JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Structure and regulatory targets of SCO3201, a highly promiscuous TetR-like regulator of Streptomyces coelicolor M145.
Biochem. Biophys. Res. Commun.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
SCO3201, a regulator of the TetR family, is a strong repressor of both morphological differentiation and antibiotic production when overexpressed in Streptomyces coelicolor. Here, we report the identification of 14 novel putative regulatory targets of this regulator using in vitro formaldehyde cross-linking. Direct binding of purified His6-SCO3201 was demonstrated for the promoter regions of 5 regulators (SCO1716, SCO1950, SCO3367, SCO4009 and SCO5046), a putative histidine phosphatase (SCO1809), an acetyltransferase (SCO0988) and the polyketide synthase RedX (SCO5878), using EMSA. Reverse transcriptional analysis demonstrated that the expression of the transcriptional regulators SCO1950, SCO4009, SCO5046, as well as of SCO0988 and RedX was down regulated, upon SCO3201 overexpression, whereas the expression of SCO1809 and SCO3367 was up regulated. A consensus binding motif was derived via alignment of the promoter regions of the genes negatively regulated. The positions of the predicted operator sites were consistent with a direct repressive effect of SCO3201 on 5 out of 7 of these promoters. Furthermore, the 2.1Å crystal structure of SCO3201 was solved, which provides a possible explanation for the high promiscuity of this regulator that might account for its dramatic effect on the differentiation process of S. coelicolor.
Related JoVE Video
Streptomyces coelicolor SCO4226 Is a Nickel Binding Protein.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The open reading frame SCO4226 of Streptomyces coelicolor A3(2) encodes an 82-residue hypothetical protein. Biochemical assays revealed that each SCO4226 dimer binds four nickel ions. To decipher the molecular function, we solved the crystal structures of SCO4226 in both apo- and nickel-bound (Ni-SCO4226) forms at 1.30 and 2.04 Å resolution, respectively. Each subunit of SCO4226 dimer adopts a canonical ferredoxin-like fold with five ?-strands flanked by two ?-helices. In the structure of Ni-SCO4226, four nickel ions are coordinated at the surface of the dimer. Further biochemical assays suggested that the binding of Ni2+ triggers the self-aggregation of SCO4226 in vitro. In addition, RT-qPCR assays demonstrated that the expression of SCO4226 gene in S. coelicolor is specifically up-regulated by the addition of Ni2+, but not other divalent ions such as Cu2+, Mn2+ or Co2+. All these results suggested that SCO4226 acts as a nickel binding protein, probably required for nickel sequestration and/or detoxification.
Related JoVE Video
Comparative proteomic analysis of Streptomyces lividans Wild-Type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis.
Appl. Environ. Microbiol.
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
Streptomyces lividans TK24 is a strain that naturally produces antibiotics at low levels, but dramatic overproduction of antibiotics occurs upon interruption of the ppk gene. However, the role of the Ppk enzyme in relation to the regulation of antibiotic biosynthesis remains poorly understood. In order to gain a better understanding of the phenotype of the ppk mutant, the proteomes of the wild-type (wt) and ppk mutant strains, grown for 96 h on R2YE medium limited in phosphate, were analyzed. Intracellular proteins were separated on two-dimensional (2D) gels, spots were quantified, and those showing a 3-fold variation or more were identified by mass spectrometry. The expression of 12 proteins increased and that of 29 decreased in the ppk mutant strain. Our results suggested that storage lipid degradation rather than hexose catabolism was taking place in the mutant. In order to validate this hypothesis, the triacylglycerol contents of the wt and ppk mutant strains of S. lividans as well as that of Streptomyces coelicolor M145, a strain that produces antibiotics at high levels and is closely related to S. lividans, were assessed using electron microscopy and thin-layer chromatography. These studies highlighted the large difference in triacylglycerol contents of the three strains and confirmed the hypothetical link between storage lipid metabolism and antibiotic biosynthesis in Streptomyces.
Related JoVE Video
Novel insights regarding the sigmoidal pattern of resistance to neomycin conferred by the aphII gene, in Streptomyces lividans.
AMB Express
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
A library of synthetic promoters of various strengths, specifically constructed for Streptomyces species, was cloned in the promoter-probe plasmid pIJ487, upstream of the promoter-less aphII gene that confers resistance to neomycin. The survival rates conferred by promoters were assessed in the presence of 100 ?g.ml-1 neomycin. The correlation between the transcriptional activity of the aphII gene (estimated by RT-PCR) and the resistance to neomycin (expressed as survival rate) indicated a sigmoid rather than a linear correlation. In this issue, we propose a tentative explanation for this sigmoidal pattern of resistance in relation with the level of aphII gene expression. Beyond this specific example, our model might constitute a sound explanation for the generally observed but never explained sigmoidal shape of classical inhibition curves obtained in the presence of linearly increasing antibiotic concentrations.
Related JoVE Video
Carbon-Flux Distribution within Streptomyces coelicolor Metabolism: A Comparison between the Actinorhodin-Producing Strain M145 and Its Non-Producing Derivative M1146.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Metabolic Flux Analysis is now viewed as essential to elucidate the metabolic pattern of cells and to design appropriate genetic engineering strategies to improve strain performance and production processes. Here, we investigated carbon flux distribution in two Streptomyces coelicolor A3 (2) strains: the wild type M145 and its derivative mutant M1146, in which gene clusters encoding the four main antibiotic biosynthetic pathways were deleted. Metabolic Flux Analysis and (13)C-labeling allowed us to reconstruct a flux map under steady-state conditions for both strains. The mutant strain M1146 showed a higher growth rate, a higher flux through the pentose phosphate pathway and a higher flux through the anaplerotic phosphoenolpyruvate carboxylase. In that strain, glucose uptake and the flux through the Krebs cycle were lower than in M145. The enhanced flux through the pentose phosphate pathway in M1146 is thought to generate NADPH enough to face higher needs for biomass biosynthesis and other processes. In both strains, the production of NADPH was higher than NADPH needs, suggesting a key role for nicotinamide nucleotide transhydrogenase for redox homeostasis. ATP production is also likely to exceed metabolic ATP needs, indicating that ATP consumption for maintenance is substantial.Our results further suggest a possible competition between actinorhodin and triacylglycerol biosynthetic pathways for their common precursor, acetyl-CoA. These findings may be instrumental in developing new strategies exploiting S. coelicolor as a platform for the production of bio-based products of industrial interest.
Related JoVE Video
The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters.
Appl. Microbiol. Biotechnol.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so, the sequences located upstream, between and downstream of the -35 and -10 consensus promoter sequences were completely randomized and some variability was introduced in the -35 (position 6) and -10 (positions 3, 4 and 5) hexamers recognized by the major vegetative sigma factor HrdB. The synthetic promoters were cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different concentrations of neomycin (20, 50, and 100 ?gml(-1)). Promoter strengths varied up to 12-fold, in small increments of activity increase, as determined by reverse transcriptase-PCR. This collection of promoters of various strengths can be useful for the fine-tuning of gene expression in genetic engineering projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the -10 box, the -10 extended motif as well as the spacer of the strong Streptomyces promoters are more G rich than those of the weak promoters.
Related JoVE Video
Repression of antibiotic production and sporulation in Streptomyces coelicolor by overexpression of a TetR family transcriptional regulator.
Appl. Environ. Microbiol.
PUBLISHED: 10-08-2010
Show Abstract
Hide Abstract
The overexpression of a regulatory gene of the TetR family (SCO3201) originating either from Streptomyces lividans or from Streptomyces coelicolor was shown to strongly repress antibiotic production (calcium-dependent antibiotic [CDA], undecylprodigiosin [RED], and actinorhodin [ACT]) of S. coelicolor and of the ppk mutant strain of S. lividans. Curiously, the overexpression of this gene also had a strong inhibitory effect on the sporulation process of S. coelicolor but not on that of S. lividans. SCO3201 was shown to negatively regulate its own transcription, and its DNA binding motif was found to overlap its -35 promoter sequence. The interruption of this gene in S. lividans or S. coelicolor did not lead to any obvious phenotypes, indicating that when overexpressed SCO3201 likely controls the expression of target genes of other TetR regulators involved in the regulation of the metabolic and morphological differentiation process in S. coelicolor. The direct and functional interaction of SCO3201 with the promoter region of scbA, a gene under the positive control of the TetR-like regulator, ScbR, was indeed demonstrated by in vitro as well as in vivo approaches.
Related JoVE Video
Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner.
Antonie Van Leeuwenhoek
Show Abstract
Hide Abstract
Filamentous microorganisms of the bacterial genus Streptomyces have a complex life cycle that includes physiological and morphological differentiations. It is now fairly well accepted that lysis of Streptomyces vegetative mycelium induced by programmed cell death (PCD) provides the required nutritive sources for the bacterium to erect spore-forming aerial hyphae. However, little is known regarding cellular compounds released during PCD and the contribution of these molecules to the feeding of surviving cells in order to allow them to reach the late stages of the developmental program. In this work we assessed the effect of extracellular sugar phosphates (that are likely to be released in the environment upon cell lysis) on the differentiation processes. We demonstrated that the supply of phosphorylated sugars, under inorganic phosphate limitation, delays the occurrence of the second round of PCD, blocks streptomycetes life cycle at the vegetative state and inhibits antibiotic production. The mechanism by which sugar phosphates affect development was shown to involve genes of the Pho regulon that are under the positive control of the two component system PhoR/PhoP. Indeed, the inactivation of the response regulator phoP of Streptomyces lividans prevented the sugar phosphate effect whereas the S. lividans ppk (polyphosphate kinase) deletion mutant, known to overexpress the Pho regulon, presented an enhanced response to phosphorylated sugars.
Related JoVE Video
Transcriptional and preliminary functional analysis of the six genes located in divergence of phoR/phoP in Streptomyces lividans.
Appl. Microbiol. Biotechnol.
Show Abstract
Hide Abstract
Streptomyces lividans senses and adjusts to a situation of Pi limitation via the expression of genes of the pho regulon controlled by the two-component system PhoR/PhoP. Interestingly, an in silico analysis of the proteins encoded by the six genes located in divergence of phoR/phoP revealed that the latter bear features often found in metalloproteins involved in the sensing/resistance to oxidative stress. We determined whether genes of this region were belonging to the pho regulon and whether the encoded proteins do play a role in the resistance to oxidative stress. For this purpose, a transcriptional analysis of these genes was carried out on the carbon and nitrogen rich medium R2YE and on a minimal medium (MM). On R2YE, the expression of the genes phoU to sco4225 was much higher than on MM and constant throughout growth. On this medium, the expression of phoU was totally PhoP-dependent whereas the expression of sco4227 and sco4226 was partially PhoP-dependent, taking place from the phoU promoter region. In contrast, on MM, the expression of sco4227 and sco4226 was PhoP-independent whereas that of phoU remained PhoP-dependent and showed, as phoR/phoP, a peak of expression at 48 h. sco4225, sco4224, and sco4223 were transcribed from their own promoter independently of PhoP in both media. The mutants of five out of six genes of the region (?sco4226 mutant could not be obtained) grew poorly in the presence of exogenous oxidants, suggesting a role of the encoded proteins in the resistance to oxidative stress, especially on the rich medium R2YE.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.