JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Improved sensitivity for molecular detection of bacterial and Candida infections in blood.
J. Clin. Microbiol.
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml whole-blood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections.
Related JoVE Video
Analytical characterization of an assay designed to detect and identify diverse agents of disseminated viral infection.
J. Clin. Virol.
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
Diverse viruses often reactivate in or infect cancer patients, patients with immunocompromising infections or genetic conditions, and transplant recipients undergoing immunosuppressive therapy. These infections can disseminate, leading to death, transplant rejection, and other severe outcomes.
Related JoVE Video
Broad-spectrum biosensor capable of detecting and identifying diverse bacterial and Candida species in blood.
J. Clin. Microbiol.
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
We describe an assay which uses broad-spectrum, conserved-site PCR paired with mass spectrometry analysis of amplicons (PCR/electrospray ionization-mass spectrometry [ESI-MS]) to detect and identify diverse bacterial and Candida species in uncultured specimens. The performance of the assay was characterized using whole-blood samples spiked with low titers of 64 bacterial species and 6 Candida species representing the breadth of coverage of the assay. The assay had an average limit of detection of 100 CFU of bacteria or Candida per milliliter of blood, and all species tested yielded limits of detection between 20 and 500 CFU per milliliter. Over 99% of all detections yielded correct identifications, whether they were obtained at concentrations well above the limit of detection or at the lowest detectable concentrations. This study demonstrates the ability of broad-spectrum PCR/ESI-MS assays to detect and identify diverse organisms in complex natural matrices that contain high levels of background DNA.
Related JoVE Video
Evaluation of repetitive sequence PCR and PCR-mass spectrometry for the identification of clinically relevant Candida species.
Med. Mycol.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
The application of molecular diagnostic methods may improve the timeliness and accuracy with which fungi are identified. A total of 76 well-characterized reference strains of clinically relevant Candida species and 61 clinical Candida isolates were tested by repetitive sequence PCR (rep-PCR) and PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) and results compared against internal transcribed spacer (ITS) ribosomal RNA gene sequencing as a reference standard. Both rep-PCR and PCR/ESI-MS correctly identified 51 isolates to the species level. When method performance was evaluated based only on genospecies included in the reference libraries, both methods yielded an accuracy of 98.1%. It may be concluded that rep-PCR and PCR/ESI-MS are highly effective at identifying clinical isolates of Candida to the species level. These methods hold promise for improving the speed and accuracy of identification of Candida spp. in clinical mycology laboratories.
Related JoVE Video
Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry.
PLoS ONE
Show Abstract
Hide Abstract
Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a biothreat cluster or a biocluster for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS). The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.