JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats.
Eur. J. Neurosci.
PUBLISHED: 02-27-2014
Show Abstract
Hide Abstract
After traumatic spinal cord injury (SCI), endoplasmic reticulum (ER) stress exacerbates secondary injury, leading to expansion of demyelination and reduced remyelination due to oligodendrocyte precursor cell (OPC) apoptosis. Although recent studies have revealed that amiloride controls ER stress and leads to improvement in several neurological disorders including SCI, its mechanism is not completely understood. Here, we used a rat SCI model to assess the effects of amiloride on functional recovery, secondary damage expansion, ER stress-induced cell death and OPC survival. Hindlimb function in rats with spinal cord contusion significantly improved after amiloride administration. Amiloride significantly decreased the expression of the pro-apoptotic transcription factor CHOP in the injured spinal cord and significantly increased the expression of the ER chaperone GRP78, which protects cells against ER stress. In addition, amiloride treatment led to a significant decrease in ER stress-induced apoptosis and a significant increase of NG2-positive OPCs in the injured spinal cord. Furthermore, in vitro experiments performed to investigate the direct effect of amiloride on OPCs revealed that amiloride reduced CHOP expression in OPCs cultured under ER stress. These results suggest that amiloride controls ER stress in SCI and inhibits cellular apoptosis, contributing to OPC survival. The present study suggests that amiloride may be an effective treatment to reduce ER stress-induced cell death in the acute phase of SCI.
Related JoVE Video
Overexpression of GRP78 protects glial cells from endoplasmic reticulum stress.
Neurosci. Lett.
PUBLISHED: 08-05-2011
Show Abstract
Hide Abstract
Endoplasmic reticulum (ER) stress induces apoptotic cell death by causing the accumulation of structurally abnormal proteins. The 78-kDa glucose-regulated protein (GRP78) is an ER chaperone that regulates protein folding in the ER and has been suggested to contribute to cell survival. Using the rat C6 glioma cell line and flow cytometry, we assessed GRP78 expression following tunicamycin- and glutamate-induced ER stress. The results showed that GRP78 expression is upregulated following ER stress and has protective effects on injured glial cells. Annexin V and propidium iodide labeling revealed cells transiently expressing GRP78 prior to injury were protected against high-concentrations of tunicamycin and glutamate within 72 h. Our findings support the hypothesis that GRP78 inhibits cell death associated with ER stress.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.