JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Multiphoton tomography visualizes collagen fibers in the tumor microenvironment that maintain cancer-cell anchorage and shape.
J. Cell. Biochem.
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi-photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate.
Related JoVE Video
Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin.
Microsc. Res. Tech.
PUBLISHED: 07-20-2011
Show Abstract
Hide Abstract
We present combined epi-coherent anti-Stokes Raman scattering (CARS) and multiphoton imaging with both chemical discrimination and subcellular resolution on human skin in vivo. The combination of both image modalities enables label-free imaging of the autofluorescence of endogenous fluorophores by two-photon excited fluorescence, as well as imaging of the distribution of intercellular lipids, topically applied substances and water by CARS. As an example for medical imaging, we investigated healthy and psoriasis-affected human skin with both image modalities in vivo and found indications for different lipid distributions on the cellular level.
Related JoVE Video
Watching stem cells in the skin of living mice noninvasively.
Cell Cycle
PUBLISHED: 06-15-2011
Show Abstract
Hide Abstract
We demonstrate noninvasive, high-resolution multiphoton tomography of nestin-expressing stem cells of hair follicles in living transgenic nude mice. An imaging system comprised of a compact femtosecond laser, 3D scan head mounted on a flexible mechano-optical articulated arm for simultaneous intra-tissue fluorescence and second harmonic detection (SHG) detection was used. This noninvasive method enables long-term in vivo tracking of intra-tissue stem cells in living animals. Multiphoton animal sectioning with subcellular resolution can visualize the real-time behavior of single stem cells in their native tissue microenvironment.
Related JoVE Video
Exploration of chromatic aberration for multiplanar imaging: proof of concept with implications for fast, efficient autofocus.
Cytometry A
PUBLISHED: 09-18-2009
Show Abstract
Hide Abstract
Image-based autofocus determines focus directly from the specimen (as opposed to reflective surface positioning with an offset), but sequential acquisition of a stack of images to measure resolution/sharpness and find best focus is slower than reflective positioning. Simultaneous imaging of multiple focal planes, which is also useful for 3D imaging of live cells, is faster but requires complicated optics. With color CCD cameras and white light sources commonly available, we asked if axial chromatic aberration can be utilized to acquire multiple focal planes simultaneously, and if it can be controlled through a range sufficient for practical use. For proof of concept, we theoretically and experimentally explored the focal differences between three narrow wavelength bands on a 3-chip color CCD camera with and without glass inserts of various thicknesses and dispersions. Ray tracing yielded changes in foci of 0.65-0.9 microm upon insertion of 12.5-mm thick glass samples for green (G, 522 nm) vs. blue (B, 462 nm) and green vs. red (G-R, 604 nm). On a microscope: (1) With no glass inserts, the differences in foci were 2.15 microm (G-B) and 0.43 microm (G-R); (2) With glass inserts, the maximum change in foci for G vs. B was 0.44 microm and for G vs. R was 0.26 microm; and (3) An 11.3 mm thick N-BK7 glass insert shifted the foci 0.9 microm (R), 0.6 microm (G), and 0.35 microm (B), such that the B and R foci were farther apart (2.1 microm vs. 1.7 microm) and the R and G foci were closer together (0.25 microm vs. 0.45 microm). The slopes of the differences in foci were dependent on thickness, index of refraction, and dispersion. The measured differences in foci are comparable to the axial steps of 0.1-0.24 microm commonly used for autofocus, and focal plane separation can be altered by inserting optical elements of various dispersions and thicknesses. By enabling acquisition of multiple, axially offset images simultaneously, chromatic aberration, normally an imaging pariah, creates a possible mechanism for efficient multiplanar imaging of multiple spectral bands from white light illumination.
Related JoVE Video
Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology.
J Biophotonics
Show Abstract
Hide Abstract
A preliminary clinical trial using state-of-the-art multiphoton tomography (MPT) and optical coherence tomography (OCT) for three-dimensional (3D) multimodal in vivo imaging of normal skin, nevi, scars and pathologic skin lesions has been conducted. MPT enabled visualization of sub-cellular details with axial and transverse resolutions of <2 ?m and <0.5 ?m, respectively, from a volume of 0.35 × 0.35 × 0.2 mm(3) at a frame rate of 0.14 Hz (512 × 512 pixels). State-of-the-art OCT, operating at a center wavelength of 1300 nm, was capable of acquiring 3D images depicting the layered architecture of skin with axial and transverse resolutions ~8 ?m and ~20 ?m, respectively, from a volume of 7 × 3.5 × 1.5 mm(3) at a frame rate of 46 Hz (1024 × 1024 pixels). This study demonstrates the clinical diagnostic potential of MPT/OCT for pre-screening relatively large areas of skin using 3D OCT to identify suspicious regions at microscopic level and subsequently using high resolution MPT to obtain zoomed in, sub-cellular level information of the respective regions.
Related JoVE Video
Cancer-cell killing by engineered Salmonella imaged by multiphoton tomography in live mice.
Anticancer Res.
Show Abstract
Hide Abstract
Our laboratory has previously developed a bacterial cancer therapy strategy by targeting tumors using engineered Salmonella typhimurium auxotrophs (S. typhimurium A1-R) that were generated to grow in viable as well as necrotic areas of tumors but not in normal tissue. The mechanism by which A1-R kills cancer cells is unknown. In the present report, high-resolution multiphoton tomography was used to investigate the cellular basis of bacteria killing of cancer cells in live mice. Lewis lung cancer cells (LLC) were genetically labeled with red fluorescent protein (RFP) and injected subcutaneously in nude mice. After tumor growth was observed, the mice were treated with A1-R bacteria expressing GFP, via tail-vein injection. Mice without A1-R treatment served as untreated controls. The imaging system was 3D scan head mounted on a flexible mechano-optical articulated arm. A tunable 80 MHz titanium:sapphire femtosecond laser (710-920 nm) was used for the multiphoton tomography. We applied this high-resolution imaging tool to visualize A1-R bacteria targeting the Lewis lung cancer cells growing subcutaneously in nude mice. The tomographic images revealed that bacterially-infected cancer cells greatly expanded and burst and thereby lost viability. Similar results were seen in vitro using confocal microscopy. The bacteria targeted the tumor within minutes of tail-vein injection. Using mice in which the nestin-promoter drives GFP and in which blood vessels are labeled with GFP, the bacteria could be imaged in and out of the blood vessels. Collagen scaffolds within the tumor were imaged by second harmonic generation (SHG). The multiphoton tomographic system described here allows imaging of cancer cell killing by bacteria and can therefore be used to further understand its mechanism and optimization for clinical application.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.