstract
Hide Abstract
For dairy products that are consumed fresh, contamination by spoilage microorganisms and pathogens from the environment is a major concern. Contamination has been associated with a number of outbreaks of foodborne illnesses; however, consistent data pertaining to the microbial safety of whey cheeses specifically have not been reported. Hence, the goals of this research effort were (i) to manufacture a probiotic whey cheese with Bifidobacterium animalis and Lactobacillus casei and (ii) to assess the antimicrobial activity of these probiotics against a set of foodborne pathogens (Listeria innocua, Salmonella Enteritidis, and Staphylococcus aureus) and food spoilage microorganisms (Pseudomonas aeruginosa and Escherichia coli). Three ranges of these microbial contaminants were used for inoculation of cheeses: 10(3) to 10(4), 10(4) to 10(6), and 10(6) to 10(8) CFU/g. Inoculation in plain culture medium served as a control. The inhibition produced by the probiotics was calculated, and the major effect was found to be bacteriostatic. In specific cases, full inhibition was observed, i.e., by B. animalis against P. aeruginosa and by L. casei against Salmonella Enteritidis and L. innocua. Conversely, the least inhibition was detected for L. casei against P. aeruginosa. Our results suggest that use of these probiotic strains can extend the shelf life of whey cheeses and make them safer by delaying or preventing growth of common contaminant bacteria.
Related JoVE Video
Technological optimization of manufacture of probiotic whey cheese matrices.
J. Food Sci.
PUBLISHED: 05-04-2011
Show Abstract
Hide Abstract
In attempts to optimize their manufacture, whey cheese matrices obtained via thermal processing of whey (leading to protein precipitation) and inoculated with probiotic cultures were tested. A central composite, face-centered design was followed, so a total of 16 experiments were run using fractional addition of bovine milk to feedstock whey, homogenization time, and storage time of whey cheese as processing parameters. Probiotic whey cheese matrices were inoculated with Lactobacillus casei LAFTIL26 at 10% (v/v), whereas control whey cheese matrices were added with skim milk previously acidified with lactic acid to the same level. All whey cheeses were stored at 7 °C up to 14 d. Chemical and sensory analyses were carried out for all samples, as well as rheological characterization by oscillatory viscometry and textural profiling. As expected, differences were found between control and probiotic matrices: fractional addition of milk and storage time were the factors accounting for the most important effects. Estimation of the best operating parameters was via response surface analysis: milk addition at a rate of 10% to 15% (v/v), and homogenization for 5 min led to the best probiotic whey cheeses in terms of texture and organoleptic properties, whereas the best time for consumption was found to be by 9 d of storage following manufacture.
Related JoVE Video
Cytotoxicity and genotoxicity of chitooligosaccharides upon lymphocytes.
Int. J. Biol. Macromol.
PUBLISHED: 03-09-2011
Show Abstract
Hide Abstract
Two COS mixtures and a low molecular weight chitosan (LMWC) were tested for potential cytotoxicity and genotoxicity upon human lymphocytes. Genotoxicity was evaluated in vitro by cytokinesis-blocked micronucleus and alkaline comet assays, while cytotoxicity was assessed by flow cytometry analysis. Our results suggest that COS do not exhibit any genotoxicity upon human lymphocytes, independently of MW or concentration. However, above 0.07mg/mL COS induced strong cytotoxic effects. According to the concentration used, such cytotoxicity will induce cell death, essentially by necrosis (>0.10mg/mL) and/or apoptosis (<0.10mg/mL). The level of necrosis/apoptosis induced by high COS concentrations, suggests a promising use as apoptosis inducers in specific cancer situations.
Related JoVE Video
Biodiversity and characterization of Staphylococcus species isolated from a small manufacturing dairy plant in Portugal.
Int. J. Food Microbiol.
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
The level and the diversity of the staphylococcal community occurring in the environment and dairy products of a small manufacturing dairy plant were investigated. Species identification was performed using different molecular methods, viz. Multiplex-PCR, amplified ribosomal DNA restriction analysis (ARDRA), and sodA gene sequencing. The main species encountered corresponded to Staphylococcus equorum (41 isolates, 39.0%), S. saprophyticus (28 isolates, 26.7%) and S. epidermidis (15 isolates, 14.3%). Additionally, low incidence of enterotoxin genes was obtained, with only 9 strains (8.6%) being positive for one or more toxin genes. With regard to antimicrobial resistance, 57.1% of the isolates showed at least resistance against one antibiotic, and 28.6% were multi-resistant, which might accomplish resistance for up to 6 antibiotics simultaneously. These results provided evidence that the presence of Staphylococcus species in dairy environment are mostly represented by S. equorum and S. saprophyticus, and illustrate that carrying antimicrobial resistance genes has become reasonably widespread in cheese and dairy environment.
Related JoVE Video
Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes.
Peptides
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
Whey protein concentrate (WPC) was subjected to enzymatic hydrolysis by proteases from the flowers of Cynara cardunculus, and the resulting angiotensin-converting enzyme (ACE)-inhibitory effect was monitored. The whole WPC hydrolysate exhibited an IC(50) value of 52.9 ± 2.9 ?g/mL, whereas the associated peptide fraction with molecular weight below 3 kDa scored 23.6 ± 1.1 ?g/mL. The latter fraction was submitted to RP-HPLC, and 6 fractions were resolved that exhibited ACE-inhibitory effects. Among the various peptides found, a total of 14 were identified via sequencing with an ion-trap mass spectrometer. Eleven of these peptides were synthesized de novo--to validate their ACE-inhibitory effect, and also to ascertain their stability when exposed to simulated gastrointestinal digestion. Among them, three novel, highly potent peptides were found, corresponding to ?-lactalbumin f(16-26)--with the sequence KGYGGVSLPEW, ?-lactalbumin f(97-104) with DKVGINYW, and ?-lactoglobulin f(33-42) with DAQSAPLRVY; their IC(50) values were as low as 0.80 ± 0.1, 25.2 ± 1.0 and 13.0 ± 1.0 ?g/mL, respectively. None of them remained stable in the presence of gastrointestinal enzymes: they were partially, or even totally hydrolyzed to smaller peptides--yet the observed ACE-inhibitory effects were not severely affected for two of those peptides.
Related JoVE Video
Anti-inflammatory activity of chitooligosaccharides in vivo.
Mar Drugs
PUBLISHED: 04-15-2010
Show Abstract
Hide Abstract
All the reports to date on the anti-inflammatory activity of chitooligosaccharides (COS) are mostly based on in vitro methods. In this work, the anti-inflammatory activity of two COS mixtures is characterized in vivo (using balb/c mice), following the carrageenan-induced paw edema method. This is a widely accepted animal model of acute inflammation to evaluate the anti-inflammatory effect of drugs. Our data suggest that COS possess anti-inflammatory activity, which is dependent on dose and, at higher doses, also on the molecular weight. A single dose of 500 mg/kg b.w. weight may be suitable to treat acute inflammation cases; however, further studies are needed to ascertain the effect upon longer inflammation periods as well as studies upon the bioavailability of these compounds.
Related JoVE Video
In vitro screening for anti-microbial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles.
J. Microbiol. Biotechnol.
PUBLISHED: 03-09-2010
Show Abstract
Hide Abstract
Antimicrobial finishing of textiles has been found to be an economical way to prevent (or treat) skin disorders. Hence, this research effort was aimed at elucidating the relationship between molecular weight (MW) of chitosan and its antimicrobial activity upon six dermal reference microorganisms, as well as the influence of the interactions with cotton fabrics on said activity. Using 3 chitosans with different MW, as well as two chitooligosaccharide (COS) mixtures, a relevant antimicrobial effect was observed by 24 h for the six microorganisms tested; it was apparent that the antimicrobial effect is strongly dependent on the type of target microorganism and on the MW of chitosan being higher for lower MW in the case of E. coli, K. pneumoniae and P. aeruginosa, and the reverse in the case of both Gram-positive bacteria. Furthermore, a strong anti-fungal effect was detectable upon C. albicans, resembling the action over Gram-positive bacteria. Interactions with cotton fabric resulted in a loss of COS activity when compared with cultured media, relative to the effect over Gram-negative bacteria. However, no significant differences for the efficacy of all the 5 compounds were observed by 4 h. The three chitosans possessed a higher antimicrobial activity when impregnated onto the fabric, and presented a similar effect on both Gram-positive bacteria and yeast, in either matrix. Pseudomonas aeruginosa showed to be the most resistant microorganism to all five compounds.
Related JoVE Video
Direct metabolic fingerprinting of commercial herbal tinctures by nuclear magnetic resonance spectroscopy and mass spectrometry.
Phytochem Anal
PUBLISHED: 05-01-2009
Show Abstract
Hide Abstract
Tinctures are widely used liquid pharmaceutical preparations traditionally obtained by maceration of one or more medicinal plants in ethanol-water solutions. Such a process results in the extraction of virtually hundreds of structurally diverse compounds with different polarities. Owing to the large chemical diversity of the constituents present in the herbal tinctures, the analytical tools used for the quality control of tinctures are usually optimised only for the detection of single chemical entities or specific class of compounds.
Related JoVE Video
Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation.
Ultramicroscopy
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
Bacillus cereus is a Gram-positive, spore-forming bacterium that is widely distributed in nature. Its intrinsic thermal resistance coupled with the extraordinary resistance against common food preservation techniques makes it one of the most frequent food-poisoning microorganisms causing both intoxications and infections. In order to control B. cereus growth/sporulation, and hence minimize the aforementioned hazards, several antimicrobial compounds have been tested. The aim of this work was to assess by atomic force microscopy (AFM) the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon both vegetative and resistance forms of B. cereus. The use of AFM imaging studies helped us to understand how chitosans with different MW act differently upon B. cereus. Higher MW chitosans (628 and 100kDa) surrounded both forms of B. cereus cells by forming a polymer layer-which eventually led to the death of the vegetative form by preventing the uptake of nutrients yet did not affect the spores since these can survive for extended periods without nutrients. Chitooligosaccharides (COS) (<3kDa), on the other hand, provoked more visible damages in the B. cereus vegetative form-most probably due to the penetration of the cells by the COS. The use of COS by itself on B. cereus spores was not enough for the destruction of a large number of cells, but it may well weaken the spore structure and its ability to contaminate, by inducing exosporium loss.
Related JoVE Video
Determination of antioxidant capacity using the biological system bacteriophage P22/bacterium Salmonella typhimurium.
J. Agric. Food Chem.
PUBLISHED: 02-14-2009
Show Abstract
Hide Abstract
Bacteriophage/bacterium systems have been employed in the past in assays for virucidal activity. A novel application of one such system is proposed here for the in vivo determination of antioxidant capacity. It was shown that an antioxidant such as gallic acid can effectively protect against oxidative damage brought about by H2O2-but only within a narrow range of concentrations (i.e., from 250 to 500 mg L-1); ascorbic acid, on the other hand, did not exhibit any protective effect against H2O2. Finally, neither ascorbic nor gallic acid demonstrated a virucidal effect. The P22/Salmonella typhimurium model system thus proved to be useful in the assessment of antioxidant capacity in vivo, at least using those two alternative model antioxidants.
Related JoVE Video
Inhibition of bladder tumor growth by chitooligosaccharides in an experimental carcinogenesis model.
Mar Drugs
Show Abstract
Hide Abstract
Urinary bladder cancer is one of the most common cancers worldwide, with the highest incidence in industrialized countries. Patients with cancer commonly use unconventional and complementary therapy including nutraceuticals. In this study we evaluated the efficacy of chitooligosaccharides (in orange juice) in rat bladder cancer chemoprevention and as therapeutic agent, on a rat model of urinary bladder carcinogenesis induced with N-butyl-N-(4-hydroxybutyl) nitrosamine. Results indicate that chitooligosaccharides may have a preventive effect on bladder cancer development and a curative effect upon established bladder tumors, dependent on the concentration ingested 500 mg/kg b.w., every three days, showed capacity to inhibit and prevent the proliferation of bladder cancer; however, this was associated with secondary effects such as hypercholesterolemia and hypertriglyceridemia. The use of lower doses (50 and 250 mg/kg b.w.) showed only therapeutic effects. It is further suggested that this antitumor effect might be due to its expected anti-inflammatory action, as well as by mechanisms not directly dependent of COX-2 inhibition, such as cellular proliferation control and improvement in antioxidant profile.
Related JoVE Video
The importance of antimicrobial peptides and their potential for therapeutic use in ophthalmology.
Int. J. Antimicrob. Agents
Show Abstract
Hide Abstract
The reduced effectiveness of some of the most important antibiotics owing to increasing resistance of microorganisms as well as the absence of new classes of antimicrobial agents have been concerning researchers and clinicians in recent years. Thus, the development and approval of new compounds for clinical applications is of great importance. Among these compounds, antimicrobial peptides (AMPs) appear to be excellent candidates for the development of novel antimicrobial agents. Some AMPs and antimicrobial proteins have been shown to be active against relevant pathogens in ocular infections as well as in biofilm eradication from contact lenses. Thus, they are considered promising in the prevention and management of ocular diseases. This review summarises the main classes and characteristics of AMPs and antimicrobial proteins, in particular those found in ocular structures and fluids. Some AMPs with activity against ocular pathogens and their potential as therapeutic agents to treat and prevent ocular infections are emphasised.
Related JoVE Video
A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds.
Planta Med.
Show Abstract
Hide Abstract
Despite the huge diversity of antibacterial compounds, bacterial resistance to first-choice antibiotics has been drastically increasing. Moreover, the association between multiresistant microorganisms and nosocomial infections highlight the problem, and the urgent need for solutions. Natural resources have been exploited in the last years and among them, mushrooms could be an alternative source of new antimicrobials. In this review, we present an overview of the antimicrobial properties of mushroom extracts and highlight some of the active compounds identified, including low- and high-molecular weight (LMW and HMW, respectively) compounds. LMW compounds are mainly secondary metabolites, such as sesquiterpenes and other terpenes, steroids, anthraquinones, benzoic acid derivatives, and quinolines, but also primary metabolites such as oxalic acid. HMW compounds are mainly peptides and proteins. Data available from the literature indicate a higher antimicrobial activity of mushroom extracts against gram-positive bacteria. Among all the mushrooms, Lentinus edodes is the most studied species and seems to have a broad antimicrobial action against both gram-positive and gram-negative bacteria. Plectasin peptide, obtained from Pseudoplectania nigrella, is the isolated compound with the highest antimicrobial activity against gram-positive bacteria, while 2-aminoquinoline, isolated from Leucopaxillus albissimus, presents the highest antimicrobial activity against gram-negative bacteria.
Related JoVE Video
Bioactive peptides: are there more antihypertensive mechanisms beyond ACE inhibition?
Curr. Pharm. Des.
Show Abstract
Hide Abstract
Diet has a high relevance in health. Hypertension is a major risk factor for cardiovascular diseases and has an important impact on public health, and consequently on countries economy. Scientific research gathered strong evidence about the role of several dietary factors either in etiology or in treatment/prevention of these diseases. Peptides from different food matrices have been studied, and indicated as compounds with particular interest in the context of hypertension. The classical approach involves the identification of peptides with an in vitro ACE inhibitory activity and the assumption that the observed in vivo effects are due to this enzyme blockade. However, in some cases the potency of ACE blockade does not correlate with the antihypertensive activity in vivo. This paper reviews the current literature that identifies mechanisms of action, other than ACE inhibition, that might explain antihypertensive effects of biologically active peptides from different food sources.
Related JoVE Video
Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties.
Crit Rev Food Sci Nutr
Show Abstract
Hide Abstract
The latest decade has witnessed joint efforts by the packaging and the food industries to reduce the amount of residues and wastes associated with food consumption. The recent increase in environmental awareness has also contributed toward development of edible packaging materials. Viable edible films and coatings have been successfully produced from whey proteins; their ability to serve other functions, viz. carrier of antimicrobials, antioxidants, or other nutraceuticals, without significantly compromising the desirable primary barrier and mechanical properties as packaging films, will add value for eventual commercial applications. These points are tackled in this review, in a critical manner. The supply of whey protein-based films and coatings, formulated to specifically address end-user needs, is also considered.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.