JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Prevalence of Borrelia miyamotoi in Ixodes ticks in Europe and the United States.
Emerging Infect. Dis.
PUBLISHED: 10-04-2014
Show Abstract
Hide Abstract
Borrelia miyamotoi, a relapsing fever-related spirochete transmitted by Ixodes ticks, has been recently shown to be a human pathogen. To characterize the prevalence of this organism in questing Ixodes ticks, we tested 2,754 ticks for a variety of tickborne pathogens by PCR and electrospray-ionization mass spectrometry. Ticks were collected from California, New York, Connecticut, Pennsylvania, and Indiana in the United States and from Germany and the Czech Republic in Europe from 2008 through 2012. In addition, an isolate from Japan was characterized. We found 3 distinct genotypes, 1 for North America, 1 for Europe, and 1 for Japan. We found B. miyamotoi infection in ticks in 16 of the 26 sites surveyed, with infection prevalence as high as 15.4%. These results show the widespread distribution of the pathogen, indicating an exposure risk to humans in areas where Ixodes ticks reside.
Related JoVE Video
Broad-range survey of tick-borne pathogens in Southern Germany reveals a high prevalence of Babesia microti and a diversity of other tick-borne pathogens.
Vector Borne Zoonotic Dis.
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
Abstract Ticks harbor numerous pathogens of significance to human and animal health. A better understanding of the pathogens carried by ticks in a given geographic area can alert health care providers of specific health risks leading to better diagnosis and treatments. In this study, we tested 226 Ixodes ricinis ticks from Southern Germany using a broad-range PCR and electrospray ionization mass spectrometry assay (PCR/ESI-MS) designed to identify tick-borne bacterial and protozoan pathogens in a single test. We found 21.2% of the ticks tested carried Borrelia burgdorferi sensu lato consisting of diverse genospecies; a surprisingly high percentage of ticks were infected with Babesia microti (3.5%). Other organisms found included Borrelia miyamotoi, Rickettsia helvetica, Rickettsia monacensis, and Anaplasma phagocytophilum. Of further significance was our finding that more than 7% of ticks were infected with more than one pathogen or putative pathogen.
Related JoVE Video
Improved multiple displacement amplification (iMDA) and ultraclean reagents.
BMC Genomics
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA).
Related JoVE Video
Xenodiagnosis to detect Borrelia burgdorferi infection: a first-in-human study.
Clin. Infect. Dis.
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
Animal studies suggest that Borrelia burgdorferi, the agent of Lyme disease, may persist after antibiotic therapy and can be detected by various means including xenodiagnosis using the natural tick vector (Ixodes scapularis). No convincing evidence exists for the persistence of viable spirochetes after recommended courses of antibiotic therapy in humans. We determined the safety of using I. scapularis larvae for the xenodiagnosis of B. burgdorferi infection in humans.
Related JoVE Video
Achieving molecular diagnostics for Lyme disease.
Expert Rev. Mol. Diagn.
PUBLISHED: 10-25-2013
Show Abstract
Hide Abstract
Early Lyme disease is often difficult to diagnose. Left untreated, symptoms can last for many years leading to chronic health problems. Serological tests for the presence of antibodies that react to Borrelia burgdorferi antigens are generally used to support a clinical diagnosis. Due to the biologically delayed antibody response, serology is negative in many patients in the initial 3 weeks after infection and a single test cannot be used to demonstrate active disease, although certain specialized tests provide strong correlation. Because of these limitations there exists a need for better diagnostics for Lyme disease that can detect Borrelia genomic material at the onset of symptoms.
Related JoVE Video
Enhanced diagnostic yields of bacteremia and candidemia in blood specimens by PCR-electrospray ionization mass spectrometry.
J. Clin. Microbiol.
PUBLISHED: 08-21-2013
Show Abstract
Hide Abstract
A prospective study was performed to determine the value of direct molecular testing of whole blood for detecting the presence of culturable and unculturable bacteria and yeasts in patients with suspected bloodstream infections. A total of 464 adult and pediatric patients with positive blood cultures matched with 442 patients with negative blood cultures collected during the same period were recruited during a 10-month study. PCR amplification coupled with electrospray ionization mass spectrometry (PCR-ESI-MS) plus blood culture reached an overall agreement of 78.6% in the detection and species-level identification of bacterial and candidal pathogens. Of 33 culture-negative/PCR-ESI-MS-positive specimens, 31 (93.9%) were judged to be truly bacteremic and/or candidemic based on a medical chart review and analytical metrics. Among the 15 culture-positive specimens in which PCR-ESI-MS detected additional bacterial or yeast species, 66.7% and 20.0% of the additional positive specimens by PCR-ESI-MS were judged to be truly or possibly bacteremic and/or candidemic, respectively. Direct analysis of blood samples by PCR-ESI-MS rapidly detects bacterial and yeast pathogens in patients with bloodstream infections. When used in conjunction with blood culture, PCR-ESI-MS enhances the diagnostics of septicemia by shortening test turnaround time and improving yields.
Related JoVE Video
Molecular genotyping of Acinetobacter spp. isolated in Arizona, USA, using multilocus PCR and mass spectrometry.
J. Med. Microbiol.
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
Acinetobacter spp. are a diverse group of Gram-negative bacteria frequently implicated in nosocomial infections. Genotypic methods have been instrumental in studying Acinetobacter, but few offer high resolution, rapid turnaround time, technical ease and high inter-laboratory reproducibility, which has hampered understanding of disease incidence, transmission patterns and diversity within this genus. Here, we further evaluated multilocus PCR electrospray ionization/mass spectrometry (PCR/ESI-MS), a method that is simple and robust, and provides both species characterization and strain-level resolution of Acinetobacter spp. on a single platform. We examined 125 Acinetobacter isolates from 21 hospitals, laboratories and medical centres spanning four counties in Arizona, USA, using PCR/ESI-MS. We compared PCR/ESI-MS with an in-house amplified fragment length polymorphism (AFLP) genotyping scheme. PCR/ESI-MS demonstrated that Acinetobacter spp. from Arizonan hospitals had similar species and strain distributions to other US civilian hospitals. Furthermore, we showed that the PCR/ESI-MS and AFLP genotypes were highly congruent, with the former having the advantages of robust inter-laboratory reproducibility, rapid turnaround time and simple experimental set-up and data analysis. PCR/ESI-MS is an effective and high-throughput platform for strain typing of Acinetobacter baumannii and for identification of other Acinetobacter spp., including the emerging nosocomial pathogens Acinetobacter pittii and Acinetobacter nosocomialis.
Related JoVE Video
Differentiating microbial forensic qPCR target and control products by electrospray ionization mass spectrometry.
Biosecur Bioterror
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Molecular bioforensic research is dependent on rapid and sensitive methods such as real-time PCR (qPCR) for the identification of microorganisms. The use of synthetic positive control templates containing small modifications outside the primer and probe regions is essential to ensure all aspects of the assay are functioning properly, including the primers and probes. However, a typical qPCR or reverse transcriptase qPCR (qRT-PCR) assay is limited in differentiating products generated from positive controls and biological samples because the fluorescent probe signals generated from each type of amplicon are indistinguishable. Additional methods used to differentiate amplicons, including melt curves, secondary probes, and amplicon sequencing, require significant time to implement and validate and present technical challenges that limit their use for microbial forensic applications. To solve this problem, we have developed a novel application of electrospray ionization mass spectrometry (ESI-MS) to rapidly differentiate qPCR amplicons generated with positive biological samples from those generated with synthetic positive controls. The method has sensitivity equivalent to qPCR and supports the confident and timely determination of the presence of a biothreat agent that is crucial for policymakers and law enforcement. Additionally, it eliminates the need for time-consuming methods to confirm qPCR results, including development and validation of secondary probes or sequencing of small amplicons. In this study, we demonstrate the effectiveness of this approach with microbial forensic qPCR assays targeting multiple biodefense agents (bacterial, viral, and toxin) for the ability to rapidly discriminate between a positive control and a positive sample.
Related JoVE Video
Identification of a novel Acinetobacter baumannii clone in a US hospital outbreak by multilocus polymerase chain reaction/electrospray-ionization mass spectrometry.
Diagn. Microbiol. Infect. Dis.
PUBLISHED: 04-25-2011
Show Abstract
Hide Abstract
We investigated the relatedness of multidrug-resistant Acinetobacter baumannii isolates from a burn intensive care unit (BICU) outbreak, control isolates, and isolates from a previous 2007 outbreak by 3 molecular typing methods (repetitive sequence-based polymerase chain reaction [rep-PCR], broad-range PCR and electrospray ionization mass spectrometry [PCR/ESI-MS], and pulsed-field gel electrophoresis [PFGE]). Partial rpoB gene sequencing confirmed all tested isolates as A. baumannii. Molecular typing analysis showed that 17 of 19 outbreak isolates were indistinguishable or closely related to each other. Three of 4 non-BICU outbreak control isolates and 5 of 6 isolates from the previous outbreak closely matched the BICU outbreak genotype. The outbreak strain represented a novel strain type, ST96, on PCR/ESI-MS with a new combination of alleles not previously seen in the United States. The ST96 strain also represented a novel rpoB Seqtype. Results of PCR/ESI-MS and PFGE genotyping were most closely correlated, while rep-PCR and PCR/ESI-MS systems generated rapid results.
Related JoVE Video
Analysis of cerebrospinal fluid from chronic fatigue syndrome patients for multiple human ubiquitous viruses and xenotropic murine leukemia-related virus.
Ann. Neurol.
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
Recent reports showed many patients with chronic fatigue syndrome (CFS) harbor a retrovirus, xenotropic murine leukemia-related virus (XMRV), in blood; other studies could not replicate this finding. A useful next step would be to examine cerebrospinal fluid, because in some patients CFS is thought to be a brain disorder. Finding a microbe in the central nervous system would have greater significance than in blood because of the integrity of the blood-brain barrier. We examined cerebrospinal fluid from 43 CFS patients using polymerase chain reaction techniques, but did not find XMRV or multiple other common viruses, suggesting that exploration of other causes or pathogenetic mechanisms is warranted.
Related JoVE Video
New technology for rapid molecular diagnosis of bloodstream infections.
Expert Rev. Mol. Diagn.
PUBLISHED: 05-15-2010
Show Abstract
Hide Abstract
Technologies for the correct and timely diagnosis of bloodstream infections are urgently needed. Molecular diagnostic methods have yet to have a major impact on the diagnosis of bloodstream infections; however, new methods are being developed that are beginning to address key issues. In this article, we discuss the key needs and objectives of molecular diagnostics for bloodstream infections and review some of the currently available methods and how these techniques meet key needs. We then focus on a new method that combines nucleic acid amplification with mass spectrometry in a novel approach to molecular diagnosis of bloodstream infections.
Related JoVE Video
Genotypic variation and mixtures of Lyme Borrelia in Ixodes ticks from North America and Europe.
PLoS ONE
PUBLISHED: 04-21-2010
Show Abstract
Hide Abstract
Lyme disease, caused by various species of Borrelia, is transmitted by Ixodes ticks in North America and Europe. Studies have shown the genotype of Borrelia burgdorferi sensu stricto (s.s.) or the species of B. burgdorferi sensu lato (s.l.) affects the ability of the bacteria to cause local or disseminated infection in humans.
Related JoVE Video
Extraction of total nucleic acids from ticks for the detection of bacterial and viral pathogens.
J. Med. Entomol.
PUBLISHED: 02-26-2010
Show Abstract
Hide Abstract
Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot.
Related JoVE Video
Application of the Ibis-T5000 pan-Orthopoxvirus assay to quantitatively detect monkeypox viral loads in clinical specimens from macaques experimentally infected with aerosolized monkeypox virus.
Am. J. Trop. Med. Hyg.
PUBLISHED: 02-06-2010
Show Abstract
Hide Abstract
Monkeypox virus (MPXV), a member of the family Poxviridae and genus Orthopoxvirus, causes a smallpox-like disease in humans. A previously described pan-Orthopoxvirus assay, based on a broad-range polymerase chain reaction (PCR) coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), was evaluated for its ability to detect MPXV from spiked human and aerosol-infected cynomolgous macaque (Macaca fascicularis) samples. Detection of MPXV DNA from macaque tissue, blood, and spiked human blood by the PCR/ESI-MS pan-Orthopoxvirus assay was comparable, albeit at slightly higher levels, to the current gold standard method of real-time PCR with the pan-Orthopoxvirus assay and had a limit of detection of 200 plaque-forming units. Furthermore, the platform was able to distinguish MPXV and vaccinia viruses that were spiked into macaque blood samples at various concentrations. This platform provides a new tool for the diagnosis and monitoring of orthopoxviral loads during vaccine or antiviral studies, but also could provide rapid identification during natural outbreaks or bioterrorism attacks.
Related JoVE Video
Rapid identification of vector-borne flaviviruses by mass spectrometry.
Mol. Cell. Probes
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
Flaviviruses are a highly diverse group of RNA viruses classified within the genus Flavivirus, family Flaviviridae. Most flaviviruses are arthropod-borne, requiring a mosquito or tick vector. Several flaviviruses are highly pathogenic to humans; however, their high genetic diversity and immunological relatedness makes them extremely challenging to diagnose. In this study, we developed and evaluated a broad-range Flavivirus assay designed to detect both tick- and mosquito-borne flaviviruses by using RT-PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) on the Ibis T5000 platform. The assay was evaluated with a panel of 13 different flaviviruses. All samples were correctly identified to the species level. To determine the limit of detection for the mosquito-borne primer sets, serial dilutions of RNA from West Nile virus (WNV) were assayed and could be detected down to an equivalent viral titer of 0.2 plaque-forming units/mL. Analysis of flaviviruses in their natural biological background included testing Aedes aegypti mosquitoes that were laboratory-infected with dengue-1 virus. The assay accurately identified the virus within infected mosquitoes, and we determined the average viral genome per mosquito to be 2.0 x 10(6). Using human blood, serum, and urine spiked with WNV and mouse blood and brain tissues from Karshi virus-infected mice, we showed that these clinical matrices did not inhibit the detection of these viruses. Finally, we used the assay to test field-collected Ixodes scapularis ticks collected from sites in New York and Connecticut. We found 16/322 (5% infection rate) ticks positive for deer tick virus, a subtype of Powassan virus. In summary, we developed a single high-throughput Flavivirus assay that could detect multiple tick- and mosquito-borne flaviviruses and thus provides a new analytical tool for their medical diagnosis and epidemiological surveillance.
Related JoVE Video
Detection and identification of Ehrlichia species in blood by use of PCR and electrospray ionization mass spectrometry.
J. Clin. Microbiol.
PUBLISHED: 12-02-2009
Show Abstract
Hide Abstract
Rapid detection and identification of Ehrlichia species improves clinical outcome for patients suspected of ehrlichiosis. We describe an assay that employs multilocus PCR and electrospray ionization mass spectrometry (PCR/ESI-MS) to detect and identify Ehrlichia species directly from blood specimens. The results were compared to those of a colorimetric microtiter PCR enzyme immunoassay (PCR-EIA) used as a diagnostic assay. Among 213 whole-blood samples collected from patients who were clinically suspected of ehrlichiosis from 1 May to 1 August 2008 at Vanderbilt University Hospital, 40 were positive for an Ehrlichia species by PCR/ESI-MS, giving a positive rate of 18.8%. In comparison to the PCR-EIA, PCR/ESI-MS possessed a sensitivity, a specificity, and positive and negative predictive values of 95.0%, 98.8%, 95.0%, and 98.8%, respectively. The 38 specimens that were positive for Ehrlichia by both PCR/ESI-MS and the PCR-EIA were further characterized to the species level, with 100% agreement between the two assays. In addition, Rickettsia rickettsii was detected by PCR/ESI-MS from four specimens that were confirmed retrospectively by serology and PCR-EIA. In three specimens, the PCR/ESI-MS assay identified Pseudomonas aeruginosa, Neisseria meningitidis, and Staphylococcus aureus; these were confirmed by culture and/or clinical diagnosis as being clinically relevant. From specimen processing to result reporting, the PCR/ESI-MS assay can be completed within 6 h, providing another laboratory tool for the diagnosis of ehrlichiosis. Moreover, this system may provide rapid detection and identification of additional pathogens directly from blood specimens.
Related JoVE Video
Molecular genotyping of microbes by multilocus PCR and mass spectrometry: a new tool for hospital infection control and public health surveillance.
Methods Mol. Biol.
PUBLISHED: 06-13-2009
Show Abstract
Hide Abstract
We describe a new technology for the molecular genotyping of microbes using a platform known commercially as the Ibis T5000. The technology couples multilocus polymerase chain reaction (PCR) to electrospray ionization/mass spectrometry (PCR/ESI-MS) and was developed to provide rapid, high-throughput, and precise digital analysis of either isolated colonies or original patient specimens on a platform suitable for use in hospital or reference diagnostic laboratories or public health settings. The PCR/ESI-MS method measures digital molecular signatures from microbes, enabling real-time epidemiological surveillance and outbreak investigation. This technology will facilitate understanding of the pathways by which infectious organisms spread and will enable appropriate interventions on a time frame not previously achievable.
Related JoVE Video
Rapid determination of quinolone resistance in Acinetobacter spp.
J. Clin. Microbiol.
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
In the treatment of serious bacterial infections, the rapid institution of appropriate antimicrobial chemotherapy may be lifesaving. Choosing the correct antibiotic or combination of antibiotics is becoming very important, as multidrug resistance is found in many pathogens. Using a collection of 75 well-characterized multidrug-resistant (MDR) Acinetobacter sp. isolates, we show that PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) and base composition analysis of PCR amplification products can quickly and accurately identify quinolone resistance mediated by mutations in the quinolone resistance-determining regions of gyrA and parC, two essential housekeeping genes. Single point mutations detected by PCR/ESI-MS in parC (found in 55/75 of the isolates) and in gyrA (found in 66/75 of the isolates) correlated with susceptibility testing and sequencing. By targeting resistance determinants that are encoded by genes with highly conserved DNA sequences (e.g., gyrA and parC), we demonstrate that PCR/ESI-MS can provide critical information for resistance determinant identification and can inform therapeutic decision making in the treatment of Acinetobacter sp. infections.
Related JoVE Video
Usefulness of multilocus polymerase chain reaction followed by electrospray ionization mass spectrometry to identify a diverse panel of bacterial isolates.
Diagn. Microbiol. Infect. Dis.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Polymerase chain reaction electrospray ionization mass spectrometry (PCR/ESI-MS) was tested for its ability to accurately identify a blinded panel of 156 diverse bacterial isolates, mostly human and/or animal pathogens. Here, 142/156 (91%) isolates were correctly identified to the genus level and 115/156 (74%) were correctly identified to the species level. Only 9% were misidentified. This study shows that multilocus PCR/ESI-MS has the potential to be a useful technique for identifying a broad range of bacteria.
Related JoVE Video
Rapid and high-throughput pan-Orthopoxvirus detection and identification using PCR and mass spectrometry.
PLoS ONE
PUBLISHED: 02-11-2009
Show Abstract
Hide Abstract
The genus Orthopoxvirus contains several species of related viruses, including the causative agent of smallpox (Variola virus). In addition to smallpox, several other members of the genus are capable of causing human infection, including monkeypox, cowpox, and other zoonotic rodent-borne poxviruses. Therefore, a single assay that can accurately identify all orthopoxviruses could provide a valuable tool for rapid broad orthopovirus identification. We have developed a pan-Orthopoxvirus assay for identification of all members of the genus based on four PCR reactions targeting Orthopoxvirus DNA and RNA helicase and polymerase genes. The amplicons are detected using electrospray ionization-mass spectrometry (PCR/ESI-MS) on the Ibis T5000 system. We demonstrate that the assay can detect and identify a diverse collection of orthopoxviruses, provide sub-species information and characterize viruses from the blood of rabbitpox infected rabbits. The assay is sensitive at the stochastic limit of PCR and detected virus in blood containing approximately six plaque-forming units per milliliter from a rabbitpox virus-infected rabbit.
Related JoVE Video
Identification of endosymbionts in ticks by broad-range polymerase chain reaction and electrospray ionization mass spectrometry.
J. Med. Entomol.
Show Abstract
Hide Abstract
Many organisms, such as insects, filarial nematodes, and ticks, contain heritable bacterial endosymbionts that are often closely related to transmissible tickborne pathogens. These intracellular bacteria are sometimes unique to the host species, presumably due to isolation and genetic drift. We used a polymerase chain reaction/electrospray ionization-mass spectrometry assay designed to detect a wide range of vectorborne microorganisms to characterize endosymbiont genetic signatures from Amblyomma americanum (L.), Amblyomma maculatum Koch, Dermacentor andersoni Stiles, Dermacentor occidentalis Marx, Dermacentor variabilis (Say), Ixodes scapularis Say, Ixodes pacificus Cooley & Kohls, Ixodes ricinus (L.), and Rhipicephalus sanguineus (Latreille) ticks collected at various sites and of different stages and both sexes. The assay combines the abilities to simultaneously detect pathogens and closely related endosymbionts and to identify tick species via characterization of their respective unique endosymbionts in a single test.
Related JoVE Video
Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry.
PLoS ONE
Show Abstract
Hide Abstract
Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a biothreat cluster or a biocluster for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS). The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry.
Related JoVE Video
Detection of heartworm infection in dogs via PCR amplification and electrospray ionization mass spectrometry of nucleic acid extracts from whole blood samples.
Am. J. Vet. Res.
Show Abstract
Hide Abstract
To develop and evaluate a rapid and accurate assay involving PCR amplification and electrospray ionization mass spectrometry of nucleic acid extracts from whole blood samples for the detection of Dirofilaria immitis infection in dogs.
Related JoVE Video
Direct molecular detection and genotyping of Borrelia burgdorferi from whole blood of patients with early Lyme disease.
PLoS ONE
Show Abstract
Hide Abstract
Direct molecular tests in blood for early Lyme disease can be insensitive due to low amount of circulating Borrelia burgdorferi DNA. To address this challenge, we have developed a sensitive strategy to both detect and genotype B. burgdorferi directly from whole blood collected during the initial patient visit. This strategy improved sensitivity by employing 1.25 mL of whole blood, a novel pre-enrichment of the entire specimen extract for Borrelia DNA prior to a multi-locus PCR and electrospray ionization mass spectrometry detection assay. We evaluated the assay on blood collected at the initial presentation from 21 endemic area patients who had both physician-diagnosed erythema migrans (EM) and positive two-tiered serology either at the initial visit or at a follow-up visit after three weeks of antibiotic therapy. Results of this DNA analysis showed detection of B. burgdorferi in 13 of 21 patients (62%). In most cases the new assay also provided the B. burgdorferi genotype. The combined results of our direct detection assay with initial physician visit serology resulted in the detection of early Lyme disease in 19 of 21 (90%) of patients at the initial visit. In 5 of 21 cases we demonstrate the ability to detect B. burgdorferi in early Lyme disease directly from whole blood specimens prior to seroconversion.
Related JoVE Video
Longitudinal analysis of the temporal evolution of Acinetobacter baumannii strains in Ohio, USA, by using rapid automated typing methods.
PLoS ONE
Show Abstract
Hide Abstract
Genotyping methods are essential to understand the transmission dynamics of Acinetobacter baumannii. We examined the representative genotypes of A. baumannii at different time periods in select locations in Ohio, using two rapid automated typing methods: PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), a form of multi-locus sequence typing (MLST), and repetitive-sequence-based-PCR (rep-PCR). Our analysis included 122 isolates from 4 referral hospital systems, in 2 urban areas of Ohio. These isolates were associated with outbreaks at 3 different time periods (1996, 2000 and 2005-2007). Type assignments of PCR/ESI-MS and rep-PCR were compared to each other and to worldwide (WW) clone types. The discriminatory power of each method was determined using the Simpsons index of diversity (DI). We observed that PCR/ESI-MS sequence type (ST) 14, corresponding to WW clone 3, predominated in 1996, whereas ST 12 and 14 co-existed in the intermediate period (2000) and ST 10 and 12, belonging to WW clone 2, predominated more recently in 2007. The shift from WW clone 3 to WW clone 2 was accompanied by an increase in carbapenem resistance. The DI was approximately 0.74 for PCR/ESI-MS, 0.88 for rep-PCR and 0.90 for the combination of both typing methods. We conclude that combining rapid automated typing methods such as PCR/ESI-MS and rep-PCR serves to optimally characterize the regional molecular epidemiology of A. baumannii. Our data also sheds light on the changing sequence types in an 11 year period in Northeast Ohio.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.