JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control.
J. Cell Biol.
PUBLISHED: 11-19-2014
Show Abstract
Hide Abstract
In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90-R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA(+) adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.
Related JoVE Video
(1)H, (15)N and (13)C resonance assignments of the two TPR domains from the human RPAP3 protein.
Biomol NMR Assign
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
We report the nearly complete (1)H, (15)N and (13)C resonance assignments of the two tetratricopeptide-repeat domains of the human RPAP3 protein, a co-chaperone of the heat-shock protein family.
Related JoVE Video
Structural dynamics and single-stranded DNA binding activity of the three N-terminal domains of the large subunit of replication protein A from small angle X-ray scattering.
Biochemistry
PUBLISHED: 02-27-2010
Show Abstract
Hide Abstract
Replication protein A (RPA) is the primary eukaryotic single-stranded DNA (ssDNA) binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial interdomain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments with two multidomain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high-affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA-bound state and therefore freely available to serve as a protein recruitment module.
Related JoVE Video
NMR analysis of the architecture and functional remodeling of a modular multidomain protein, RPA.
J. Am. Chem. Soc.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
Modular proteins with multiple domains tethered by flexible linkers have variable global architectures. Using the eukaryotic ssDNA binding protein, Replication Protein A (RPA), we demonstrate that NMR spectroscopy is a powerful tool to characterize the remodeling of architecture in different functional states. The first direct evidence is obtained for the remodeling of RPA upon binding ssDNA, including an alteration in the availability of the RPA32N domain that may help explain its damage-dependent phosphorylation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.