JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The role of muscle synergies in myoelectric control: trends and challenges for simultaneous multifunction control.
J Neural Eng
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
Myoelectric control is filled with potential to significantly change human-robot interaction due to the ability to non-invasively measure human motion intent. However, current control schemes have struggled to achieve the robust performance that is necessary for use in commercial applications. As demands in myoelectric control trend toward simultaneous multifunctional control, multi-muscle coordinations, or synergies, play larger roles in the success of the control scheme. Detecting and refining patterns in muscle activations robust to the high variance and transient changes associated with surface electromyography is essential for efficient, user-friendly control. This article reviews the role of muscle synergies in myoelectric control schemes by dissecting each component of the scheme with respect to associated challenges for achieving robust simultaneous control of myoelectric interfaces. Electromyography recording details, signal feature extraction, pattern recognition and motor learning based control schemes are considered, and future directions are proposed as steps toward fulfilling the potential of myoelectric control in clinically and commercially viable applications.
Related JoVE Video
Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography.
Front Neurorobot
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)-Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human-machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it.
Related JoVE Video
Embedded human control of robots using myoelectric interfaces.
IEEE Trans Neural Syst Rehabil Eng
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
Myoelectric controlled interfaces have become a research interest for use in advanced prostheses, exoskeletons, and robot teleoperation. Current research focuses on improving a user's initial performance, either by training a decoding function for a specific user or implementing "intuitive" mapping functions as decoders. However, both approaches are limiting, with the former being subject specific, and the latter task specific. This paper proposes a paradigm shift on myoelectric interfaces by embedding the human as controller of the system to be operated. Using abstract mapping functions between myoelectric activity and control actions for a task, this study shows that human subjects are able to control an artificial system with increasing efficiency by just learning how to control it. The method efficacy is tested by using two different control tasks and four different abstract mappings relating upper limb muscle activity to control actions for those tasks. The results show that all subjects were able to learn the mappings and improve their performance over time. More interestingly, a chronological evaluation across trials reveals that the learning curves transfer across subsequent trials having the same mapping, independent of the tasks to be executed. This implies that new muscle synergies are developed and refined relative to the mapping used by the control task, suggesting that maximal performance may be achieved by learning a constant, arbitrary mapping function rather than dynamic subject- or task-specific functions. Moreover, the results indicate that the method may extend to the neural control of any device or robot, without limitations for anthropomorphism or human-related counterparts.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.