JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Finishing genomes with limited resources: lessons from an ensemble of microbial genomes.
BMC Genomics
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
While new sequencing technologies have ushered in an era where microbial genomes can be easily sequenced, the goal of routinely producing high-quality draft and finished genomes in a cost-effective fashion has still remained elusive. Due to shorter read lengths and limitations in library construction protocols, shotgun sequencing and assembly based on these technologies often results in fragmented assemblies. Correspondingly, while draft assemblies can be obtained in days, finishing can take many months and hence the time and effort can only be justified for high-priority genomes and in large sequencing centers. In this work, we revisit this issue in light of our own experience in producing finished and nearly-finished genomes for a range of microbial species in a small-lab setting. These genomes were finished with surprisingly little investments in terms of time, computational effort and lab work, suggesting that the increased access to sequencing might also eventually lead to a greater proportion of finished genomes from small labs and genomics cores.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.