JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells.
Nat. Med.
PUBLISHED: 09-12-2011
Show Abstract
Hide Abstract
The platelet-derived growth factor (PDGF) signaling system contributes to tumor angiogenesis and vascular remodeling. Here we show in mouse tumor models that PDGF-BB induces erythropoietin (EPO) mRNA and protein expression by targeting stromal and perivascular cells that express PDGF receptor-? (PDGFR-?). Tumor-derived PDGF-BB promoted tumor growth, angiogenesis and extramedullary hematopoiesis at least in part through modulation of EPO expression. Moreover, adenoviral delivery of PDGF-BB to tumor-free mice increased both EPO production and erythropoiesis, as well as protecting from irradiation-induced anemia. At the molecular level, we show that the PDGF-BB-PDGFR-b? signaling system activates the EPO promoter, acting in part through transcriptional regulation by the transcription factor Atf3, possibly through its association with two additional transcription factors, c-Jun and Sp1. Our findings suggest that PDGF-BB-induced EPO promotes tumor growth through two mechanisms: first, paracrine stimulation of tumor angiogenesis by direct induction of endothelial cell proliferation, migration, sprouting and tube formation, and second, endocrine stimulation of extramedullary hematopoiesis leading to increased oxygen perfusion and protection against tumor-associated anemia.
Related JoVE Video
Mouse corneal lymphangiogenesis model.
Nat Protoc
PUBLISHED: 05-19-2011
Show Abstract
Hide Abstract
This protocol describes a powerful in vivo method to quantitatively study the formation of new lymphatic vessels in the avascular cornea without interference of pre-existing lymphatics. Implantation of 100 ng of lymphangiogenic factors such as vascular endothelial growth factor (VEGF)-A, VEGF-C or fibroblast growth factor-2, together with slow-release polymers, into a surgically created micropocket in the mouse cornea elicits a robust lymphangiogenic response. Newly formed lymphatic vessels are detected by immunohistochemical staining of the flattened corneal tissue with lymphatic endothelial-specific markers such as lymphatic vessel endothelial hyaluronan receptor-1; less-specific markers such as vascular endothelial growth factor receptor 3 may also be used. Lymphatic vessel growth in relation to hemangiogenesis can be readily detected starting at day 5 or 6 after pellet implantation and persists for ?14 d. This protocol offers a unique opportunity to study the mechanisms underlying lymphatic vessel formation, remodeling and function.
Related JoVE Video
A safety evaluation of DAS181, a sialidase fusion protein, in rodents.
Toxicol. Sci.
PUBLISHED: 05-13-2011
Show Abstract
Hide Abstract
DAS181 is a novel inhaled drug candidate blocking influenza virus (IFV) and parainfluenza virus (PIV) infections through removal of sialic acid receptors from epithelial surface of the respiratory tract. To support clinical development, a 28-day Good Laboratory Practices inhalation toxicology study was conducted in Sprague-Dawley rats. In this study, achieved average daily doses based on exposure concentrations were 0.47, 0.90, 1.55, and 3.00 mg/kg/day of DAS181 in a dry powder formulation. DAS181 was well tolerated at all dose levels, and there were no significant toxicological findings. DAS181 administration did not affect animal body weight, food consumption, clinical signs, ophthalmology, respiratory parameters, or organ weight. Gross pathology evaluations were unremarkable. Histological examination of the lungs was devoid of pulmonary tissue damage, and findings were limited to mild and transient changes indicative of exposure and clearance of a foreign protein. DAS181 did not show any cytotoxic effects on human and animal primary cells, including hepatocytes, skeletal muscle cells, osteoblasts, or respiratory epithelial cells. DAS181 did not cause direct or indirect hemolysis. A laboratory abnormality observed in the 28-day toxicology study was mild and transient anemia in male rats at the 3.00 mg/kg dose, which is an expected outcome of enhanced clearance of desialylated red blood cells resulting from systemic exposure with DAS181. Another laboratory observation was a transient dose-dependent elevation in alkaline phosphatase (ALP), which can be attributed to reduced ALP clearance resulting from increased protein desialylation due to DAS181 systemic exposure. These laboratory parameters returned to normal at the end of the recovery period.
Related JoVE Video
Pancreatic beta-cell failure in obese mice with human-like CMP-Neu5Ac hydroxylase deficiency.
FASEB J.
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
Type 2 diabetes is highly prevalent in human populations, particularly in obese individuals, and is characterized by progressive pancreatic ?-cell dysfunction and insulin resistance. Most mammals, including Old World primates, express two major kinds of sialic acids, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), typically found at the distal ends of glycoconjugate chains at the cell surface. Humans are uniquely unable to produce endogenous Neu5Gc due to an inactivating mutation in the CMP-Neu5Ac hydroxylase (CMAH) gene. The CMAH enzyme catalyzes the generation of CMP-Neu5Gc by the transfer of a single oxygen atom to the acyl group of CMP-Neu5Ac. Here, we show that mice bearing a human-like deletion of the Cmah gene exhibit fasting hyperglycemia and glucose intolerance following a high-fat diet. This phenotype is caused not by worsened insulin resistance but by compromised pancreatic ?-cell function associated with a 65% decrease in islet size and area and 50% decrease in islet number. Obese Cmah-null mice also show an ?40% reduction in response to insulin secretagogues in vivo. These findings show that human evolution-like changes in sialic acid composition impair pancreatic ?-cell function and exacerbate glucose intolerance in mice. This may lend insight into the pathogenesis of type 2 diabetes in obese humans.
Related JoVE Video
Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
Chemotherapy-induced broad toxicities are the leading cause of the drug-induced mortality in cancer patients. Antiangiogenic drugs (ADs) in combination with chemotherapy are widely used as front-line therapy for the treatment of various human cancers. However, the beneficial mechanisms underlying combination therapy are poorly understood. Here we show that, in several murine tumor models, administration of sunitinib markedly reduced chemotherapy-induced bone marrow toxicity. Intriguingly, in a sequential treatment regimen, delivery of ADs followed by chemotherapy demonstrated superior survival benefits compared with simultaneous administration of two drugs. In murine tumor models, we show that VEGF increased chemotoxicity by synergistically suppressing bone marrow hematopoiesis with cytostatic drugs. These findings shed light on molecular mechanisms by which ADs in combination with chemotherapy produce survival benefits in cancer patients and provide conceptual information guiding future designs of clinical trials, current practice, and optimization of ADs for the treatment of cancer.
Related JoVE Video
Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181.
J. Antimicrob. Chemother.
PUBLISHED: 11-21-2010
Show Abstract
Hide Abstract
influenza viruses (IFVs) frequently achieve resistance to antiviral drugs, necessitating the development of compounds with novel mechanisms of action. DAS181 (Fludase), a sialidase fusion protein, may have a reduced potential for generating drug resistance due to its novel host-targeting mechanism of action.
Related JoVE Video
Antiviral strategies for pandemic and seasonal influenza.
Viruses
PUBLISHED: 06-11-2010
Show Abstract
Hide Abstract
While vaccines are the primary public health response to seasonal and pandemic flu, short of a universal vaccine there are inherent limitations to this approach. Antiviral drugs provide valuable alternative options for treatment and prophylaxis of influenza. Here, we will review drugs and drug candidates against influenza with an emphasis on the recent progress of a host-targeting entry-blocker drug candidate, DAS181, a sialidase fusion protein.
Related JoVE Video
Pathological angiogenesis facilitates tumor cell dissemination and metastasis.
Cell Cycle
PUBLISHED: 03-06-2010
Show Abstract
Hide Abstract
Clinically detectable metastases represent an ultimate consequence of the metastatic cascade that consists of distinct processes including tumor cell invasion, dissemination, metastatic niche formation, and re-growth into a detectable metastatic mass. Although angiogenesis is known to promote tumor growth, its role in facilitating early events of the metastatic cascade remains poorly understood. We have recently developed a zebrafish tumor model that enables us to study involvement of pathological angiogenesis in tumor invasion, dissemination and metastasis. This non-invasive in vivo model allows detection of single malignant cell dissemination under both normoxia and hypoxia. Further, hypoxia-induced VEGF significantly facilitates tumor cell invasion and dissemination. These findings demonstrate that VEGF-induced pathological angiogenesis is essential for tumor dissemination and further corroborates potentially beneficial effects of clinically ongoing anti-VEGF drugs for the treatment of various malignancies.
Related JoVE Video
Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection.
J. Infect. Dis.
PUBLISHED: 02-23-2010
Show Abstract
Hide Abstract
DAS181 (Fludase) is a sialidase fusion protein in clinical development as a broad-spectrum anti-influenza virus (IFV) therapeutic agent. Previous reports by other investigators have raised the concern that desialylation of airway epithelium might increase susceptibility to Streptococcus pneumoniae infection.
Related JoVE Video
VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-22-2009
Show Abstract
Hide Abstract
VEGF coordinates complex regulation of cellular regeneration and interactions between endothelial and perivascular cells; dysfunction of the VEGF signaling system leads to retinopathy. Here, we show that systemic delivery of VEGF and placental growth factor (PlGF) by protein implantation, tumors, and adenoviral vectors ablates pericytes from the mature retinal vasculature through the VEGF receptor 1 (VEGFR1)-mediated signaling pathway, leading to increased vascular leakage. In contrast, we demonstrate VEGF receptor 2 (VEGFR2) is primarily expressed in nonvascular photoreceptors and ganglion cells. Moreover, blockade of VEGFR1 but not VEGFR2 significantly restores pericyte saturation in mature retinal vessels. Our findings link VEGF and PlGF to cancer-associated retinopathy, reveal the molecular mechanisms of VEGFR1 ligand-mediated retinopathy, and define VEGFR1 as an important target of antiangiogenic therapy for treatment of retinopathy.
Related JoVE Video
Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-12-2009
Show Abstract
Hide Abstract
The blood and lymphatic vasculatures are structurally and functionally coupled in controlling tissue perfusion, extracellular interstitial fluids, and immune surveillance. Little is known, however, about the molecular mechanisms that underlie the regulation of bloodlymphatic vessel connections and lymphatic perfusion. Here we show in the adult zebrafish and glass catfish (Kryptopterus bicirrhis) that blood-lymphatic conduits directly connect arterial vessels to the lymphatic system. Under hypoxic conditions, arterial-lymphatic conduits (ALCs) became highly dilated and linearized by NO-induced vascular relaxation, which led to blood perfusion into the lymphatic system. NO blockage almost completely abrogated hypoxia-induced ALC relaxation and lymphatic perfusion. These findings uncover mechanisms underlying hypoxia-induced oxygen compensation by perfusion of existing lymphatics in fish. Our results might also imply that the hypoxia-induced NO pathway contributes to development of progression of pathologies, including promotion of lymphatic metastasis by modulating arterial-lymphatic conduits, in the mammalian system.
Related JoVE Video
Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-25-2009
Show Abstract
Hide Abstract
Vascular functions of PlGF remain poorly understood and controversial. Here, we show that tumor cell-derived PlGF-1 and PlGF-2 displayed significant remodeling effects on the tumor vasculature, leading to a normalized vascular phenotype and improved functions against leakage. In two murine tumor models, that is, T241 fibrosarcoma and Lewis lung carcinoma, stable expression of PlGF-1 and PlGF-2 in tumor cells resulted in significant reduction of tumor microvascular density and branch formation. Markedly, the vasculature in PlGF-expressing tumors consisted of relatively large-diameter microvessels with substantial improvement of pericyte coverage. Similarly, PlGF-induced vascular normalization and remodeling were also observed in a spontaneous human choriocarcinoma that expressed endogenous PlGF. Our findings shed light on functions of PlGF as a vascular remodeling factor that normalizes the tumor vasculature and thus may have conceptual implications of cancer therapy.
Related JoVE Video
Inhibition of neuraminidase inhibitor-resistant influenza virus by DAS181, a novel sialidase fusion protein.
PLoS ONE
PUBLISHED: 07-22-2009
Show Abstract
Hide Abstract
Antiviral drug resistance for influenza therapies remains a concern due to the high prevalence of H1N1 2009 seasonal influenza isolates which display H274Y associated oseltamivir-resistance. Furthermore, the emergence of novel H1N1 raises the potential that additional reassortments can occur, resulting in drug resistant virus. Thus, additional antiviral approaches are urgently needed. DAS181 (Fludase), a sialidase fusion protein, has been shown to have inhibitory activity against a large number of seasonal influenza strains and a highly pathogenic avian influenza (HPAI) strain (H5N1). Here, we examine the in vitro activity of DAS181 against a panel of 2009 oseltamivir-resistant seasonal H1N1 clinical isolates. The activity of DAS181 against nine 2009, two 2007, and two 2004 clinical isolates of seasonal IFV H1N1 was examined using plaque number reduction assay on MDCK cells. DAS181 strongly inhibited all tested isolates. EC50 values remained constant against isolates from 2004, 2007, and 2009, suggesting that there was no change in DAS181 sensitivity over time. As expected, all 2007 and 2009 isolates were resistant to oseltamivir, consistent with the identification of the H274Y mutation in the NA gene of all these isolates. Interestingly, several of the 2007 and 2009 isolates also exhibited reduced sensitivity to zanamivir, and accompanying HA mutations near the sialic acid binding site were observed. DAS181 inhibits IFV that is resistant to NAIs. Thus, DAS181 may offer an alternative therapeutic option for seasonal or pandemic IFVs that become resistant to currently available antiviral drugs.
Related JoVE Video
Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein.
PLoS ONE
PUBLISHED: 06-10-2009
Show Abstract
Hide Abstract
The recent emergence of a novel pandemic influenza A(H1N1) strain in humans exemplifies the rapid and unpredictable nature of influenza virus evolution and the need for effective therapeutics and vaccines to control such outbreaks. However, resistance to antivirals can be a formidable problem as evidenced by the currently widespread oseltamivir- and adamantane-resistant seasonal influenza A viruses (IFV). Additional antiviral approaches with novel mechanisms of action are needed to combat novel and resistant influenza strains. DAS181 (Fludase) is a sialidase fusion protein in early clinical development with in vitro and in vivo preclinical activity against a variety of seasonal influenza strains and highly pathogenic avian influenza strains (A/H5N1). Here, we use in vitro, ex vivo, and in vivo models to evaluate the activity of DAS181 against several pandemic influenza A(H1N1) viruses.
Related JoVE Video
Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.
Phys Chem Chem Phys
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.
Related JoVE Video
Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
The role of placental growth factor (PlGF) in modulation of tumor angiogenesis and tumor growth remains an enigma. Furthermore, anti-PlGF therapy in tumor angiogenesis and tumor growth remains controversial in preclinical tumor models. Here we show that in both human and mouse tumors, PlGF induced the formation of dilated and normalized vascular networks that were hypersensitive to anti-VEGF and anti-VEGFR-2 therapy, leading to dormancy of a substantial number of avascular tumors. Loss-of-function using plgf shRNA in a human choriocarcinoma significantly accelerated tumor growth rates and acquired resistance to anti-VEGF drugs, whereas gain-of-function of PlGF in a mouse tumor increased anti-VEGF sensitivity. Further, we show that VEGFR-2 and VEGFR-1 blocking antibodies displayed opposing effects on tumor angiogenesis. VEGFR-1 blockade and genetic deletion of the tyrosine kinase domain of VEGFR-1 resulted in enhanced tumor angiogenesis. These findings demonstrate that tumor-derived PlGF negatively modulates tumor angiogenesis and tumor growth and may potentially serve as a predictive marker of anti-VEGF cancer therapy.
Related JoVE Video
Genetics and democracy-what is the issue?
J Community Genet
Show Abstract
Hide Abstract
Current developments in genetics and genomics entail a number of changes and challenges for society as new knowledge and technology become common in the clinical setting and in society at large. The relationship between genetics and ethics has been much discussed during the last decade, while the relationship between genetics and the political arena-with terms such as rights, distribution, expertise, participation and democracy-has been less considered. The purpose of this article is to demonstrate the connection between genetics and democracy. In order to do this, we delineate a notion of democracy that incorporates process as well as substance values. On the basis of this notion of democracy and on claims of democratisation in the science and technology literature, we argue for the importance of considering genetic issues in a democratic manner. Having established this connection between genetics and democracy, we discuss this relation in three different contexts where the relationship between genetics and democracy becomes truly salient: the role of expertise, science and public participation, and individual responsibility and distributive justice. As developments within genetics and genomics advance with great speed, the importance and use of genetic knowledge within society can be expected to grow. However, this expanding societal importance of genetics might ultimately involve, interact with, or even confront important aspects within democratic rule and democratic decision-making. Moreover, we argue that the societal importance of genetic development makes it crucial to consider not only decision-making processes, but also the policy outcomes of these processes. This argument supports our process and substance notion of democracy, which implies that public participation, as a process value, must be complemented with a focus on the effects of policy decisions on democratic values such as distributive justice.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.