JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Restriction of Francisella novicida Genetic Diversity during Infection of the Vector Midgut.
PLoS Pathog.
PUBLISHED: 11-01-2014
Show Abstract
Hide Abstract
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as "ecological filters" for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology.
Related JoVE Video
Tick passage results in enhanced attenuation of Babesia bovis.
Infect. Immun.
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype.
Related JoVE Video
Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva.
Int. J. Parasitol.
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.
Related JoVE Video
Knockdown of the Rhipicephalus microplus cytochrome c oxidase subunit III gene is associated with a failure of Anaplasma marginale transmission.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Rhipicephalus microplus is an obligate hematophagous ectoparasite of cattle and an important biological vector of Anaplasma marginale in tropical and subtropical regions. The primary determinants for A. marginale transmission are infection of the tick gut, followed by infection of salivary glands. Transmission of A. marginale to cattle occurs via infected saliva delivered during tick feeding. Interference in colonization of either the tick gut or salivary glands can affect transmission of A. marginale to naïve animals. In this study, we used the tick embryonic cell line BME26 to identify genes that are modulated in response to A. marginale infection. Suppression-subtractive hybridization libraries (SSH) were constructed, and five up-regulated genes {glutathione S-transferase (GST), cytochrome c oxidase sub III (COXIII), dynein (DYN), synaptobrevin (SYN) and phosphatidylinositol-3,4,5-triphosphate 3-phosphatase (PHOS)} were selected as targets for functional in vivo genomic analysis. RNA interference (RNAi) was used to determine the effect of tick gene knockdown on A. marginale acquisition and transmission. Although RNAi consistently knocked down all individually examined tick genes in infected tick guts and salivary glands, only the group of ticks injected with dsCOXIII failed to transmit A. marginale to naïve calves. To our knowledge, this is the first report demonstrating that RNAi of a tick gene is associated with a failure of A. marginale transmission.
Related JoVE Video
Improved diagnostic performance of a commercial Anaplasma antibody competitive enzyme-linked immunosorbent assay using recombinant major surface protein 5-glutathione S-transferase fusion protein as antigen.
J. Vet. Diagn. Invest.
PUBLISHED: 12-06-2013
Show Abstract
Hide Abstract
The current study tested the hypothesis that removal of maltose binding protein (MBP) from recombinant antigen used for plate coating would improve the specificity of a commercial Anaplasma antibody competitive enzyme-linked immunosorbent assay (cELISA). The number of 358 sera with significant MBP antibody binding (?30%I) in Anaplasma-negative herds was 139 (38.8%) when tested using the recombinant major surface protein 5 (rMSP5)-MBP cELISA without MBP adsorption. All but 8 of the MBP binders were rendered negative (<30%I) using the commercial rMSP5-MBP cELISA with MBP adsorption, resulting in 97.8% specificity. This specificity was higher than some previous reports, so to improve the specificity of the commercial cELISA, a new recombinant antigen designated rMSP5-glutathione S-transferase (GST) was developed, eliminating MBP from the antigen and obviating the need for MBP adsorption. Using the rMSP5-GST cELISA, only 1 of 358 Anaplasma-negative sera, which included the 139 sera with significant (?30%I) MBP binding in the rMSP5-MBP cELISA without MBP adsorption, was positive. This resulted in an improved diagnostic specificity of 99.7%. The rMSP5-GST cELISA without MBP adsorption had comparable analytical sensitivity to the rMSP5-MBP cELISA with MBP adsorption and had 100% diagnostic sensitivity when tested with 135 positive sera defined by nested polymerase chain reaction. Further, the rMSP5-GST cELISA resolved 103 false-positive reactions from selected sera with possible false-positive reactions obtained using the rMSP5-MBP cELISA with MBP adsorption and improved the resolution of 29 of 31 other sera. In summary, the rMSP5-GST cELISA was a faster and simpler assay with higher specificity, comparable sensitivity, and improved resolution in comparison with the rMSP5-MBP cELISA with MBP adsorption.
Related JoVE Video
Serum antibodies from a subset of horses positive for Babesia caballi by competitive enzyme-linked immunosorbent assay demonstrate a protein recognition pattern that is not consistent with infection.
Clin. Vaccine Immunol.
PUBLISHED: 09-18-2013
Show Abstract
Hide Abstract
Tick-borne pathogens that cause persistent infection are of major concern to the livestock industry because of transmission risk from persistently infected animals and the potential economic losses they pose. The recent reemergence of Theileria equi in the United States prompted a widespread national survey resulting in identification of limited distribution of equine piroplasmosis (EP) in the U.S. horse population. This program identified Babesia caballi-seropositive horses using rhoptry-associated protein 1 (RAP-1)-competitive enzyme-linked immunosorbent assay (cELISA), despite B. caballi being considered nonendemic on the U.S. mainland. The purpose of the present study was to evaluate the suitability of RAP-1-cELISA as a single serological test to determine the infection status of B. caballi in U.S. horses. Immunoblotting indicated that sera from U.S. horses reacted with B. caballi lysate and purified B. caballi RAP-1 protein. Antibody reactivity to B. caballi lysate was exclusively directed against a single ?50-kDa band corresponding to a native B. caballi RAP-1 protein. In contrast, sera from experimentally and naturally infected horses from regions where B. caballi is endemic bound multiple proteins ranging from 30 to 50 kDa. Dilutions of sera from U.S. horses positive by cELISA revealed low levels of antibodies, while sera from horses experimentally infected with B. caballi and from areas where B. caballi is endemic had comparatively high antibody levels. Finally, blood transfer from seropositive U.S. horses into naive horses demonstrated no evidence of B. caballi transmission, confirming that antibody reactivity in cELISA-positive U.S. horses was not consistent with infection. Therefore, we conclude that a combination of cELISA and immunoblotting is required for the accurate serodiagnosis of B. caballi.
Related JoVE Video
Identification of multilocus genetic heterogeneity in Anaplasma marginale subsp. centrale and its restriction following tick-borne transmission.
Infect. Immun.
PUBLISHED: 03-18-2013
Show Abstract
Hide Abstract
Anaplasma marginale subsp. centrale was the first vaccine used to protect against a rickettsial disease and is still in widespread use a century later. As its use preceded development of either cryopreservation or cell culture, the vaccine strain was maintained for decades by sequential passage among donor animals, excluding the natural tick-borne transmission cycle that provides a selective pressure or population "bottleneck." We demonstrated that the vaccine strain is genetically heterogeneous at 46 chromosomal loci and that heterogeneity was maintained upon inoculation into recipient animals. The number of variants per site ranged from 2 to 11 with a mean of 2.8/locus and a mode and median of 2/locus; variants included single-nucleotide polymorphisms, insertions/deletions, polynucleotide tracts, and different numbers of perfect repeats. The genetic heterogeneity is highly unlikely to be a result of strain contamination based on analysis using a panel of eight gene markers with a high power for strain discrimination. In contrast, heterogeneity appears to be a result of genetic drift in the absence of the restriction of tick passage. Heterogeneity could be reduced following tick passage, and the reduced heterogeneity could be maintained in sequential intravenous and tick-borne passages. The reduction in vaccine strain heterogeneity following tick passage did not confer an enhanced transmission phenotype, indicating that a stochastically determined population bottleneck was likely responsible as opposed to a positive selective pressure. These findings demonstrate the plasticity of an otherwise highly constrained genome and highlight the role of natural transmission cycles in shaping and maintaining the bacterial genome.
Related JoVE Video
Genetic characterization of Theileria equi infecting horses in North America: evidence for a limited source of U.S. introductions.
Parasit Vectors
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Theileria equi is a tick-borne apicomplexan hemoparasite that causes equine piroplasmosis. This parasite has a worldwide distribution but the United States was considered to be free of this disease until recently.
Related JoVE Video
Lymphocytes and Macrophages Are Infected by Theileria equi, but T Cells and B Cells Are Not Required to Establish Infection In Vivo.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Theileria equi has a biphasic life cycle in horses, with a period of intraleukocyte development followed by patent erythrocytic parasitemia that causes acute and sometimes fatal hemolytic disease. Unlike Theileria spp. that infect cattle (Theileria parva and Theileria annulata), the intraleukocyte stage (schizont) of Theileria equi does not cause uncontrolled host cell proliferation or other significant pathology. Nevertheless, schizont-infected leukocytes are of interest because of their potential to alter host cell function and because immune responses directed against this stage could halt infection and prevent disease. Based on cellular morphology, Theileria equi has been reported to infect lymphocytes in vivo and in vitro, but the specific phenotype of schizont-infected cells has yet to be defined. To resolve this knowledge gap in Theileria equi pathogenesis, peripheral blood mononuclear cells were infected in vitro and the phenotype of infected cells determined using flow cytometry and immunofluorescence microscopy. These experiments demonstrated that the host cell range of Theileria equi was broader than initially reported and included B lymphocytes, T lymphocytes and monocyte/macrophages. To determine if B and T lymphocytes were required to establish infection in vivo, horses affected with severe combined immunodeficiency (SCID), which lack functional B and T lymphocytes, were inoculated with Theileria equi sporozoites. SCID horses developed patent erythrocytic parasitemia, indicating that B and T lymphocytes are not necessary to complete the Theileria equi life cycle in vivo. These findings suggest that the factors mediating Theileria equi leukocyte invasion and intracytoplasmic differentiation are common to several leukocyte subsets and are less restricted than for Theileria annulata and Theileria parva. These data will greatly facilitate future investigation into the relationships between Theileria equi leukocyte tropism and pathogenesis, breed susceptibility, and strain virulence.
Related JoVE Video
Differential expression of three members of the multidomain adhesion CCp family in Babesia bigemina, Babesia bovis and Theileria equi.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Members of the CCp protein family have been previously described to be expressed on gametocytes of apicomplexan Plasmodium parasites. Knocking out Plasmodium CCp genes blocks the development of the parasite in the mosquito vector, making the CCp proteins potential targets for the development of a transmission-blocking vaccine. Apicomplexans Babesia bovis and Babesia bigemina are the causative agents of bovine babesiosis, and apicomplexan Theileria equi causes equine piroplasmosis. Bovine babesiosis and equine piroplasmosis are the most economically important parasite diseases that affect worldwide cattle and equine industries, respectively. The recent sequencing of the B. bovis and T. equi genomes has provided the opportunity to identify novel genes involved in parasite biology. Here we characterize three members of the CCp family, named CCp1, CCp2 and CCp3, in B. bigemina, B. bovis and T. equi. Using B. bigemina as an in vitro model, expression of all three CCp genes and proteins was demonstrated in temperature-induced sexual stages. Transcripts for all three CCp genes were found in vivo in blood stages of T. equi, and transcripts for CCp3 were detected in vivo in blood stages of B. bovis. However, no protein expression was detected in T. equi blood stages or B. bovis blood stages or B. bovis tick stages. Collectively, the data demonstrated a differential pattern of expression of three orthologous genes of the multidomain adhesion CCp family by B. bigemina, B. bovis and T. equi. The novel CCp members represent potential targets for innovative approaches to control bovine babesiosis and equine piroplasmosis.
Related JoVE Video
Protective effects of passively transferred merozoite-specific antibodies against Theileria equi in horses with severe combined immunodeficiency.
Clin. Vaccine Immunol.
PUBLISHED: 10-28-2011
Show Abstract
Hide Abstract
Theileria equi immune plasma was infused into young horses (foals) with severe combined immunodeficiency. Although all foals became infected following intravenous challenge with homologous T. equi merozoite stabilate, delayed time to peak parasitemia occurred. Protective effects were associated with a predominance of passively transferred merozoite-specific IgG3.
Related JoVE Video
Dermacentor andersoni transmission of Francisella tularensis subsp. novicida reflects bacterial colonization, dissemination, and replication coordinated with tick feeding.
Infect. Immun.
PUBLISHED: 09-19-2011
Show Abstract
Hide Abstract
Ticks serve as biological vectors for a wide variety of bacterial pathogens which must be able to efficiently colonize specific tick tissues prior to transmission. The bacterial determinants of tick colonization are largely unknown, a knowledge gap attributed in large part to the paucity of tools to genetically manipulate these pathogens. In this study, we demonstrated that Francisella tularensis subsp. novicida, for which a complete two-allele transposon mutant library has been constructed, initially infects the midguts of 100% of acquisition-fed Dermacentor andersoni nymphs, with stable colonization and replication during a subsequent molt. Increased dissemination to and marked replication within the salivary gland was closely linked to a second (transmission) feed and culminated in secretion of bacteria into the saliva and successful transmission. Simultaneous testing of multiple mutants resulted in total bacterial levels similar to those observed for single mutants. However, there was evidence of a bottleneck during colonization, resulting in a founder effect in which the most successful mutant varied when comparing individual ticks. Thus, it is essential to assess mutant success at the level of the tick population rather than in individual ticks. The ability of F. tularensis subsp. novicida to recapitulate the key physiological events by which bacteria colonize and are transmitted by ixodid ticks provides a new genome-wide approach to identify the required pathogen molecules and pathways. The identification of specific genes and, more importantly, conserved pathways that function at the tick-pathogen interface will accelerate the development of new methods to block transmission.
Related JoVE Video
In vitro activity of ponazuril against Theileria equi.
Vet. Parasitol.
PUBLISHED: 06-29-2011
Show Abstract
Hide Abstract
The equid hemoprotozoan parasite Theileria equi is endemic in most regions worldwide. Infection of horses is a cause of significant economic loss due to costs associated with disease and restriction of trade with non-endemic nations. The ability of certain drugs such as imidocarb dipropionate to eliminate persistent T. equi infection and transmission risk is controversial. The anti-protozoal agent ponazuril has been used successfully to treat equine Sarcosystis neurona and Toxoplasma gondii. The hypothesis that ponazuril inhibits replication of T. equi in vitro was tested. T. equi infected equine erythrocyte cultures were treated with ponazuril at multiple concentrations. Cessation of parasite replication was observed over a 5-day period and the degree of inhibition was variable between drug concentrations. Ponazuril inhibited T. equi in erythrocyte culture at all concentrations tested but parasite elimination required at least 500 ?g/mL. The high dose of ponazuril required for in vitro inhibition likely limits its ability to control or clear T. equi infection in vivo, however additional research to evaluate related drugs is warranted.
Related JoVE Video
Expression of Anaplasma marginale ankyrin repeat-containing proteins during infection of the mammalian host and tick vector.
Infect. Immun.
PUBLISHED: 05-16-2011
Show Abstract
Hide Abstract
Transmission of tick-borne pathogens requires transition between distinct host environments with infection and replication in host-specific cell types. Anaplasma marginale illustrates this transition: in the mammalian host, the bacterium infects and replicates in mature (nonnucleated) erythrocytes, while in the tick vector, replication occurs in nucleated epithelial cells. We hypothesized that proteins containing ankyrin motifs would be expressed by A. marginale only in tick cells and would traffic to the infected host cell nucleus. A. marginale encodes three proteins containing ankyrin motifs, an AnkA orthologue (the AM705 protein), AnkB (the AM926 protein), and AnkC (the AM638 protein). All three A. marginale Anks were confirmed to be expressed during intracellular infection: AnkA is expressed at significantly higher levels in erythrocytes, AnkB is expressed equally by both infected erythrocytes and tick cells, and AnkC is expressed exclusively in tick cells. There was no evidence of any of the Ank proteins trafficking to the nucleus. Thus, the hypothesis that ankyrin-containing motifs were predictive of cell type expression and nuclear localization was rejected. In contrast, AnkA orthologues in the closely related A. phagocytophilum and Ehrlichia chaffeensis have been shown to localize to the host cell nucleus. This difference, together with the lack of a nuclear localization signal in any of the AnkA orthologues, suggests that trafficking may be mediated by a separate transporter rather than by endogenous signals. Selection for divergence in Ank function among Anaplasma and Ehrlichia spp. is supported by both locus and allelic analyses of genes encoding orthologous proteins and their ankyrin motif compositions.
Related JoVE Video
Stability and tick transmission phenotype of gfp-transformed Anaplasma marginale through a complete in vivo infection cycle.
Appl. Environ. Microbiol.
PUBLISHED: 11-05-2010
Show Abstract
Hide Abstract
We tested the stability and tick transmission phenotype of transformed Anaplasma marginale through a complete in vivo infection cycle. Similar to the wild type, the gfp-transformed A. marginale strain established infection in cattle, a natural reservoir host, and persisted in immune competent animals. The tick infection rates for the transformed A. marginale and the wild type were the same. However, there were significantly lower levels of the transformed A. marginale than of the wild type in the tick. Despite the lower levels of replication, ticks transmitted the transformant. Transformants can serve as valuable tools to dissect the molecular requirements of tick colonization and pathogen transmission.
Related JoVE Video
The Rhipicephalus (Boophilus) microplus Bm86 gene plays a critical role in the fitness of ticks fed on cattle during acute Babesia bovis infection.
Parasit Vectors
PUBLISHED: 09-01-2010
Show Abstract
Hide Abstract
Rhipicephalus (Boophilus) microplus is an economically important tick of cattle involved in the transmission of Babesia bovis, the etiological agent of bovine babesiosis. Commercial anti-tick vaccines based on the R. microplus Bm86 glycoprotein have shown some effect in controlling tick infestation; however their efficacy as a stand-alone solution for tick control has been questioned. Understanding the role of the Bm86 gene product in tick biology is critical to identifying additional methods to utilize Bm86 to reduce R. microplus infestation and babesia transmission. Additionally, the role played by Bm86 in R. microplus fitness during B. bovis infection is unknown.
Related JoVE Video
Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium.
Parasitol. Int.
PUBLISHED: 07-02-2010
Show Abstract
Hide Abstract
A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the B. bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family contains six genes termed Bbo-6cys-A, B, C, D, E and F encoding for proteins containing an arrangement of 6 cysteine residues. The Bbo-6cys genes A, B, C, D, and E are tandemly arranged as a cluster of Chromosome 2 in the B. bovis genome, whereas gene F is located in a distal region in the same chromosome. The Bbo-6cys-E gene, with higher homology to PFS230, was selected for further examination. Immunoblot analysis using recombinant Bbo-6cys-E protein and B. bovis-positive bovine serum demonstrated expression by the parasite and immunogenicity during B. bovis infection. Immunofluorescence analysis using anti-Bbo-6cys-E antibodies confirmed expression of Bbo-6cys-E in in vitro blood stages of B. bovis. In addition, polyclonal antisera against both recombinant Bbo-6cys-E and specific synthetic peptides containing predicted B-cell epitopes of Bbo-6cys-E, significantly inhibited erythrocyte invasion by B. bovis in in vitro neutralization assays, suggesting an important functional role for this protein. Identification of this new gene family in B. bovis and further investigation on its biological significance may aid our understanding of the bovine, tick and parasite relationships and the development of improved control methods against B. bovis infection in cattle.
Related JoVE Video
A Babesia bovis gene syntenic to Theileria parva p67 is expressed in blood and tick stage parasites.
Vet. Parasitol.
PUBLISHED: 06-17-2010
Show Abstract
Hide Abstract
Completion of the Babesia bovis (T2Bo strain) genome provides detailed data concerning the predicted proteome of this parasite, and allows for a bioinformatics approach to gene discovery. Comparative genomics of the hemoprotozoan parasites B. bovis and Theileria parva revealed a highly conserved syntenic block of genes flanking the p67 gene of T. parva, a sporozoite stage-specific vaccine candidate against East Coast fever (ECF). The syntenic gene in B. bovis, designated bov57, encodes a protein of limited amino acid sequence identity (11.8%) to p67. Monoclonal antibodies were produced against recombinant BOV57 and were used to demonstrate expression of BOV57 in merozoite and kinete stages of the T2Bo strain of B. bovis. Transcript levels of bov57 in kinetes were increased 100-fold in comparison to msa-1, a previously identified gene encoding an erythrocyte stage surface protein. Amino acid sequence comparisons between the T2Bo strain and two attenuated and virulent strains from Argentina and Australia revealed a high degree of sequence conservation in BOV57 among these geographically and pathogenically divergent isolates (97% amino acid sequence identity). Additional genomic comparisons show that the bov57 gene locus is also conserved in Babesia bigemina and Babesia equi. While not identifiable through amino acid or nucleotide sequence similarity, the conserved gene order within this locus in multiple piroplasms may suggest a critical function adapted for each species unique host and life-cycle.
Related JoVE Video
Identification of Anaplasma marginale proteins specifically upregulated during colonization of the tick vector.
Infect. Immun.
PUBLISHED: 05-03-2010
Show Abstract
Hide Abstract
The transition between infection of the mammalian host and colonization of an arthropod vector is required for the ongoing transmission of a broad array of pathogens, from viruses to protozoa. Understanding how this transition is mediated provides opportunities to disrupt transmission through either chemotherapy or immunization. We used an unbiased proteomic screen to identify Anaplasma marginale proteins specifically upregulated in the tick compared to the mammalian host. Comparative mass spectrometric analysis of proteins separated by two-dimensional gel electrophoresis of uninfected and infected ISE6 cells and infected mammalian cells identified 15 proteins exclusively expressed or upregulated in tick cells. All 15 had originally been annotated as hypothetical proteins. We confirmed quantitative upregulation and expression in situ within the midgut epithelial and salivary gland acinar cells of vector ticks during successful transmission. The results support the hypothesis that A. marginale gene expression is regulated by the specific host environment and, in a broader context, that the core genome evolved in the arthropod vector with differential regulation, allowing adaptation to mammalian hosts. Furthermore, the confirmation of the in situ expression of candidates identified in ISE6 cell lines indicates that this approach may be widely applicable to bacteria in the genera Anaplasma and Ehrlichia, removing a major technical impediment to the identification of new targets for vaccine and chemotherapeutic blocking of transmission.
Related JoVE Video
Association of pathogen strain-specific gene transcription and transmission efficiency phenotype of Anaplasma marginale.
Infect. Immun.
PUBLISHED: 03-22-2010
Show Abstract
Hide Abstract
Efficient transmission of pathogens by an arthropod vector is influenced by the ability of the pathogen to replicate and develop infectiousness within the arthropod host. While the basic life cycle of development within and transmission from the arthropod vector are known for many bacterial and protozoan pathogens, the determinants of transmission efficiency are largely unknown and represent a significant gap in our knowledge. The St. Maries strain of Anaplasma marginale is a high-transmission-efficiency strain that replicates to a high titer in the tick salivary gland and can be transmitted by <10 ticks. In contrast, A. marginale subsp. centrale (Israel vaccine strain) has an identical life cycle but replicates to a significantly lower level in the salivary gland, with transmission requiring >30-fold more ticks. We hypothesized that strain-specific genes expressed in the tick salivary gland at the time of transmission are linked to the differences in the transmission efficiency phenotype. Using both annotation-dependent and -independent analyses of the complete genome sequences, we identified 58 strain-specific genes. These genes most likely represent divergence from common ancestral genes in one or both strains based on analysis of synteny and lack of statistical support for acquisition as islands by lateral gene transfer. Twenty of the St. Maries strain-specific genes and 16 of the strain-specific genes in the Israel strain were transcribed in the tick salivary gland at the time of transmission. Although associated with the transmission phenotype, the expression levels of strain-specific genes were equal to or less than the expression levels in infected erythrocytes in the mammalian host, suggesting that function is not limited to salivary gland colonization.
Related JoVE Video
Babesia bovis expresses a neutralization-sensitive antigen that contains a microneme adhesive repeat (MAR) domain.
Parasitol. Int.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
A gene coding for a protein with sequence similarity to the Toxoplasma gondii micronemal 1 (MIC1) protein that contains a copy of a domain described as a sialic acid-binding micronemal adhesive repeat (MAR) was identified in the Babesia bovis genome. The single copy gene, located in chromosome 3, contains an open reading frame encoding a putative 181 amino acid protein, which is highly conserved among distinct B. bovis strains. Antibodies against both recombinant protein and synthetic peptides mimicking putative antigenic regions in the B. bovis-MIC1 (Bbo-MIC1) protein bind to the parasite in immunofluorescence assays and significantly inhibit erythrocyte invasion in in vitro B. bovis cultures. Bbo-MIC1 is recognized by antibodies in serum from B. bovis infected cattle, demonstrating expression and immunogenicity during infection. Overall, the results suggest that Bbo-MIC1 protein is a viable candidate for development of subunit vaccines.
Related JoVE Video
Silencing of a putative immunophilin gene in the cattle tick Rhipicephalus (Boophilus) microplus increases the infection rate of Babesia bovis in larval progeny.
Parasit Vectors
PUBLISHED: 10-13-2009
Show Abstract
Hide Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is involved in the transmission of the protozoan Babesia bovis, the etiological agent of bovine babesiosis. Interactions between ticks and protozoa are poorly understood and the investigation of tick genes that affect tick fitness and protozoan infection can set the stage for dissecting the molecular interactions between the two species.
Related JoVE Video
Quantification of Theileria parva in Rhipicephalus appendiculatus (Acari: Ixodidae) confirms differences in infection between selected tick strains.
J. Med. Entomol.
PUBLISHED: 08-04-2009
Show Abstract
Hide Abstract
Theileria parva is the etiologic agent of East Coast fever, an economically important disease of cattle in sub-Saharan Africa. This protozoan parasite is biologically transmitted by Rhipicephalus appendiculatus (Neumann) (Acari: Ixodidae). An understanding of the vector-parasite interaction may aid the development of improved methods for controlling transmission. We developed quantitative polymerase chain reaction (qPCR) and nested PCR (nPCR) assays targeting the T. parva-specific p104 gene to study T. parva pathogenesis in two strains of R. appendiculatus that had previously been selected to be relatively more (Kiambu) or less (Muguga) susceptible to infection. Nymphs from both strains were fed simultaneously to repletion on acutely infected calves. Nymphs from the Kiambu strain showed significantly higher engorgement weights compared with Muguga strain nymphs. Immediately after engorgement qPCR confirmed that nymphal Kiambu ticks had significantly higher parasite loads at repletion than Muguga nymphs. By 12 d postengorgement, parasites were below quantifiable levels but could be detected by nPCR in 83-87% (Muguga and Kiambu, respectively) of nymphs. After the molt, adult feeding on naïve cattle stimulated parasite replication in the salivary glands. PCR detected significantly more infected ticks than microscopy, and there was a significant difference between the two tick strains both in the proportion of ticks that develop salivary gland infections, and in the number of parasites within infected salivary glands. These data confirm that although both tick strains were competent vectors, Kiambu is both a significantly more susceptible and a more efficient host for T. parva than Muguga. The mechanisms that contribute to the levels of susceptibility and efficiency are unknown; however, this study lays the groundwork for a comparison of the transcriptome of these tick strains, the next step toward discovering the genes involved in the tick-parasite interaction.
Related JoVE Video
Imidocarb dipropionate clears persistent Babesia caballi infection with elimination of transmission potential.
Antimicrob. Agents Chemother.
PUBLISHED: 07-20-2009
Show Abstract
Hide Abstract
Antimicrobial treatment of persistent infection to eliminate transmission risk represents a specific challenge requiring compelling evidence of complete pathogen clearance. The limited repertoire of antimicrobial agents targeted at protozoal parasites magnifies this challenge. Using Babesia caballi as both a model and a specific apicomplexan pathogen for which evidence of the elimination of transmission risk is required for international animal movement, we tested whether a high-dose regimen of imidocarb dipropionate cleared infection from persistently infected asymptomatic horses and/or eliminated transmission risk. Clearance with elimination of transmission risk was supported by the following four specific lines of evidence: (i) inability to detect parasites by quantitative PCR and nested PCR amplification, (ii) conversion from seropositive to seronegative status, (iii) inability to transmit infection by direct inoculation of blood into susceptible recipient horses, and (iv) inability to transmit infection by ticks acquisition fed on the treated horses and subsequently transmission fed on susceptible horses. In contrast, untreated horses remained infected and capable of transmitting B. caballi using the same criteria. These findings establish that imidocarb dipropionate treatment clears B. caballi infection with confirmation of lack of transmission risk either by direct blood transfer or a high tick burden. Importantly, the treated horses revert to seronegative status according to the international standard for serologic testing and would be permitted to move between countries where the pathogen is endemic and countries that are free of the pathogen.
Related JoVE Video
Independence of Anaplasma marginale strains with high and low transmission efficiencies in the tick vector following simultaneous acquisition by feeding on a superinfected mammalian reservoir host.
Infect. Immun.
PUBLISHED: 02-02-2009
Show Abstract
Hide Abstract
Strain superinfection occurs when a second pathogen strain infects a host already carrying a primary strain. Anaplasma marginale superinfection occurs when the second strain carries a variant repertoire different from that of the primary strain, and the epidemiologic consequences depend on the relative efficiencies of tick-borne transmission of the two strains. Following strain superinfection in the reservoir host, we tested whether the presence of two A. marginale (sensu lato) strains that differed in transmission efficiency altered the transmission phenotypes in comparison to those for single-strain infections. Dermacentor andersoni ticks were fed on animals superinfected with the Anaplasma marginale subsp. centrale vaccine strain (low transmission efficiency) and the A. marginale St. Maries strain (high transmission efficiency). Within ticks that acquired both strains, the St. Maries strain had a competitive advantage and replicated to significantly higher levels than the vaccine strain. The St. Maries strain was subsequently transmitted to naïve hosts by ticks previously fed either on superinfected animals or on animals singly infected with the St. Maries strain, consistent with the predicted transmission phenotype of this strain and the lack of interference due to the presence of a competing low-efficiency strain. The vaccine strain was not transmitted by either singly infected or coinfected ticks, consistent with the predicted transmission phenotype and the lack of enhancement due to the presence of a high-efficiency strain. These results support the idea that the strain predominance in regions of endemicity is mediated by the intrinsic transmission efficiency of specific strains regardless of occurrence of superinfection.
Related JoVE Video
Quantitative differences in salivary pathogen load during tick transmission underlie strain-specific variation in transmission efficiency of Anaplasma marginale.
Infect. Immun.
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
The relative fitness of arthropod-borne pathogens within the vector can be a major determinant of pathogen prevalence within the mammalian host population. Strains of the tick-borne rickettsia Anaplasma marginale differ markedly in transmission efficiency, with a consequent impact on pathogen strain structure. We have identified two A. marginale strains with significant differences in the transmission phenotype that is effected following infection of the salivary gland. We have proposed competing hypotheses to explain the phenotypes: (i) both strains are secreted equally, but there is an intrinsic difference in infectivity for the mammalian host, or (ii) one strain is secreted at a significantly higher level and thus represents delivery of a greater pathogen dose. Quantitative analysis of pathogen replication and secretion revealed that the high-efficiency St. Maries strain replicated to a 10-fold-higher titer and that a significantly greater percentage of infected ticks secreted A. marginale into the saliva and did so at a significantly higher level than for the low-efficiency Israel vaccine strain. Furthermore, the transmission phenotype of the vaccine strain could be restored to that of the St. Maries strain simply by increasing the delivered pathogen dose, either by direct inoculation of salivary gland organisms or by increasing the number of ticks during transmission feeding. We identified morphological differences in the colonization of each strain within the salivary glands and propose that these reflect strain-specific differences in replication and secretion pathways linked to the vector-pathogen interaction.
Related JoVE Video
Efficacy of imidocarb dipropionate in eliminating Theileria equi from experimentally infected horses.
Vet. J.
Show Abstract
Hide Abstract
Theileria equi, one of the causative agents of equine piroplasmosis, is endemic in many regions of the world but is considered a foreign animal disease in the USA. In an effort to prevent the importation of T. equi, stringent serological screening of horses is practiced prior to entry to the USA. Current regulatory options available where horses are found to be infected include permanent quarantine with or without chemotherapy, repatriation, or euthanasia. Chemotherapeutics that eliminate infection and subsequently transmission risk are critical in the management of infected horses. In this study, the efficacy of the drug imidocarb dipropionate against experimental T. equi infection was assessed. Of nine horses experimentally inoculated with T. equi isolated from an animal previously imported from Peru, six were treated with imidocarb dipropionate after the resolution of the acute phase of the disease. Elimination of the parasite was demonstrated in 5/6 by nested PCR, blood transfusions to naïve horses, and reversion to seronegative status. The findings support the use of this drug as a potential treatment option in controlling outbreaks of T. equi, and also suggest that combination testing using both serological and PCR detection methods are necessary to demonstrate clearance of infection.
Related JoVE Video
Comparative genomic analysis and phylogenetic position of Theileria equi.
BMC Genomics
Show Abstract
Hide Abstract
Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites.
Related JoVE Video
Subdominant antigens in bacterial vaccines: AM779 is subdominant in the Anaplasma marginale outer membrane vaccine but does not associate with protective immunity.
PLoS ONE
Show Abstract
Hide Abstract
Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and proteomic approaches have facilitated identification of minor components of the bacterial outer membrane that have previously been missed or ignored in immunological analyses. Immunization with Anaplasma marginale outer membranes or a cross-linked surface complex induces protection against bacteremia, however the components responsible for protection within these complex immunogens are unknown. Using outer membrane protein AM779 as a model, we demonstrated that this highly conserved but minor component of the A. marginale surface was immunologically sub-dominant in the context of the outer membrane or surface complex vaccines. Immunologic sub-dominance could be overcome by targeted vaccination with AM779 for T lymphocyte responses but not for antibody responses, suggesting that both abundance and intrinsic immunogenicity determine relative dominance. Importantly, immunization with AM779 supports that once priming is achieved by specific targeting, recall upon infectious challenge is achieved. While immunization with AM779 alone was not sufficient to induce protection, the ability of targeted immunization to prime the immune response to highly conserved but low abundance proteins supports continued investigation into the role of sub-dominant antigens, individually and collectively, in vaccine development for A. marginale and related bacterial pathogens.
Related JoVE Video
Re-emergence of the apicomplexan Theileria equi in the United States: elimination of persistent infection and transmission risk.
PLoS ONE
Show Abstract
Hide Abstract
Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 10(4.9) organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to naïve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a naïve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions.
Related JoVE Video
Expansion of variant diversity associated with a high prevalence of pathogen strain superinfection under conditions of natural transmission.
Infect. Immun.
Show Abstract
Hide Abstract
Superinfection occurs when a second, genetically distinct pathogen strain infects a host that has already mounted an immune response to a primary strain. For antigenically variant pathogens, the primary strain itself expresses a broad diversity of variants over time. Thus, successful superinfection would require that the secondary strain express a unique set of variants. We tested this hypothesis under conditions of natural transmission in both temperate and tropical regions where, respectively, single-strain infections and strain superinfections of the tick-borne pathogen Anaplasma marginale predominate. Our conclusion that strain superinfection is associated with a significant increase in variant diversity is supported by progressive analysis of variant composition: (i) animals with naturally acquired superinfection had a statistically significantly greater number of unique variant sequences than animals either experimentally infected with single strains or infected with a single strain naturally, (ii) the greater number of unique sequences reflected a statistically significant increase in primary structural diversity in the superinfected animals, and (iii) the increase in primary structural diversity reflected increased combinations of the newly identified hypervariable microdomains. The role of population immunity in establishing temporal and spatial patterns of infection and disease has been well established. The results of the present study, which examined strain structure under conditions of natural transmission and population immunity, support that high levels of endemicity also drive pathogen divergence toward greater strain diversity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.