JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels.
Mol. Cell Proteomics
PUBLISHED: 04-09-2014
Show Abstract
Hide Abstract
Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis.
Related JoVE Video
Antibody-independent targeted quantification of TMPRSS2-ERG fusion protein products in prostate cancer.
Mol Oncol
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. Studies of TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies suitable for quantitative studies. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancer cell lines and tumors. The highly sensitive PRISM-SRM assays provided confident detection of 6 unique ERG peptides in both TMPRSS2-ERG positive cell lines and tissues, but not in cell lines or tissues lacking the TMPRSS2-ERG rearrangement, clearly indicating that ERG protein expression is significantly increased in the presence of the TMPRSS2-ERG gene fusion. Significantly, our results provide evidence that two distinct ERG protein isoforms are simultaneously expressed in TMPRSS2-ERG positive samples as evidenced by the concomitant detection of two mutually exclusive peptides in two patient tumors and in the VCaP prostate cancer cell line. Three peptides, shared across almost all fusion protein products, were determined to be the most abundant peptides, providing "signature" peptides for detection of ERG over-expression resulting from TMPRSS2-ERG gene fusion. The PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products in prostate cancer.
Related JoVE Video
The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.
Fungal Genet. Biol.
PUBLISHED: 01-22-2014
Show Abstract
Hide Abstract
Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ)-based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium vs sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.
Related JoVE Video
Advancing the high throughput identification of liver fibrosis protein signatures using multiplexed ion mobility spectrometry.
Mol. Cell Proteomics
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Rapid diagnosis of disease states using less invasive, safer, and more clinically acceptable approaches than presently employed is a crucial direction for the field of medicine. While MS-based proteomics approaches have attempted to meet these objectives, challenges such as the enormous dynamic range of protein concentrations in clinically relevant biofluid samples coupled with the need to address human biodiversity have slowed their employment. Herein, we report on the use of a new instrumental platform that addresses these challenges by coupling technical advances in rapid gas phase multiplexed ion mobility spectrometry separations with liquid chromatography and MS to dramatically increase measurement sensitivity and throughput, further enabling future high throughput MS-based clinical applications. An initial application of the liquid chromatography--ion mobility spectrometry-MS platform analyzing blood serum samples from 60 postliver transplant patients with recurrent fibrosis progression and 60 nontransplant patients illustrates its potential utility for disease characterization.
Related JoVE Video
Proteomic analysis of saliva in HIV-positive heroin addicts reveals proteins correlated with cognition.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite effective antiretroviral therapies. Multiple etiologies have been proposed over the last several years to account for this phenomenon, including the neurotoxic effects of antiretrovirals and co-morbid substance abuse; however, no underlying molecular mechanism has been identified. Emerging evidence in several fields has linked the gut to brain diseases, but the effect of the gut on the brain during HIV infection has not been explored. Saliva is the most accessible gut biofluid, and is therefore of great scientific interest for diagnostic and prognostic purposes. This study presents a longitudinal, liquid chromatography-mass spectrometry-based quantitative proteomics study investigating saliva samples taken from 8 HIV-positive (HIV+), 11 -negative (HIV-) heroin addicts. In addition, saliva samples were investigated from 11 HIV-, non-heroin addicted healthy controls. In the HIV+ group, 58 proteins were identified that show significant correlations with cognitive scores, implicating disruption of protein quality control pathways by HIV. Notably, only one protein from the HIV- heroin addict cohort showed a significant correlation with cognitive scores, and no proteins correlated with cognitive scores in the healthy control group. In addition, the majority of correlated proteins have been shown to be associated with exosomes, allowing us to propose that the salivary glands and/or oral epithelium may modulate brain function during HIV infection through the release of discrete packets of proteins in the form of exosomes.
Related JoVE Video
Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection.
Mol. Cell Proteomics
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC, and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared with the wild type parent strain. To elucidate the cellular signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin, a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of tristetraprolin, leading to the production of cytokines such as IL-1beta and TNF-alpha that may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that control infection by this pathogen.
Related JoVE Video
Determination of burn patient outcome by large-scale quantitative discovery proteomics.
Crit. Care Med.
PUBLISHED: 03-20-2013
Show Abstract
Hide Abstract
Emerging proteomics techniques can be used to establish proteomic outcome signatures and to identify candidate biomarkers for survival following traumatic injury. We applied high-resolution liquid chromatography-mass spectrometry and multiplex cytokine analysis to profile the plasma proteome of survivors and nonsurvivors of massive burn injury to determine the proteomic survival signature following a major burn injury.
Related JoVE Video
Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes.
J. Exp. Med.
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
Using global liquid chromatography-mass spectrometry (LC-MS)-based proteomics analyses, we identified 24 serum proteins that were significantly variant between those with type 1 diabetes (T1D) and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses, and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins, with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects. 16 peptides were verified as having very good discriminating power, with areas under the receiver operating characteristic curve ? 0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetics) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using sera from 50 age-matched type 2 diabetic individuals, and a subset of proteins, C1 inhibitor in particular, were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with T1D from healthy controls and those with type 2 diabetes suggests that dysregulated innate immune responses may be associated with the development of this disorder.
Related JoVE Video
Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light.
J. Proteome Res.
PUBLISHED: 12-01-2011
Show Abstract
Hide Abstract
Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a (13)C(15)N-l-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen-sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 414 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly, and degradation showed higher levels of isotope incorporation, suggesting that these biochemical pathways are important for growth under continuous light. Calculation of relative isotope abundances (RIA) values allowed the measurement of actual active protein synthesis over time for different biochemical pathways under high light exposure. Overall results demonstrated the utility of "non-steady state" pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.
Related JoVE Video
Dynamic proteomic profiling of a unicellular cyanobacterium Cyanothece ATCC51142 across light-dark diurnal cycles.
BMC Syst Biol
PUBLISHED: 07-26-2011
Show Abstract
Hide Abstract
Unicellular cyanobacteria of the genus Cyanothece are recognized for their ability to execute nitrogen (N2)-fixation in the dark and photosynthesis in the light. An understanding of these mechanistic processes in an integrated systems context should provide insights into how Cyanothece might be optimized for specialized environments and/or industrial purposes. Systems-wide dynamic proteomic profiling with mass spectrometry (MS) analysis should reveal fundamental insights into the control and regulation of these functions.
Related JoVE Video
Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes.
BMC Genomics
PUBLISHED: 06-21-2011
Show Abstract
Hide Abstract
Kaposis sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitts lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions.
Related JoVE Video
Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects.
J. Proteome Res.
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
Nonenzymatic glycation of proteins sets the stage for formation of advanced glycation end-products and development of chronic complications of diabetes. In this report, we extended our previous methods on proteomics analysis of glycated proteins to comprehensively identify glycated proteins in control and diabetic human plasma and erythrocytes. Using immunodepletion, enrichment, and fractionation strategies, we identified 7749 unique glycated peptides, corresponding to 3742 unique glycated proteins. Semiquantitative comparisons showed that glycation levels of a number of proteins were significantly increased in diabetes and that erythrocyte proteins were more extensively glycated than plasma proteins. A glycation motif analysis revealed that some amino acids were favored more than others in the protein primary structures in the vicinity of the glycation sites in both sample types. The glycated peptides and corresponding proteins reported here provide a foundation for potential identification of novel markers for diabetes, hyperglycemia, and diabetic complications in future studies.
Related JoVE Video
IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomics biomarker discovery.
Methods
PUBLISHED: 05-30-2011
Show Abstract
Hide Abstract
Interest in the application of advanced proteomics technologies to human blood plasma- or serum-based clinical samples for the purpose of discovering disease biomarkers continues to grow; however, the enormous dynamic range of protein concentrations in these types of samples (often >10 orders of magnitude) represents a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. In response, immunoaffinity separation methods for depleting multiple high- and moderate-abundance proteins have become key tools for enriching low-abundance proteins and enhancing detection of these proteins in plasma proteomics. Herein, we describe IgY14 and tandem IgY14-Supermix separation methods for removing 14 high-abundance and up to 60 moderate-abundance proteins, respectively, from human blood plasma and highlight their utility when combined with liquid chromatography-tandem mass spectrometry for interrogating the human plasma proteome.
Related JoVE Video
Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction.
J. Biol. Chem.
PUBLISHED: 03-28-2011
Show Abstract
Hide Abstract
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.
Related JoVE Video
Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella.
BMC Syst Biol
PUBLISHED: 03-24-2011
Show Abstract
Hide Abstract
Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity.
Related JoVE Video
Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth.
Bone
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
Osteoblastic and osteocytic cells are highly responsive to the lipid growth factor lysophosphatidic acid (LPA) but the mechanisms by which LPA alters bone cell functions are largely unknown. A major effect of LPA on osteocytic cells is the stimulation of dendrite membrane outgrowth, a process that we predicted to require changes in gene expression and protein distribution. We employed DNA microarrays for global transcriptional profiling of MLO-Y4 osteocytic cells grown for 6 and 24h in the presence or absence of LPA. We identified 932 transcripts that displayed statistically significant changes in abundance of at least 1.25-fold in response to LPA treatment. Gene ontology (GO) analysis revealed that the regulated gene products were linked to diverse cellular processes, including DNA repair, response to unfolded protein, ossification, protein-RNA complex assembly, and amine biosynthesis. Gene products associated with the regulation of actin microfilament dynamics displayed the most robust expression changes, and LPA-induced dendritogenesis in vitro was blocked by the stress fiber inhibitor cytochalasin D. Mass spectrometry-based proteomic analysis of MLO-Y4 cells revealed significant LPA-induced changes in the abundance of 284 proteins at 6h and 844 proteins at 24h. GO analysis of the proteomic data linked the effects of LPA to cell processes that control of protein distribution and membrane outgrowth, including protein localization, protein complex assembly, Golgi vesicle transport, cytoskeleton-dependent transport, and membrane invagination/endocytosis. Dendrites were isolated from LPA-treated MLO-Y4 cells and subjected to proteomic analysis to quantitatively assess the subcellular distribution of proteins. Sets of 129 and 36 proteins were enriched in the dendrite fraction as compared to whole cells after 6h and 24h of LPA exposure, respectively. Protein markers indicated that membranous organelles were largely excluded from the dendrites. Highly represented among the proteins with elevated abundances in dendrites were molecules that regulate cytoskeletal function, cell motility and membrane adhesion. Our combined transcriptomic/proteomic analysis of the response of MLO-Y4 osteocytic cells to LPA indicates that dendritogenesis is a membrane- and cytoskeleton-driven process with actin dynamics playing a particularly critical role.
Related JoVE Video
Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells.
Proteomics
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
In this study, we evaluated a concatenated low pH (pH 3) and high pH (pH 10) reversed-phase liquid chromatography strategy as a first dimension for two-dimensional liquid chromatography tandem mass spectrometry ("shotgun") proteomic analysis of trypsin-digested human MCF10A cell sample. Compared with the more traditional strong cation exchange method, the use of concatenated high pH reversed-phase liquid chromatography as a first-dimension fractionation strategy resulted in 1.8- and 1.6-fold increases in the number of peptide and protein identifications (with two or more unique peptides), respectively. In addition to broader identifications, advantages of the concatenated high pH fractionation approach include improved protein sequence coverage, simplified sample processing, and reduced sample losses. The results demonstrate that the concatenated high pH reversed-phased strategy is an attractive alternative to strong cation exchange for two-dimensional shotgun proteomic analysis.
Related JoVE Video
Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142.
PLoS ONE
PUBLISHED: 01-04-2011
Show Abstract
Hide Abstract
Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ?30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ?5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.
Related JoVE Video
Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations.
Mol. Cell Proteomics
PUBLISHED: 09-21-2010
Show Abstract
Hide Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a large-scale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen.
Related JoVE Video
Macaque proteome response to highly pathogenic avian influenza and 1918 reassortant influenza virus infections.
J. Virol.
PUBLISHED: 09-15-2010
Show Abstract
Hide Abstract
The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a "core" response to viral infection from a "high" response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process.
Related JoVE Video
Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation.
PLoS ONE
PUBLISHED: 07-08-2010
Show Abstract
Hide Abstract
High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation.
Related JoVE Video
Shotgun proteomics identifies proteins specific for acute renal transplant rejection.
Proteomics Clin Appl
PUBLISHED: 06-15-2010
Show Abstract
Hide Abstract
Acute rejection (AR) remains the primary risk factor for renal transplant outcome; development of non-invasive diagnostic biomarkers for AR is an unmet need.
Related JoVE Video
Blood peptidome-degradome profile of breast cancer.
PLoS ONE
PUBLISHED: 05-14-2010
Show Abstract
Hide Abstract
Cancer invasion and metastasis are closely associated with activities within the degradome; however, little is known about whether these activities can be detected in the blood of cancer patients.
Related JoVE Video
Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling.
J. Proteome Res.
PUBLISHED: 04-13-2010
Show Abstract
Hide Abstract
We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope (18)O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a Gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level (16)O and (18)O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in Delta gspD mutant cells of many outer membrane proteins including the outer membrane c-type cytochromes OmcA and MtrC, in agreement with a previous report that these proteins are substrates of the type II secretion system.
Related JoVE Video
Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics.
PLoS Pathog.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.
Related JoVE Video
Combined pulsed-Q dissociation and electron transfer dissociation for identification and quantification of iTRAQ-labeled phosphopeptides.
Anal. Chem.
PUBLISHED: 04-18-2009
Show Abstract
Hide Abstract
Here, we report a new approach that integrates pulsed Q dissociation (PQD) and electron transfer dissociation (ETD) techniques for confident and quantitative identification of iTRAQ-labeled phosphopeptides. The use of isobaric tags for relative and absolute quantification enables a high-throughput quantification of peptides via reporter ion signals in the low m/z range of tandem mass spectra. PQD, a form of ion trap collision activated dissociation, allows for detection of low mass-to-charge fragment ions, and electron transfer dissociation is especially useful for sequencing peptides that contain post-translational modifications. Analysis of the phosphoproteome of human fibroblast cells using a sensitive linear ion trap mass spectrometer demonstrated that this hybrid approach improves both identification and quantification of phosphopeptides. ETD improved phosphopeptide identification, while PQD provides improved quantification of iTRAQ-labeled phosphopeptides.
Related JoVE Video
Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled "universal" reference sample.
J. Proteome Res.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
The quantitative comparison of protein abundances across a large number of biological or patient samples represents an important proteomics challenge that needs to be addressed for proteomics discovery applications. Herein, we describe a strategy that incorporates a stable isotope (18)O-labeled "universal" reference sample as a comprehensive set of internal standards for analyzing large sample sets quantitatively. As a pooled sample, the (18)O-labeled "universal" reference sample is spiked into each individually processed unlabeled biological sample and the peptide/protein abundances are quantified based on (16)O/(18)O isotopic peptide pair abundance ratios that compare each unlabeled sample to the identical reference sample. This approach also allows for the direct application of label-free quantitation across the sample set simultaneously along with the labeling-approach (i.e., dual-quantitation) since each biological sample is unlabeled except for the labeled reference sample that is used as internal standards. The effectiveness of this approach for large-scale quantitative proteomics is demonstrated by its application to a set of 18 plasma samples from severe burn patients. When immunoaffinity depletion and cysteinyl-peptide enrichment-based fractionation with high resolution LC-MS measurements were combined, a total of 312 plasma proteins were confidently identified and quantified with a minimum of two unique peptides per protein. The isotope labeling data was directly compared with the label-free (16)O-MS intensity data extracted from the same data sets. The results showed that the (18)O reference-based labeling approach had significantly better quantitative precision compared to the label-free approach. The relative abundance differences determined by the two approaches also displayed strong correlation, illustrating the complementary nature of the two quantitative methods. The simplicity of including the (18)O-reference for accurate quantitation makes this strategy especially attractive when a large number of biological samples are involved in a study where label-free quantitation may be problematic, for example, due to issues associated with instrument platform robustness. The approach will also be useful for more effectively discovering subtle abundance changes in broad systems biology studies.
Related JoVE Video
A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments.
Proteomics
Show Abstract
Hide Abstract
Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred from one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches.
Related JoVE Video
Cerebrospinal fluid proteome of patients with acute Lyme disease.
J. Proteome Res.
Show Abstract
Hide Abstract
During acute Lyme disease, bacteria can disseminate to the central nervous system (CNS), leading to the development of meningitis and other neurologic symptoms. Here we have analyzed pooled cerebrospinal fluid (CSF) allowing a deep view into the proteome for patients diagnosed with early disseminated Lyme disease and CSF inflammation. Additionally, we analyzed individual patient samples and quantified differences in protein abundance employing label-free quantitative mass spectrometry-based methods. We identified 108 proteins that differ significantly in abundance in patients with acute Lyme disease from controls. Comparison between infected patients and control subjects revealed differences in proteins in the CSF associated with cell death localized to brain synapses and others that likely originate from brain parenchyma.
Related JoVE Video
Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum.
Mol. Cell Proteomics
Show Abstract
Hide Abstract
Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e. roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag eight-plex iTRAQ, enriched using Ni-NTA magnetic beads and subjected to nanoRPLC-MS/MS1 analysis using HCD and decision tree guided CID/ETD strategy. A total of 1625 unique phosphopeptides, spanning 1659 nonredundant phosphorylation sites, were detected from 1126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5-fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.
Related JoVE Video
Morphine produces immunosuppressive effects in nonhuman primates at the proteomic and cellular levels.
Mol. Cell Proteomics
Show Abstract
Hide Abstract
Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. To explore how these changes interact with lentiviral infections in vivo, animals from two nonhuman primate species (African green monkeys and pigtailed macaques) were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g. lymph node, colon, cerebrospinal fluid, and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an interorgan, interindividual, and interspecies basis. In both species, morphine was associated with decreased levels of Ki-67(+) T-cell activation but with only minimal changes in overall T-cell counts, neutrophil counts, and NK cell counts. Although changes in T-cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in lymph nodes, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have direct relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the potential interplay between opioid abuse and the immunological response to an infective agent.
Related JoVE Video
Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics.
J. Proteome Res.
Show Abstract
Hide Abstract
The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (?p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator 1 and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase C?4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.
Related JoVE Video
Quantitative phosphoproteomics identifies filaggrin and other targets of ionizing radiation in a human skin model.
Exp. Dermatol.
Show Abstract
Hide Abstract
Our objective here was to perform a quantitative phosphoproteomic study on a reconstituted human skin tissue to identify low- and high-dose ionizing radiation-dependent signalling in a complex three-dimensional setting. Application of an isobaric labelling strategy using sham and three radiation doses (3, 10, 200 cGy) resulted in the identification of 1052 unique phosphopeptides. Statistical analyses identified 176 phosphopeptides showing significant changes in response to radiation and radiation dose. Proteins responsible for maintaining skin structural integrity including keratins and desmosomal proteins (desmoglein, desmoplakin, plakophilin 1, 2 and 3) had altered phosphorylation levels following exposure to both low and high doses of radiation. Altered phosphorylation of multiple sites in profilaggrin linker domains coincided with altered profilaggrin processing suggesting a role for linker phosphorylation in human profilaggrin regulation. These studies demonstrate that the reconstituted human skin system undergoes a coordinated response to both low and high doses of ionizing radiation involving multiple layers of the stratified epithelium that serve to maintain tissue integrity and mitigate effects of radiation exposure.
Related JoVE Video
The cerebrospinal fluid proteome in HIV infection: change associated with disease severity.
Clin Proteomics
Show Abstract
Hide Abstract
Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment.
Related JoVE Video
Proteome and computational analyses reveal new insights into the mechanisms of hepatitis C virus-mediated liver disease posttransplantation.
Hepatology
Show Abstract
Hide Abstract
Liver transplant tissues offer the unique opportunity to model the longitudinal protein abundance changes occurring during hepatitis C virus (HCV)-associated liver disease progression in vivo. In this study, our goal was to identify molecular signatures, and potential key regulatory proteins, representative of the processes influencing early progression to fibrosis. We performed global protein profiling analyses on 24 liver biopsy specimens obtained from 15 HCV(+) liver transplant recipients at 6 and/or 12 months posttransplantation. Differentially regulated proteins associated with early progression to fibrosis were identified by analysis of the area under the receiver operating characteristic curve. Analysis of serum metabolites was performed on samples obtained from an independent cohort of 60 HCV(+) liver transplant patients. Computational modeling approaches were applied to identify potential key regulatory proteins of liver fibrogenesis. Among 4,324 proteins identified, 250 exhibited significant differential regulation in patients with rapidly progressive fibrosis. Patients with rapid fibrosis progression exhibited enrichment in differentially regulated proteins associated with various immune, hepatoprotective, and fibrogenic processes. The observed increase in proinflammatory activity and impairment in antioxidant defenses suggests that patients who develop significant liver injury experience elevated oxidative stresses. This was supported by an independent study demonstrating the altered abundance of oxidative stress-associated serum metabolites in patients who develop severe liver injury. Computational modeling approaches further highlight a potentially important link between HCV-associated oxidative stress and epigenetic regulatory mechanisms impacting on liver fibrogenesis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.