JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity.
FASEB J.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
The endocannabinoid system is an important player in energy metabolism by regulating appetite, lipolysis, and energy expenditure. Chronic blockade of the cannabinoid 1 receptor (CB1R) leads to long-term maintenance of weight loss and reduction of dyslipidemia in experimental and human obesity. The molecular mechanism by which CB1R blockade reverses dyslipidemia in obesity has not yet been clarified. In this study, we showed that CB1R blockade with the systemic CB1R blocker rimonabant enhanced whole-body energy expenditure and activated brown adipose tissue (BAT), indicated by increased expression of genes involved in BAT thermogenesis and decreased lipid droplet size in BAT. This was accompanied by selectively increased triglyceride (TG) uptake by BAT and lower plasma TG levels. Interestingly, the effects on BAT activation were still present at thermoneutrality and could be recapitulated by using the strictly peripheral CB1R antagonist AM6545, indicating direct peripheral activation of BAT. Indeed, CB1R blockade directly activated T37i brown adipocytes, resulting in enhanced uncoupled respiration, most likely via enhancing cAMP/PKA signaling via the adrenergic receptor pathway. Our data indicate that selective targeting of the peripheral CB1R in BAT has therapeutic potential in attenuating dyslipidemia and obesity.-Boon, M. R., Kooijman, S., van Dam, A. D., Pelgrom, L. R., Berbée, J. F. P., Visseren, C. A. R., van Aggele, R. C., van den Hoek, A. M., Sips, H. C. M., Lombès, M., Havekes, L. M., Tamsma, J. T., Guigas, B., Meijer, O. C., Jukema, J. W., Rensen, P. C. N. Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity.
Related JoVE Video
Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone.
FASEB J.
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
Brown adipose tissue (BAT) and brown-like cells in white adipose tissue (WAT) can dissipate energy through thermogenesis, a process mediated by uncoupling protein 1 (UCP1). We investigated whether stress hormones ACTH and corticosterone contribute to BAT activation and browning of WAT. ACTH and corticosterone were studied in male mice exposed to 4 or 23°C for 24 h. Direct effects were studied in T37i mouse brown adipocytes and primary cultured murine BAT and inguinal WAT (iWAT) cells. In vivo effects were studied using (18)F-deoxyglucose positron emission tomography. Cold exposure doubled serum ACTH concentrations (P=0.03) and fecal corticosterone excretion (P=0.008). In T37i cells, ACTH dose-dependently increased Ucp1 mRNA (EC50=1.8 nM) but also induced Ucp1 protein content 88% (P=0.02), glycerol release 32% (P=0.03) and uncoupled respiration 40% (P=0.003). In cultured BAT and iWAT, ACTH elevated Ucp1 mRNA by 3-fold (P=0.03) and 3.7-fold (P=0.01), respectively. In T37i cells, corticosterone prevented induction of Ucp1 mRNA and Ucp1 protein by both ACTH and norepinephrine in a glucocorticoid receptor (GR)-dependent fashion. ACTH and GR antagonist RU486 independently doubled BAT (18)F-deoxyglucose uptake (P=0.0003 and P=0.004, respectively) in vivo. Our results show that ACTH activates BAT and browning of WAT while corticosterone counteracts this.-Van den Beukel, J. C., Grefhorst, A., Quarta, C., Steenbergen, J., Mastroberardino, P. G., Lombès, M., Delhanty, P. J., Mazza, R., Pagotto, U., van der Lely, A. J., Themmen, A. P. N. Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone.
Related JoVE Video
Glucocorticoids stimulate endolymphatic water reabsorption in inner ear through aquaporin 3 regulation.
Pflugers Arch.
PUBLISHED: 06-27-2014
Show Abstract
Hide Abstract
Menière's disease, clinically characterized by fluctuating, recurrent, and invalidating vertigo, hearing loss, and tinnitus, is linked to an increase in endolymph volume, the so-called endolymphatic hydrops. Since dysregulation of water transport could account for the generation of this hydrops, we investigated the role of aquaporin 3 (AQP3) in water transport into endolymph, the K-rich, hyperosmotic fluid that bathes the apical ciliated membrane of sensory cells, and we studied the regulatory effect of dexamethasone upon AQP3 expression and water fluxes. The different AQP subtypes were identified in inner ear by RT-PCR. AQP3 was localized in human utricle and mouse inner ear by immunohistochemistry and confocal microscopy. Unidirectional transepithelial water fluxes were studied by means of (3)H2O transport in murine EC5v vestibular cells cultured on filters, treated or not with dexamethasone (10(-7) M). The stimulatory effect of dexamethasone upon AQP3 expression was assessed in EC5v cells and in vivo in mice. AQP3 was unambiguously detected in human utricle and was highly expressed in both endolymph secretory structures of the mouse inner ear, and EC5v cells. We demonstrated that water reabsorption, from the apical (endolymphatic) to the basolateral (perilymphatic) compartments, was stimulated by dexamethasone in EC5v cells. This was accompanied by a glucocorticoid-dependent increase in AQP3 expression at both messenger RNA (mRNA) and protein level, presumably through glucocorticoid receptor-mediated AQP3 transcriptional activation. We show that glucocorticoids enhance AQP3 expression in human inner ear and stimulate endolymphatic water reabsorption. These findings should encourage further clinical trials evaluating glucocorticoids efficacy in Menière's disease.
Related JoVE Video
The lack of antitumor effects of o,p'DDA excludes its role as an active metabolite of mitotane for adrenocortical carcinoma treatment.
Horm Cancer
PUBLISHED: 06-10-2014
Show Abstract
Hide Abstract
Mitotane (o,p'DDD) is the most effective treatment of advanced adrenocortical carcinoma (ACC) but its mechanism of action remains unknown. Previous studies suggested that o,p'DDA may represent the active metabolite of mitotane. We aimed at reevaluating the potential role and pharmacological effects of o,p'DDA. Functional consequences of o,p'DDA exposure were studied on proliferation, steroidogenesis, and mitochondrial respiratory chain in human H295R and SW13 adrenocortical cells. Mitotane and its metabolites were quantified using high-performance liquid chromatography combined to an ultraviolet detection in these cells treated with o,p'DDD or o,p'DDA and in human adrenal tissues. Dose-response curves up to 300 ?M showed that, as opposed to o,p'DDD, o,p'DDA did not inhibit cell proliferation nor alter respiratory chain complex IV activity, gene expression nor induce mitochondrial biogenesis, oxidative stress, or apoptosis. However, whereas mitotane drastically decreased expression of genes involved in steroidogenesis, o,p'DDA slightly reduced expression of some steroidogenic enzymes and exerts weak anti-secretory effects only at high doses. While o,p'DDD concentration was significantly reduced by 40 % in H295R cell supernatants after 48 h incubation, o,p'DDA levels remained unchanged suggesting that o,p'DDA was not efficiently transported into the cells. o,p'DDA was not detected in cell homogenates or supernatants after 48 h exposure to o,p'DDD, consistent with the absence of o,p'DDA production in these models. Finally, unlike o'p'DDD, we found that o,p'DDA content was undetectable in two ACC and one normal adrenal gland of mitotane-treated patients, suggesting a lack of cellular uptake and in situ production. Our results demonstrate that o,p'DDD, but not o,p'DDA, induces functional alterations in adrenal cells.
Related JoVE Video
The neuronal mineralocorticoid receptor: From cell survival to neurogenesis.
Steroids
PUBLISHED: 04-18-2014
Show Abstract
Hide Abstract
Mineralocorticoid receptor (MR), a hormone-activated transcription factor belonging to the nuclear receptor superfamily, exerts widespread actions in many tissues such as tight epithelia, the cardiovascular system, adipose tissues and macrophages. In the mammalian brain, MR is present in the limbic areas where it is highly expressed in neurons of the hippocampus and mostly absent in other regions while the glucocorticoid receptor (GR) expression is ubiquitous. MR binds both aldosterone and glucocorticoids, the latter having a ten-fold higher affinity for MR than for the closely related GR. However, owing to the minimal aldosterone transfer across the blood brain barrier and the absence of neuronal 11? hydroxysteroid dehydrogenase type 2 as an intracellular gate-keeper, neuronal MR appears to be fully occupied even at low physiological glucocorticoid levels while GR activation only occurs at high glucocorticoid concentrations, i.e. at the peak of the circadian rhythm or under stress. This defined a one hormone/two receptors system that works in balance, modulating a large spectrum of actions in the central nervous system. MR and GR are involved in the stress responses, the regulation of neuron excitability, long term potentiation, neuroprotection and neurogenesis in the dentate gyrus. MR thus constitutes a key factor in the arising of higher cognitive functions such as memorization, learning and mood. This review presents an overview of various roles of MR in the central nervous system which are somewhat less studied than that of GR, in the light of recent data obtained using cellular models, animal models and clinical investigations.
Related JoVE Video
Autocrine positive regulatory feedback of glucocorticoid secretion: glucocorticoid receptor directly impacts H295R human adrenocortical cell function.
Mol. Cell. Endocrinol.
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
Glucocorticoid receptor (GR), a ubiquitous transcriptional factor, regulates target gene expression upon activation by glucocorticoids, notably cortisol, a corticosteroid hormone synthesized in the adrenal cortex. We thus hypothesized that both GR and cortisol might be involved in the regulation of adrenal physiology and steroidogenesis in an autocrine manner. In a cortisol-secreting human adrenocortical cell line (H295R), the GR-dependent signaling pathway was pharmacologically modulated either by dexamethasone (DEX), a GR agonist or by RU486, a GR antagonist, or was knocked-down by small interfering RNA strategy (SiRNA). We showed that GR activation, elicited by 48?h exposure to DEX, exerts a global positive regulatory effect on adrenal steroidogenesis as revealed by a 1.5- to 2-fold increase in cortisol, 11-deoxycortisol and 17-hydroxyprogesterone secretion associated with a significant enhanced expression of steroidogenesis factors such as StAR, CYP11A1, CYP21A2 and CYP11B1. In sharp contrast, RU486 treatment exerted opposite effects by decreasing both steroid production and expression of these steroidogenic factors. Likewise, GR repression by SiRNA also significantly reduced StAR, CYP11A1, and CYP11B1 mRNA levels. Interestingly, RU486 resulted in a significant CYP21A2 enzymatic blockade as demonstrated by a massive increase in 17-hydroxyprogesterone concentrations in RU486-treated H295R cell supernatants, while cortisol and 11-deoxycortisol secretions were reduced by more than 60%. Consistently, we also demonstrated that metabolic conversion of 17-hydroxyprogesterone into 11-deoxycortisol onto H295R cells was drastically blunted in the presence of RU 486. Finally, steady state levels of MC2R transcripts encoding for the ACTH receptor were significantly induced by DEX, unlikely through a direct GR-mediated transcriptional activation as opposed to CYP11A1 and FKBP5 target genes. These results could account for a higher glucocorticoid-elicited ACTH sensitivity of adrenocortical cells. Our study identifies a positive ultra-short regulatory loop exerted by GR on steroidogenesis in H295R cells, thus supporting a complex intra-adrenal GR-mediated feedback, likely relevant for human adrenocortical pathologies.
Related JoVE Video
Hypertonicity compromises renal mineralocorticoid receptor signaling through Tis11b-mediated post-transcriptional control.
J. Am. Soc. Nephrol.
PUBLISHED: 04-03-2014
Show Abstract
Hide Abstract
The mineralocorticoid receptor (MR) mediates the Na(+)-retaining action of aldosterone. MR is highly expressed in the distal nephron, which is submitted to intense variations in extracellular fluid tonicity generated by the corticopapillary gradient. We previously showed that post-transcriptional events control renal MR abundance. Here, we report that hypertonicity increases expression of the mRNA-destabilizing protein Tis11b, a member of the tristetraprolin/ZFP36 family, and thereby, decreases MR expression in renal KC3AC1 cells. The 3'-untranslated regions (3'-UTRs) of human and mouse MR mRNA, containing several highly conserved adenylate/uridylate-rich elements (AREs), were cloned downstream of a reporter gene. Luciferase activities of full-length or truncated MR Luc-3'-UTR mutants decreased drastically when cotransfected with Tis11b plasmid, correlating with an approximately 50% shorter half-life of ARE-containing transcripts. Using site-directed mutagenesis and RNA immunoprecipitation, we identified a crucial ARE motif within the MR 3'-UTR, to which Tis11b must bind for destabilizing activity. Coimmunoprecipitation experiments suggested that endogenous Tis11b physically interacts with MR mRNA in KC3AC1 cells, and Tis11b knockdown prevented hypertonicity-elicited repression of MR. Moreover, hypertonicity blunted aldosterone-stimulated expression of glucocorticoid-induced leucine-zipper protein and the ?-subunit of the epithelial Na(+) channel, supporting impaired MR signaling. Challenging the renal osmotic gradient by submitting mice to water deprivation, diuretic administration, or high-Na(+) diet increased renal Tis11b and decreased MR expression, particularly in the cortex, thus establishing a mechanistic pathway for osmotic regulation of MR expression in vivo. Altogether, we uncovered a mechanism by which renal MR expression is regulated through mRNA turnover, a post-transcriptional control that seems physiologically relevant.
Related JoVE Video
Switch in FGFR3 and -4 expression profile during human renal development may account for transient hypercalcemia in patients with Sotos syndrome due to 5q35 microdeletions.
J. Clin. Endocrinol. Metab.
PUBLISHED: 03-26-2014
Show Abstract
Hide Abstract
Sotos syndrome is a rare genetic disorder with a distinct phenotypic spectrum including overgrowth and learning difficulties. Here we describe a new case of Sotos syndrome with a 5q35 microdeletion, affecting the fibroblast growth factor receptor 4 (FGFR4) gene, presenting with infantile hypercalcemia.
Related JoVE Video
Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications.
Endocr. Rev.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
Besides their growth-promoting properties, GH and IGF-1 regulate a broad spectrum of biological functions in several organs, including the kidney. This review focuses on the renal actions of GH and IGF-1, taking into account major advances in renal physiology and hormone biology made over the last 20 years, allowing us to move our understanding of GH/IGF-1 regulation of renal functions from a cellular to a molecular level. The main purpose of this review was to analyze how GH and IGF-1 regulate renal development, glomerular functions, and tubular handling of sodium, calcium, phosphate, and glucose. Whenever possible, the relative contributions, the nephronic topology, and the underlying molecular mechanisms of GH and IGF-1 actions were addressed. Beyond the physiological aspects of GH/IGF-1 action on the kidney, the review describes the impact of GH excess and deficiency on renal architecture and functions. It reports in particular new insights into the pathophysiological mechanism of body fluid retention and of changes in phospho-calcium metabolism in acromegaly as well as of the reciprocal changes in sodium, calcium, and phosphate homeostasis observed in GH deficiency. The second aim of this review was to analyze how the GH/IGF-1 axis contributes to major renal diseases such as diabetic nephropathy, renal failure, renal carcinoma, and polycystic renal disease. It summarizes the consequences of chronic renal failure and glucocorticoid therapy after renal transplantation on GH secretion and action and questions the interest of GH therapy in these conditions.
Related JoVE Video
Testicular histological and immunohistochemical aspects in a post-pubertal patient with 5 alpha-reductase type 2 deficiency: case report and review of the literature in a perspective of evaluation of potential fertility of these patients.
BMC Endocr Disord
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Testicular morphology and immunohistochemical studies have never been reported in genetically documented adult patients with 5 alpha-reductase type 2 deficiency (5?-R2 deficiency).
Related JoVE Video
Ligand-dependent stabilization of androgen receptor in a novel mouse ST38c Sertoli cell line.
Mol. Cell. Endocrinol.
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
Mature Sertoli cells (SC) are critical mediators of androgen regulation of spermatogenesis, via the androgen receptor (AR) signaling. Available immortalized SC lines loose AR expression or androgen responsiveness, hampering the study of endogenous AR regulation in SC. We have established and characterized a novel clonal mouse immortalized SC line, ST38c. These cells express some SC specific genes (sox9, wt1, tjp1, clu, abp, inhbb), but not fshr, yet more importantly, maintain substantial expression of endogenous AR as determined by PCR, immunocytochemistry, testosterone binding assays and Western blots. Microarrays allowed identification of some (146) but not all (rhox5, spinlw1), androgen-dependent, SC expressed target genes. Quantitative Real-Time PCR validated regulation of five up-regulated and two down-regulated genes. We show that AR undergoes androgen-dependent transcriptional activation as well as agonist-dependent posttranslational stabilization in ST38c cells. This cell line constitutes a useful experimental tool for future investigations on the molecular and cellular mechanisms of androgen receptor signaling in SC function.
Related JoVE Video
Hibernoma: a clinical model for exploring the role of brown adipose tissue in the regulation of body weight?
J. Clin. Endocrinol. Metab.
PUBLISHED: 12-20-2013
Show Abstract
Hide Abstract
Context: Hibernoma is a rare benign tumor histologically similar to brown adipose tissue. Some studies reported weight loss in patients with this tumor; however, the mechanisms have never been investigated. Objective: The purpose of this study is to explore the impact of hibernoma resection on the whole-body metabolism. Patient and Methods: A 68-year-old woman was examined after a weight loss of 10 kg in 6 months. Body composition, food intake, physical activity, blood levels of thyroid hormones, and lipid profile were assessed before surgery and during 1 year after surgery. The patients resting energy expenditure (REE) over time was compared to a control group of 18 matched healthy volunteers. Results: Within 1 year after hibernoma resection, the patient gained 15 kg of body weight. This was associated with fat mass gain (+41%), mainly in the abdominal region (+48%). The patient also developed hepatic nonalcoholic steatosis, mild hypertriglyceridemia, and reduced levels of high-density lipoproteins. REE increased during the dynamic phase of weight gain, compared to the presurgery measurement, and returned to baseline after 1 year. Food intake was increased by 37.5% 6 weeks after resection of the hibernoma and returned to baseline values within 6 months. Conclusions: In our study conditions, hibernoma did not alter REE, but weight gain did. Specific physical activities and dietetic follow-ups are suggested for those patients to prevent excess fat mass gain and metabolic disorders after hibernoma resection. More studies should focus on hibernoma mechanisms inducing weight loss.
Related JoVE Video
Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice.
Diabetes
PUBLISHED: 11-22-2013
Show Abstract
Hide Abstract
Metformin is the first-line drug for the treatment of type 2 diabetes. Besides its well-characterized anti-hyperglycemic properties, metformin also lowers plasma very low-density lipoprotein (VLDL)-triglycerides (TG). In this study, we investigated the underlying mechanisms in APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism. We found that metformin markedly lowered plasma total cholesterol and TG levels, an effect mostly due a decrease in VLDL-TG whereas high-density lipoprotein was slightly increased. Strikingly, metformin did not affect hepatic VLDL-TG production, VLDL particle composition and hepatic lipid composition but selectively enhanced clearance of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles into brown adipose tissue (BAT). BAT mass and lipid droplet content were reduced in metformin-treated mice, pointing to increased BAT activation. In addition, both AMPK?1 expression and activity, and HSL and mitochondrial content were increased in BAT. Furthermore, therapeutic concentrations of metformin increased AMPK and HSL activities and promoted lipolysis in T37i differentiated brown adipocytes. Collectively, our results identify BAT as an important player in the TG-lowering effect of metformin by enhancing VLDL-TG uptake, intracellular TG lipolysis, and subsequent mitochondrial fatty acid oxidation. Targeting BAT might therefore be considered as a future therapeutic strategy for the treatment of dyslipidemia.
Related JoVE Video
Paradoxical resistance to high-fat diet-induced obesity and altered macrophage polarization in mineralocorticoid receptor-overexpressing mice.
Am. J. Physiol. Endocrinol. Metab.
PUBLISHED: 11-12-2013
Show Abstract
Hide Abstract
The mineralocorticoid receptor (MR) exerts proadipogenic and antithermogenic effects in vitro, yet its in vivo metabolic impact remains elusive. Wild type (WT) and transgenic (Tg) mice overexpressing human MR were subjected to standard chow (SC) or high-fat diet (HFD) for 16 wk. Tg mice had a lower body weight gain than WT animals and exhibited a relative resistance to HFD-induced obesity. This was associated with a decrease in fat mass, an increased population of smaller adipocytes, and an improved glucose tolerance compared with WT animals. Quantitative RT-PCR studies revealed decreased expression of PPAR?2, a master adipogenic gene, and of glucocorticoid receptor and 11?-hydroxysteroid dehydrogenase type 1, consistent with an impaired local glucocorticoid signaling in adipose tissues (AT). This paradoxical resistance to HFD-induced obesity was not related to an adipogenesis defect since differentiation capacity of Tg preadipocytes isolated from stroma-vascular fractions was unaltered, suggesting that other nonadipocyte factors might compromise AT development. Although AT macrophage infiltration was not different between genotypes, Tg mice exhibited a distinct macrophage polarization, as revealed by FACS analysis and CD11c/CD206 expression studies. We further demonstrated that Tg macrophage-conditioned medium partially impaired preadipocyte differentiation. Therefore, we propose that modification of M1/M2 polarization of hMR-overexpressing macrophages could account in part for the metabolic phenotype of Tg mice. Collectively, our results provide evidence that MR exerts a pivotal immunometabolic role by controlling adipocyte differentiation processes directly but also indirectly through macrophage polarization regulation. Our findings should be taken into account for the pharmacological treatment of metabolic disorders.
Related JoVE Video
Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjogrens syndrome.
Blood
PUBLISHED: 10-24-2013
Show Abstract
Hide Abstract
Several autoimmune diseases, including primary Sjögrens syndrome (pSS), are associated with an increased risk for lymphoma. Polymorphisms of TNFAIP3, which encodes the A20 protein that plays a key role in controlling nuclear factor ?B activation, have been associated with several autoimmune diseases. Somatic mutations of TNFAIP3 have been observed in the mucosa-associated lymphoid tissue lymphoma subtype frequently associated with pSS. We studied germline and somatic abnormalities of TNFAIP3 in 574 patients with pSS, including 25 with lymphoma. Nineteen additional patients with pSS and lymphoma were available for exome sequence analysis. Functional abnormalities of A20 were assessed by gene reporter assays. The rs2230926 exonic variant was associated with an increased risk for pSS complicated by lymphoma (odds ratio, 3.36 [95% confidence interval, 1.34-8.42], and odds ratio, 3.26 [95% confidence interval, 1.31-8.12], vs controls and pSS patients without lymphoma, respectively; P = .011). Twelve (60%) of the 20 patients with paired germline and lymphoma TNFAIP3 sequence data had functional abnormalities of A20: 6 in germline DNA, 5 in lymphoma DNA, and 1 in both. The frequency was even higher (77%) among pSS patients with mucosa-associated lymphoid tissue lymphoma. Some of these variants showed impaired control of nuclear factor ?B activation. These results support a key role for germline and somatic variations of A20 in the transformation between autoimmunity and lymphoma.
Related JoVE Video
Defective prolactin signaling impairs pancreatic ?-cell development during the perinatal period.
Am. J. Physiol. Endocrinol. Metab.
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
Prolactin (PRL) and placental lactogens stimulate ?-cell replication and insulin production in pancreatic islets and insulinoma cells through binding to the PRL receptor (PRLR). However, the contribution of PRLR signaling to ?-cell ontogeny and function in perinatal life and the effects of the lactogens on adaptive islet growth are poorly understood. We provide evidence that expansion of ?-cell mass during both embryogenesis and the postnatal period is impaired in the PRLR(-/-) mouse model. PRLR(-/-) newborns display a 30% reduction of ?-cell mass, consistent with reduced proliferation index at E18.5. PRL stimulates leucine incorporation and S6 kinase phosphorylation in INS-1 cells, supporting a role for ?-cell mTOR signaling in PRL action. Interestingly, a defect in the development of acini is also observed in absence of PRLR signaling, with a sharp decline in cellular size in both endocrine and exocrine compartments. Of note, a decrease in levels of IGF-II, a PRL target, in the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes, is associated with a lack of PRL-mediated ?-cell proliferation in embryonic pancreatic buds. Reduced pancreatic IGF-II expression in both rat and mouse models suggests that this factor may constitute a molecular link between PRL signaling and cell ontogenesis. Together, these results provide evidence that PRL signaling is essential for pancreas ontogenesis during the critical perinatal window responsible for establishing functional ?-cell reserve.
Related JoVE Video
Molecular screening for a personalized treatment approach in advanced adrenocortical cancer.
J. Clin. Endocrinol. Metab.
PUBLISHED: 08-26-2013
Show Abstract
Hide Abstract
Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and scant treatment options. In ACC, no personalized approach has emerged but no extensive molecular screening has been performed to date.
Related JoVE Video
A new strategy for selective targeting of progesterone receptor with passive antagonists.
Mol. Endocrinol.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Currently available progesterone (P4) receptor (PR) antagonists, such as mifepristone (RU486), lack specificity and display partial agonist properties, leading to potential drawbacks in their clinical use. Recent x-ray crystallographic studies have identified key contacts involved in the binding of agonists and antagonists with PR opening the way for a new rational strategy for inactivating PR. We report here the synthesis and characterization of a novel class of PR antagonists (APRn) designed from such studies. The lead molecule, the homosteroid APR19, displays in vivo endometrial anti-P4 activity. APR19 inhibits P4-induced PR recruitment and transactivation from synthetic and endogenous gene promoters. Importantly, it exhibits high PR selectivity with respect to other steroid hormone receptors and is devoid of any partial agonist activity on PR target gene transcription. Two-hybrid and immunostaining experiments reveal that APR19-bound PR is unable to interact with either steroid receptor coactivators 1 and 2 (SRC1 and SCR2) or nuclear receptor corepressor (NcoR) and silencing mediator of retinoid acid and thyroid hormone receptor (SMRT), in contrast to RU486-PR complexes. APR19 also inhibits agonist-induced phosphorylation of serine 294 regulating PR transcriptional activity and turnover kinetics. In silico docking studies based on the crystal structure of the PR ligand-binding domain show that, in contrast to P4, APR19 does not establish stabilizing hydrogen bonds with the ligand-binding cavity, resulting in an unstable ligand-receptor complex. Altogether, these properties highly distinguish APR19 from RU486 and likely its derivatives, suggesting that it belongs to a new class of pure antiprogestins that inactivate PR by a passive mechanism. These specific PR antagonists open new perspectives for long-term hormonal therapy.
Related JoVE Video
NR5A1 (SF-1) mutations are not a major cause of primary ovarian insufficiency.
J. Clin. Endocrinol. Metab.
PUBLISHED: 03-29-2013
Show Abstract
Hide Abstract
Primary ovarian insufficiency (POI) is a disorder affecting approximately 1% of women under the age of 40 years. NR5A1 (SF-1) mutations have been recently reported in association with POI.
Related JoVE Video
Progesterone receptor isoforms PRA and PRB differentially contribute to breast cancer cell migration through interaction with focal adhesion kinase complexes.
Mol. Biol. Cell
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
Progesterone receptor (PR) and progestins affect mammary tumorigenesis; however, the relative contributions of PR isoforms A and B (PRA and PRB, respectively) in cancer cell migration remains elusive. By using a bi-inducible MDA-MB-231 breast cancer cell line expressing PRA and/or PRB, we analyzed the effect of conditional PR isoform expression. Surprisingly, unliganded PRB but not PRA strongly enhanced cell migration as compared with PR(-) cells. 17,21-Dimethyl-19-norpregna-4,9-dien-3,20-dione (R5020) progestin limited this effect and was counteracted by the antagonist 11?-(4-dimethyl-amino)-phenyl-17?-hydroxy-17-(1-propynyl)-estra-4,9-dien-3-one (RU486). Of importance, PRA coexpression potentiated PRB-mediated migration, whereas PRA alone was ineffective. PR isoforms differentially regulated expressions of major players of cell migration, such as urokinase plasminogen activator (uPA), its inhibitor plasminogen activator inhibitor type 1, uPA receptor (uPAR), and ?1-integrin, which affect focal adhesion kinase (FAK) signaling. Moreover, unliganded PRB but not PRA enhanced FAK Tyr397 phosphorylation and colocalized with activated FAK in cell protrusions. Because PRB, as well as PRA, coimmunoprecipitated with FAK, both isoforms can interact with FAK complexes, depending on their respective nucleocytoplasmic trafficking. In addition, FAK degradation was coupled to R5020-dependent turnovers of PRA and PRB. Such an effect of PRB/PRA expression on FAK signaling might thus affect adhesion/motility, underscoring the implication of PR isoforms in breast cancer invasiveness and metastatic evolution with underlying therapeutic outcomes.
Related JoVE Video
Expression and characterization of androgen receptor coregulators, SRC-2 and HBO1, during human testis ontogenesis and in androgen signaling deficient patients.
Mol. Cell. Endocrinol.
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Androgen receptor (AR) is essential for testicular physiology and spermatogenesis. SRC-2 and HBO1 are two AR coregulators yet their expression and roles in human testis are unknown. For the first time, we studied by immunohistochemistry and RT-PCR, the expression and distribution of these two coregulators during human testicular ontogenesis, in patients with altered AR signaling (Androgen insensitivity syndrome, AIS) and evaluated the functional impact of SRC-2 and HBO1 on AR signaling in a Sertoli cell context. SRC-2 was present in Sertoli cells at all developmental stages. HBO1 was barely or focally detected in the fetal testis yet its expression, in Sertoli and germ cells, drastically increased postnatally from early infancy to adulthood. In transient co-transfection studies we showed that SRC-2 induced, while HBO1 inhibited AR-mediated transactivation of reporter constructs in murine Sertoli SMAT1 cells. HBO1, but not SRC-2, expression was reduced in testes of patients with AIS compared to normal testes.
Related JoVE Video
R31C GNRH1 mutation and congenital hypogonadotropic hypogonadism.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative "hot spot". Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh-beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH.
Related JoVE Video
Mitotane alters mitochondrial respiratory chain activity by inducing cytochrome c oxidase defect in human adrenocortical cells.
Endocr. Relat. Cancer
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane is the most effective medical therapy for adrenocortical carcinoma, but its molecular mechanism of action remains poorly understood. Although mitotane is known to have mitochondrial (mt) effects, a direct link to mt dysfunction has never been established. We examined the functional consequences of mitotane exposure on proliferation, steroidogenesis, and mt respiratory chain, biogenesis and morphology, in two human adrenocortical cell lines, the steroid-secreting H295R line and the non-secreting SW13 line. Mitotane inhibited cell proliferation in a dose- and a time-dependent manner. At the concentration of 50??M (14?mg/l), which corresponds to the threshold for therapeutic efficacy, mitotane drastically reduced cortisol and 17-hydroxyprogesterone secretions by 70%. This was accompanied by significant decreases in the expression of genes encoding mt proteins involved in steroidogenesis (STAR, CYP11B1, and CYP11B2). In both H295R and SW13 cells, 50??M mitotane significantly inhibited (50%) the maximum velocity of the activity of the respiratory chain complex IV (cytochrome c oxidase (COX)). This effect was associated with a drastic reduction in steady-state levels of the whole COX complex as revealed by blue native PAGE and reduced mRNA expression of both mtDNA-encoded COX2 (MT-CO2) and nuclear DNA-encoded COX4 (COX4I1) subunits. In contrast, the activity and expression of respiratory chain complexes II and III were unaffected by mitotane treatment. Lastly, mitotane exposure enhanced mt biogenesis (increase in mtDNA content and PGC1? (PPARGC1A) expression) and triggered fragmentation of the mt network. Altogether, our results provide first evidence that mitotane induced a mt respiratory chain defect in human adrenocortical cells.
Related JoVE Video
p38 and p42/44 MAPKs differentially regulate progesterone receptor A and B isoform stabilization.
Mol. Endocrinol.
PUBLISHED: 08-04-2011
Show Abstract
Hide Abstract
Progesterone receptor (PR) isoforms (PRA and PRB) are implicated in the progression of breast cancers frequently associated with imbalanced PRA/PRB expression ratio. Antiprogestins represent potential antitumorigenic agents for such hormone-dependent cancers. To investigate the mechanism(s) controlling PR isoforms degradation/stability in the context of agonist and antagonist ligands, we used endometrial and mammary cancer cells stably expressing PRA and/or PRB. We found that the antiprogestin RU486 inhibited the agonist-induced turnover of PR isoforms through active mechanism(s) involving distinct MAPK-dependent phosphorylations. p42/44 MAPK activity inhibited proteasome-mediated degradation of RU486-bound PRB but not PRA in both cell lines. Ligand-induced PRB turnover required neosynthesis of a mandatory down-regulating partner whose interaction/function is negatively controlled by p42/44 MAPK. Such regulation strongly influenced expression of various endogenous PRB target genes in a selective manner, supporting functional relevance of the mechanism. Interestingly, in contrast to PRB, PRA stability was specifically increased by MAPK kinase kinase 1-induced p38 MAPK activation. Selective inhibition of p42/p44 or p38 activity resulted in opposite variations of the PRA/PRB expression ratio. Moreover, MAPK-dependent PR isoforms stability was independent of PR serine-294 phosphorylation previously proposed as a major sensor of PR down-regulation. In sum, we demonstrate that MAPK-mediated cell signaling differentially controls PRA/PRB expression ratio at posttranslational level through ligand-sensitive processes. Imbalance in PRA/PRB ratio frequently associated with carcinogenesis might be a direct consequence of disorders in MAPK signaling that might switch cellular responses to hormonal stimuli and contribute towards pathogenesis.
Related JoVE Video
Vasopressin, ATP and catecholamines differentially control potassium secretion in inner ear cell line.
FEBS Lett.
PUBLISHED: 06-28-2011
Show Abstract
Hide Abstract
A strict control of endolymph composition (high potassium, low sodium fluid) and volume is instrumental for a proper functioning of the inner ear. Alteration of endolymph homeostasis is proposed in the pathogenesis of Menières disease. However, the mechanisms controlling endolymph secretion remain elusive. By using the vestibular EC5v cells, we provide evidence for the presence of vasopressin, catecholamine and purinergic signaling pathways, coupled to adenylate cyclase, phosphoinositidase C and Ca(2+) activation. We demonstrate that vasopressin and catecholamines stimulate while ATP inhibits apical potassium secretion by EC5v cells. These results open new interesting perspectives for the management of inner ear diseases.
Related JoVE Video
Body fluid expansion in acromegaly is related to enhanced epithelial sodium channel (ENaC) activity.
J. Clin. Endocrinol. Metab.
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Soft-tissue swelling and increased extracellular volume, two features of acromegaly, are related to the antinatriuretic effects of excess GH/IGF-I, but the precise pathophysiological mechanism is unclear.
Related JoVE Video
Aldosterone postnatally, but not at birth, is required for optimal induction of renal mineralocorticoid receptor expression and sodium reabsorption.
Endocrinology
PUBLISHED: 04-05-2011
Show Abstract
Hide Abstract
Sodium wasting during the neonatal period is the consequence of a physiological aldosterone resistance, related to a low renal mineralocorticoid receptor (MR) expression at birth, both in humans and mice. To investigate whether aldosterone is involved in the neonatal regulation of MR expression, we compared aldosterone and corticosterone levels and renal MR expression by quantitative real-time PCR, between aldosterone synthase (AS) knockout, heterozygous, and wild type (WT) mice, at birth and postnatal d 8. Analysis of MR transcripts showed a similar expression profile in all genotypes, demonstrating that the lack of aldosterone does not modify either the low renal MR expression at birth or its postnatal induction. However, mRNA levels of the ?-subunit of the epithelial sodium channel, a MR target gene, were significantly higher in WT compared with AS knockout mice, both at birth and postnatal d 8, despite high corticosterone levels in AS knockout mice, indicating that aldosterone is required for optimal renal induction of the epithelial sodium channel. Using organotypic cultures of newborn WT kidneys, we confirmed that aldosterone does not regulate MR expression at birth, but is instead capable of increasing MR expression in mature kidneys, unlike dexamethasone. In sum, we demonstrate both in vivo and in vitro, that, whereas aldosterone has no significant impact on renal MR expression at birth, it is crucial for optimal MR regulation in postnatal kidneys and for appropriate hydroelectrolytic balance. Understanding of MR-regulatory mechanisms could therefore lead to new therapeutic strategies for the management of sodium loss in preterms and neonates.
Related JoVE Video
Mineralocorticoid receptor and embryonic stem cell models: molecular insights and pathophysiological relevance.
Mol. Cell. Endocrinol.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Mineralocorticoid receptor (MR) signaling is pivotal for numerous physiological processes and implicated in various pathological conditions concerning among others, tight epithelia, central nervous and cardiovascular systems. For decades, the pleiotropic actions of MR have been investigated using animal and cellular models as well as by clinical studies. Here is reviewed and contextualized the utilization of a strategy that recently emerged to analyze the complexity of MR signaling: the derivation and differentiation of mouse embryonic stem (ES) cell models. ES cells were derived from wild-type or transgenic MR overexpressing animals. Undifferentiated ES cells were differentiated into cardiomyocytes, neurons and adipocytes, these cell types being important pathophysiological targets of MR. These approaches have already brought new insights concerning MR effect on cardiomyocyte contractility and ionic channel remodeling, in the regulation of neuronal MR expression and its positive role on neuron survival. Differentiated ES cell models thus constitute powerful and promising tools to further decipher the molecular mechanisms of cell-specific MR actions.
Related JoVE Video
Ligand-dependent degradation of SRC-1 is pivotal for progesterone receptor transcriptional activity.
Mol. Endocrinol.
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
The progesterone receptor (PR), a ligand-activated transcription factor, recruits the primary coactivator steroid receptor coactivator-1 (SRC-1) gene promoters. It is known that PR transcriptional activity is paradoxically coupled to its ligand-dependent down-regulation. However, despite its importance in PR function, the regulation of SRC-1 expression level during hormonal exposure is poorly understood. Here we report that SRC-1 expression level (but not other p160 family members) is down-regulated by the agonist ligand R5020 in a PR-dependent manner. In contrast, the antagonist RU486 fails to induce down-regulation of the coactivator and impairs PR agonist-dependent degradation of SRC-1. We show that SRC-1 proteolysis is a proteasome- and ubiquitin-mediated process that, predominantly but not exclusively, occurs in the cytoplasmic compartment in which SRC-1 colocalizes with proteasome antigens as demonstrated by confocal imaging. Moreover, SRC-1 was stabilized in the presence of leptomycin B or several proteasomal inhibitors. Two degradation motifs, amino-acids 2-16 corresponding to a PEST motif and amino acids 41-136 located in the basic helix loop helix domain of the coactivator, were identified and shown to control the stability as well as the hormone-dependent down-regulation of the coactivator. SRC-1 degradation is of physiological importance because the two nondegradable mutants that still interacted with PR as demonstrated by coimmunoprecipitation failed to stimulate transcription of exogenous and endogenous target genes, suggesting that concomitant PR/SRC-1 ligand-dependent degradation is a necessary step for PR transactivation activity. Collectively our findings are consistent with the emerging role of proteasome-mediated proteolysis in the gene-regulating process and indicate that the ligand-dependent down-regulation of SRC-1 is critical for PR transcriptional activity.
Related JoVE Video
Familial glucocorticoid receptor haploinsufficiency by non-sense mediated mRNA decay, adrenal hyperplasia and apparent mineralocorticoid excess.
PLoS ONE
PUBLISHED: 06-09-2010
Show Abstract
Hide Abstract
Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the probands fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of the 11?-hydroxysteroid dehydrogenase type 2, a GR regulated gene. We propose thus that GR haploinsufficiency compromises glucocorticoid sensitivity and may represent a novel genetic cause of subclinical hypercortisolism, incidentally revealed bilateral adrenal hyperplasia and mineralocorticoid-independent hypertension.
Related JoVE Video
Mineralocorticoid receptor overexpression in embryonic stem cell-derived cardiomyocytes increases their beating frequency.
Cardiovasc. Res.
PUBLISHED: 03-17-2010
Show Abstract
Hide Abstract
Cardiac mineralocorticoid receptor (MR) activation triggers adverse cardiovascular events that could be efficiently prevented by mineralocorticoid antagonists. To gain insights into the pathophysiological role of MR function, we established embryonic stem (ES) cell lines from blastocysts of transgenic mice overexpressing the human MR driven by its proximal P1 or distal P2 promoter and presenting with cardiomyopathy, tachycardia, and arrhythmia. Cardiomyocyte differentiation allowed us to investigate the molecular mechanisms contributing to MR-mediated cardiac dysfunction.
Related JoVE Video
Regulation of mineralocorticoid receptor expression during neuronal differentiation of murine embryonic stem cells.
Endocrinology
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Mineralocorticoid receptor (MR) plays a critical role in brain function. However, the regulatory mechanisms controlling neuronal MR expression that constitutes a key element of the hormonal response are currently unknown. Two alternative P1 and P2 promoters drive human MR gene transcription. To examine promoter activities and their regulation during neuronal differentiation and in mature neurons, we generated stably transfected recombinant murine embryonic stem cell (ES) lines, namely P1-GFP and P2-GFP, in which each promoter drove the expression of the reporter gene green fluorescent protein (GFP). An optimized protocol, using embryoid bodies and retinoic acid, permitted us to obtain a reproducible neuronal differentiation as revealed by the decrease in phosphatase alkaline activity, the concomitant appearance of morphological changes (neurites), and the increase in the expression of neuronal markers (nestin, beta-tubulin III, and microtubule-associated protein-2) as demonstrated by immunocytochemistry and quantitative PCR. Using these cell-based models, we showed that MR expression increased by 5-fold during neuronal differentiation, MR being preferentially if not exclusively expressed in mature neurons. Although the P2 promoter was always weaker than the P1 promoter during neuronal differentiation, their activities increased by 7- and 5-fold, respectively, and correlated with MR expression. Finally, although progesterone and dexamethasone were ineffective, aldosterone stimulated both P1 and P2 activity and MR expression, an effect that was abrogated by knockdown of MR by small interfering RNA. In conclusion, we provide evidence for a tight transcriptional control of MR expression during neuronal differentiation. Given the neuroprotective and antiapoptotic role proposed for MR, the neuronal differentiation of ES cell lines opens potential therapeutic perspectives in neurological and psychiatric diseases.
Related JoVE Video
The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase.
Cell Metab.
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme for triacylglycerol (TAG) hydrolysis in adipocytes. The precise mechanisms whereby ATGL is regulated remain uncertain. Here, we demonstrate that a protein encoded by G(0)/G(1) switch gene 2 (G0S2) is a selective regulator of ATGL. G0S2 is highly expressed in adipose tissue and differentiated adipocytes. When overexpressed in HeLa cells, G0S2 localizes to lipid droplets and prevents their degradation mediated by ATGL. Moreover, G0S2 specifically interacts with ATGL through the hydrophobic domain of G0S2 and the patatin-like domain of ATGL. More importantly, interaction with G0S2 inhibits ATGL TAG hydrolase activity. Knockdown of endogenous G0S2 accelerates basal and stimulated lipolysis in adipocytes, whereas overexpression of G0S2 diminishes the rate of lipolysis in both adipocytes and adipose tissue explants. Thus, G0S2 functions to attenuate ATGL action both in vitro and in vivo and by this mechanism regulates TAG hydrolysis.
Related JoVE Video
Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line.
Mol. Endocrinol.
PUBLISHED: 10-21-2009
Show Abstract
Hide Abstract
Aldosterone effects are mediated by the mineralocorticoid receptor (MR), a transcription factor highly expressed in the distal nephron. Given that MR expression level constitutes a key element controlling hormone responsiveness, there is much interest in elucidating the molecular mechanisms governing MR expression. To investigate whether hyper- or hypotonicity could affect MR abundance, we established by targeted oncogenesis a novel immortalized cortical collecting duct (CCD) cell line and examined the impact of osmotic stress on MR expression. KC3AC1 cells form domes, exhibit a high transepithelial resistance, express 11beta-hydroxysteroid dehydrogenase 2 and functional endogenous MR, which mediates aldosterone-stimulated Na(+) reabsorption through the epithelial sodium channel activation. MR expression is tightly regulated by osmotic stress. Hypertonic conditions induce expression of tonicity-responsive enhancer binding protein, an osmoregulatory transcription factor capable of binding tonicity-responsive enhancer response elements located in MR regulatory sequences. Surprisingly, hypertonicity leads to a severe reduction in MR transcript and protein levels. This is accompanied by a concomitant tonicity-induced expression of Tis11b, a mRNA-destabilizing protein that, by binding to the AU-rich sequences of the 3-untranslated region of MR mRNA, may favor hypertonicity-dependent degradation of labile MR transcripts. In sharp contrast, hypotonicity causes a strong increase in MR transcript and protein levels. Collectively, we demonstrate for the first time that optimal adaptation of CCD cells to changes in extracellular fluid composition is accompanied by drastic modification in MR abundance via transcriptional and posttranscriptional mechanisms. Osmotic stress-regulated MR expression may represent an important molecular determinant for cell-specific MR action, most notably in renal failure, hypertension, or mineralocorticoid resistance.
Related JoVE Video
Physiological partial aldosterone resistance in human newborns.
Pediatr. Res.
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
In the neonatal period, the human kidney is characterized by an impaired ability to regulate water and sodium homeostasis, resembling partial aldosterone resistance. The aim of our study was to assess this hormonal insensitivity in newborn infants and to determine its relationship with neonatal sodium handling. We conducted a prospective study in 48 healthy newborns and their mothers. Aldosterone, renin, and electrolyte concentrations were measured in umbilical cords and in maternal plasma. Urinary aldosterone concentrations and sodium excretion were determined at urination within 24 h after birth. A significant difference was observed between aldosterone and renin levels in newborn infants compared with their mothers (817 +/- 73 versus 575 +/- 55 pg/mL and 79 +/- 10 versus 15 +/- 2 pg/mL, respectively, p < 0.001). This hyperactivation of the renin-angiotensin-aldosterone system was associated with hyponatremia and hyperkalemia in the newborn infants, and high urinary sodium loss, consistent with a partial aldosterone resistance at birth. Unlike plasma aldosterone, urinary aldosterone concentration was found highly correlated with plasma potassium concentrations, thus representing the best index for accurate evaluation of mineralocorticoid sensitivity. Our study represents a comprehensive characterization of the renin-aldosterone axis in newborn infants and provides evidence for physiologic partial aldosterone resistance in the neonatal period.
Related JoVE Video
Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation.
N. Engl. J. Med.
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
We investigated whether mutations in the gene encoding gonadotropin-releasing hormone 1 (GNRH1) might be responsible for idiopathic hypogonadotropic hypogonadism (IHH) in humans. We identified a homozygous GNRH1 frameshift mutation, an insertion of an adenine at nucleotide position 18 (c.18-19insA), in the sequence encoding the N-terminal region of the signal peptide-containing protein precursor of gonadotropin-releasing hormone (prepro-GnRH) in a teenage brother and sister, who had normosmic IHH. Their unaffected parents and a sibling who was tested were heterozygous. This mutation results in an aberrant peptide lacking the conserved GnRH decapeptide sequence, as shown by the absence of immunoreactive GnRH when expressed in vitro. This isolated autosomal recessive GnRH deficiency, reversed by pulsatile GnRH administration, shows the pivotal role of GnRH in human reproduction.
Related JoVE Video
Low renal mineralocorticoid receptor expression at birth contributes to partial aldosterone resistance in neonates.
Endocrinology
PUBLISHED: 05-28-2009
Show Abstract
Hide Abstract
The human neonatal period is characterized by renal immaturity with impaired capacity to regulate water and sodium homeostasis, resembling partial aldosterone resistance. Because aldosterone effects are mediated by the mineralocorticoid receptor (MR), we postulated that this hormonal unresponsiveness could be related to low MR expression in the distal nephron. We measured aldosterone and renin levels in umbilical cord blood of healthy newborns. We used quantitative real-time PCR and immunohistochemistry to analyze the expression of MR and key players of the mineralocorticoid signaling pathway during human and mouse renal development. High aldosterone and renin levels were found at birth. MR mRNA was detected in mouse kidney at d 16 postcoitum, peaking at d 18 postcoitum, but its expression was surprisingly very low at birth, rising progressively afterward. Similar biphasic temporal expression was observed during human renal embryogenesis, with a transient expression between 15 and 24 wk of gestation but an undetectable immunoreactive MR in late gestational and neonatal kidneys. This cyclic MR expression was tightly correlated with the evolution of the 11beta-hydroxysteroid dehydrogenase type 2 and the epithelial sodium channel alpha-subunit. In contrast, glucocorticoid and vasopressin receptors and aquaporin 2 followed a progressive and sustained evolution during renal maturation. Our study provides the first evidence for a low renal MR expression level at birth, despite high aldosterone levels, which could account for compromised postnatal sodium handling. Elucidation of regulatory mechanisms governing MR expression should lead to new strategies for the management of sodium waste in preterms and neonates.
Related JoVE Video
Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes.
Am. J. Physiol. Endocrinol. Metab.
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Salt-inducible kinase 2 (SIK2) is expressed abundantly in adipose tissues and represses cAMP-response element-binding protein (CREB)-mediated gene expression by phosphorylating the coactivator transducer of regulated CREB activity (TORC2). Phosphorylation at Ser(587) of SIK2 diminishes its TORC2 phosphorylation activity. In 3T3-L1 white adipocytes, SIK2 downregulates lipogenic gene in response to nutritional stresses. To investigate the impact of SIK2 on the function of brown adipose tissue (BAT), we used T37i brown adipocytes, mice with diet-induced obesity, and SIK2 mutant (S587A) transgenic mice. When T37i adipocytes were treated with insulin, the levels of peroxisome proliferator-activated receptor-coactivator-1alpha (PGC-1alpha) and uncoupling protein-1 (UCP-1) mRNA were increased, and the induction was inhibited by overexpression of SIK2 (S587A) mutant or dominant-negative CREB. Insulin enhanced SIK2 phosphorylation at Ser(587), which was accompanied by decrease in phospho-TORC2. Similarly, the decrease in the level of SIK2 phosphorylation at Ser(587) was observed in the BAT of mice with diet-induced obesity, which was negatively correlated with TORC2 phosphorylation. To confirm the negative correlation between SIK2 phosphorylation at Ser(587) and TORC2 phosphorylation in BAT, SIK2 mutant (S587A) was overexpressed in adipose tissues by using the adipocyte fatty acid-binding protein 2 promoter. The expression of recombinant SIK2 (S587A) was restricted to BAT, and the levels of phospho-TORC2 were elevated in BAT of transgenic mice. Male transgenic mice developed high-fat diet-induced obesity, and their BAT expressed low levels of PGC-1alpha and UCP-1 mRNA, suggesting that SIK2-TORC2 cascade may be important for the regulation of PGC-1alpha and UCP-1 gene expression in insulin signaling in BAT.
Related JoVE Video
Lack of androgen receptor expression in Sertoli cells accounts for the absence of anti-Mullerian hormone repression during early human testis development.
J. Clin. Endocrinol. Metab.
PUBLISHED: 03-10-2009
Show Abstract
Hide Abstract
Puberty is associated with increased testicular testosterone (TT) synthesis, which is required to trigger spermatogenesis and to repress anti-Mullerian hormone (AMH) production. However, testicular gonadotropin stimulation during fetal and newborn life neither initiates spermatogenesis nor represses AMH.
Related JoVE Video
Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.
PLoS ONE
Show Abstract
Hide Abstract
Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.
Related JoVE Video
The mineralocorticoid signaling pathway throughout development: expression, regulation and pathophysiological implications.
Biochimie
Show Abstract
Hide Abstract
The mineralocorticoid signaling pathway has gained interest over the past few years, considering not only its implication in numerous pathologies but also its emerging role in physiological processes during kidney, brain, heart and lung development. This review aims at describing the setting and regulation of aldosterone biosynthesis and the expression of the mineralocorticoid receptor (MR), a nuclear receptor mediating aldosterone action in target tissues, during the perinatal period. Specificities concerning MR expression and regulation during the development of several major organs are highlighted. We provide evidence that MR expression is tightly controlled in a tissue-specific manner during development, which could have major pathophysiological implications in the neonatal period.
Related JoVE Video
Double Myod and Igf2 inactivation promotes brown adipose tissue development by increasing Prdm16 expression.
FASEB J.
Show Abstract
Hide Abstract
Brown fat or brown adipose tissue (BAT), found in newborn mammals as small depots localized in the interscapular region, plays a prominent role in regulating thermogenesis perinatally. The physiological importance of functional BAT has been recently reasserted in human adults. Because myoblasts and adipoblasts emerge from a common mesodermal precursor, we investigated developmental determination and the reciprocal relationship between muscle and adipocyte commitment. Here we show that a mutant mouse defective for both Igf2 and Myod genes exhibits massive BAT hypertrophy compared with wild-type and single-mutant newborns. The increased adipocyte proliferation in BAT of double-mutant newborns was associated with overexpression of the brown fat-specific marker Ucp1. More strikingly, expression of the master key gene Prdm16 involved in the switch between myogenic and brown adipogenic lineages was drastically enhanced. We further demonstrate that concomitant Myod and Igf2 inactivation accelerates differentiation of a brown preadipocyte cell line and induces lipid accumulation and increased Ucp1 and Prdm16 expression. This in vitro approach brings additional support for the implication of both Myod and Igf2 in BAT development. These results provide the first in vivo evidence that a myogenic regulator together with a growth factor act simultaneously but through independent pathways to repress Prdm16, which opens potential therapeutic perspectives for human metabolic disorders.
Related JoVE Video
Beige differentiation of adipose depots in mice lacking prolactin receptor protects against high-fat-diet-induced obesity.
FASEB J.
Show Abstract
Hide Abstract
Stimulating conversion of white fat to metabolically active adipocytes (beige fat) constitutes a promising strategy against weight gain and its deleterious associated-disorders. We provide direct evidence that prolactin (PRL), best known for its actions on the mammary gland, plays a pivotal role in energy balance through the control of adipocyte differentiation and fate. Here we show that lack of prolactin receptor (PRLR) causes resistance to high-fat-diet-induced obesity due to enhanced energy expenditure and increased metabolic rate. Mutant mice displayed reduced fat mass associated with appearance of massive brown-like adipocyte foci in perirenal and subcutaneous but not in gonadal fat depots under a high-fat diet. Positron emission tomography imaging further demonstrated the occurrence of these thermogenic brown fat depots in adult mice, providing additional support for recruitable brown-like adipocytes (beigeing) in white fat depots. Consistent with the activation of brown adipose tissue, PRLR inactivation increases expression of master genes controlling brown adipocyte fate (PRDM16) and mitochondrial function (PGC1?, UCP1). Altered pRb/Foxc2 expression suggests that this PRL-regulated pathway may contribute to beige cell commitment. Together, these results provide direct genetic evidence that PRLR affects energy balance and metabolic adaptation in rodents via effects on brown adipose tissue differentiation and function.
Related JoVE Video
Pathophysiology of renal calcium handling in acromegaly: what lies behind hypercalciuria?
J. Clin. Endocrinol. Metab.
Show Abstract
Hide Abstract
Hypercalciuria is frequent in patients with acromegaly, but it is unclear how GH/IGF-I regulate renal calcium handling. Elevated fasting plasma calcium levels despite increased glomerular filtration suggest enhanced renal calcium reabsorption.
Related JoVE Video
Lack of renal 11 beta-hydroxysteroid dehydrogenase type 2 at birth, a targeted temporal window for neonatal glucocorticoid action in human and mice.
PLoS ONE
Show Abstract
Hide Abstract
Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11?HSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11?HSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse.
Related JoVE Video
Mineralocorticoid receptor overexpression facilitates differentiation and promotes survival of embryonic stem cell-derived neurons.
Endocrinology
Show Abstract
Hide Abstract
Mineralocorticoid receptor (MR), highly expressed in the hippocampus, binds corticosteroid hormones and coordinately participates, with the glucocorticoid receptor, to the control of stress responses, memorization, and behavior. To investigate the impact of MR in neuronal survival, we generated murine embryonic stem (ES) cells that overexpress human MR (hMR) (P1-hMR) and are induced to differentiate into mature neurons. We showed that recombinant MR expression increased throughout differentiation and is 2-fold higher in P1-hMR ES-derived neurons compared with wild-type controls, whereas glucocorticoid receptor expression was unaffected. Although proliferation and early neuronal differentiation were comparable in P1-hMR and wild-type ES cells, MR overexpression was associated with higher late neuronal marker expression (microtubule-associated protein 2 and ?-tubulin III). This was accompanied by a shift towards neuron survival with an increased ratio of anti- vs. proapoptotic molecules and 50% decreased caspase 3 activity. Knocking down MR overexpression by small interfering RNA drastically reversed neuroprotective effects with reduced Bcl(2)/Bax ratio and decreased microtubule-associated protein 2 expression. P1-hMR neurons were protected against oxidative stress-induced apoptosis through reduced caspase 3 activation and drastically increased Bcl(2)/Bax ratio and ?-tubulin III expression. We demonstrated the involvement of MR in neuronal differentiation and survival and identify MR as an important neuroprotective mediator opening potential pharmacological strategies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.