JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A role for stefin B (cystatin B) in inflammation and endotoxemia.
J. Biol. Chem.
PUBLISHED: 10-06-2014
Show Abstract
Hide Abstract
Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor, and the loss-of-function mutations in the stefin B gene were reported in patients with Unverricht-Lundborg disease (EPM1). In this study we demonstrated that stefin B-deficient (StB KO) mice were significantly more sensitive to the lethal LPS-induced sepsis and secreted higher amounts of pro-inflammatory cytokines IL-1? and IL-18 in the serum. We further showed that increased caspase-11 gene expression and better pro-inflammatory caspase-1 and -11 activation determined in StB KO bone marrow-derived macrophages resulted in enhanced IL-1? processing. Pretreatment of macrophages with the cathepsin inhibitor E-64d did not affect secretion of IL-1?, suggesting that the increased cathepsin activity determined in StB KO bone marrow-derived macrophages is not essential for inflammasome activation. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the lack of stefin B resulted in the increased destabilization of mitochondrial membrane potential and mitochondrial superoxide generation. Collectively, our study demonstrates that the LPS-induced sepsis in StB KO mice is dependent on caspase-11 and mitochondrial reactive oxygen species but is not associated with the lysosomal destabilization and increased cathepsin activity in the cytosol.
Related JoVE Video
Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency.
J. Membr. Biol.
PUBLISHED: 08-22-2014
Show Abstract
Hide Abstract
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
Related JoVE Video
Inflammation-mediating proteases: structure, function in (patho) physiology and inhibition.
Protein Pept. Lett.
PUBLISHED: 07-22-2014
Show Abstract
Hide Abstract
Proteases regulating inflammation are versatile enzymes, usually extracellular matrix degrading enzymes that are involved in wound healing, angiogenesis, coagulation, development, apoptosis and other physiological processes. Their dysregulation and increased expression during inflammation can have devastating consequences, promoting etiology of vascular diseases, inflammatory arthritis, cancer, and allograft rejection. In this review several proteases (ADAMTS, granzymes, plasmin, and kallikreins) with different mechanisms and substrates are described in addition to their physiological roles and contribution to inflammation and inflammatory diseases. Inhibition of proteases may therefore represent an attractive strategy for treatment and herein we describe physiological and engineered inhibitors.
Related JoVE Video
Vanadate from air pollutant inhibits hrs-dependent endosome fusion and augments responsiveness to toll-like receptors.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
There is a well-established association between exposure to air pollutants and pulmonary injuries. For example, metals found in ROFA (residual oil fly ash) increase susceptibility of mice as well as humans to microbial infections. In our research, we have found that vanadate substantially increased the response of several Toll-like receptors (TLRs) to stimulation with their ligands. Although vanadate caused generation of reactive oxygen species (ROS), the addition of ROS scavenger N-acetyl cysteine (NAC) had no effect on augmented lipopolysaccharide (LPS) stimulation. We further showed that vanadate inhibits endosome fusion. This effect was determined by measuring the size of endosomes, NF-?B activity and TLR4 degradation in Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) overexpressed cells. Moreover, we identified the role of Hrs phosphorylation in these processes. Based on our findings, we can conclude that vanadate potentiates TLR4 activity by increasing Hrs phosphorylation status, reducing the size of Hrs/TLR4-positive endosomes and impacting TLR4 degradation, thus contributing to the detrimental effects of air pollutants on human health.
Related JoVE Video
The ectodomain of TLR3 receptor is required for its plasma membrane translocation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Toll-like receptor 3 (TLR3) is a dsRNA sensing receptor that is localized in the cellular compartments but also at the plasma membrane. Overexpression of UNC93B1 promoted localization of TLR3, but not other nucleic acid sensing TLRs, to the plasma membrane. Here we show that UNC93B1 itself is localized at the plasma membrane. We investigated the role of different domains of TLR3 on cell signaling by preparing chimeric receptors between TLR3 and TLR9 where each of the transmembrane segments or cytosolic domains has been exchanged. While the ectodomain completely governs ligand specificity and the cytosolic TIR domain determines the engagement of the signaling adapters as well as the potentiation of receptor activation by UNC93B1, the ectodomain but not transmembrane segment or cytosolic domain determines plasma membrane localization of TLR3. Nevertheless, TLR3 receptor and ligand endocytosis as well as endosomal acidification are important for the robust signaling of TLR3.
Related JoVE Video
Nanoparticles isolated from blood: a reflection of vesiculability of blood cells during the isolation process.
Int J Nanomedicine
PUBLISHED: 11-08-2011
Show Abstract
Hide Abstract
Shedding of nanoparticles from the cell membrane is a common process in all cells. These nanoparticles are present in body fluids and can be harvested by isolation. To collect circulating nanoparticles from blood, a standard procedure consisting of repeated centrifugation and washing is applied to the blood samples. Nanoparticles can also be shed from blood cells during the isolation process, so it is unclear whether nanoparticles found in the isolated material are present in blood at sampling or if are they created from the blood cells during the isolation process. We addressed this question by determination of the morphology and identity of nanoparticles harvested from blood.
Related JoVE Video
Interaction of the HIV-1 gp120 viral protein V3 loop with bacterial lipopolysaccharide: a pattern recognition inhibition.
J. Biol. Chem.
PUBLISHED: 06-02-2011
Show Abstract
Hide Abstract
HIV-1 represents an elusive target for therapeutic compounds due to its high rate of mutation. Targeting structural patterns instead of a constantly changing specific three-dimensional structure may represent an approach that is less sensitive to viral mutations. The V3 loop of gp120 of HIV-1, which is responsible for binding of viral gp120 to CCR5 or CXCR4 coreceptors, has already been identified as an effective target for the inhibition of viral entry. The peptide derived from the V3 loop of gp120 specifically interacts with the lipid A moiety of LPS, as does the full gp120 protein. NMR analysis of V3 in complex with LPS shows formation of an amphipathic turn. The interaction between LPS and V3 relies on the structural pattern, comprising a combination of hydrophobic and charge interactions, similar to the interaction between antimicrobial peptides and LPS. LPS inhibited binding of gp120 to the surface of target T cells. Nonendotoxic LPS antagonists inhibited viral infection, demonstrating the possibility for the development of an inhibitor of HIV-1 attachment to T cells based on the recognition of a conserved structural pattern.
Related JoVE Video
Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion.
J. Biol. Chem.
PUBLISHED: 02-15-2011
Show Abstract
Hide Abstract
Prion diseases are fatal transmissible neurodegenerative diseases affecting many mammalian species. The normal prion protein (PrP) converts into a pathological aggregated form, PrPSc, which is enriched in the ?-sheet structure. Although the high resolution structure of the normal PrP was determined, the structure of the converted form of PrP remains inaccessible to high resolution techniques. To map the PrP conversion process we introduced disulfide bridges into different positions within the globular domain of PrP, tethering selected secondary structure elements. The majority of tethered PrP mutants exhibited increased thermodynamic stability, nevertheless, they converted efficiently. Only the disulfides that tether subdomain B1-H1-B2 to subdomain H2-H3 prevented PrP conversion in vitro and in prion-infected cell cultures. Reduction of disulfides recovered the ability of these mutants to convert, demonstrating that the separation of subdomains is an essential step in conversion. Formation of disulfide-linked proteinase K-resistant dimers in fibrils composed of a pair of single cysteine mutants supports the model based on domain-swapped dimers as the building blocks of prion fibrils. In contrast to previously proposed structural models of PrPSc suggesting conversion of large secondary structural segments, we provide evidence for the conservation of secondary structural elements of the globular domain upon PrP conversion. Previous studies already showed that dimerization is the rate-limiting step in PrP conversion. We show that separation and swapping of subdomains of the globular domain is necessary for conversion. Therefore, we propose that the domain-swapped dimer of PrP precedes amyloid formation and represents a potential target for therapeutic intervention.
Related JoVE Video
Free thiol group of MD-2 as the target for inhibition of the lipopolysaccharide-induced cell activation.
J. Biol. Chem.
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
MD-2 is a part of the Toll-like 4 signaling complex with an indispensable role in activation of the lipopolysaccharide (LPS) signaling pathway and thus a suitable target for the therapeutic inhibition of TLR4 signaling. Elucidation of MD-2 structure provides a foundation for rational design of inhibitors that bind to MD-2 and inhibit LPS signaling. Since the hydrophobic binding pocket of MD-2 provides little specificity for inhibitors, we have investigated targeting the solvent-accessible cysteine residue within the hydrophobic binding pocket of MD-2. Compounds with affinity for the hydrophobic pocket that contain a thiol-reactive group, which mediates covalent bond formation with the free cysteine residue of MD-2, were tested. Fluorescent compounds 2-(4-(iodoacetamido)anilino)naphthalene-6-sulfonic acid and N-pyrene maleimide formed a covalent bond with MD-2 through Cys(133) and inhibited LPS signaling. Cell activation was also inhibited by thiol-reactive compounds JTT-705 originally targeted against cholesterol ester transfer protein and antirheumatic compound auranofin. Oral intake of JTT-705 significantly inhibited endotoxin-triggered tumor necrosis factor alpha production in mice. The thiol group of MD-2 also represents the target of environmental or endogenous thiol-reactive compounds that are produced in inflammation.
Related JoVE Video
The differential interaction of Brucella and ochrobactrum with innate immunity reveals traits related to the evolution of stealthy pathogens.
PLoS ONE
PUBLISHED: 04-24-2009
Show Abstract
Hide Abstract
During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some alpha-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria.
Related JoVE Video
The role of UNC93B1 protein in surface localization of TLR3 receptor and in cell priming to nucleic acid agonists.
J. Biol. Chem.
Show Abstract
Hide Abstract
Translocation of nucleic acid-sensing (NAS) Toll-like receptors (TLRs) to endosomes is essential for response to microbial nucleic acids as well as for prevention of the autoimmune response. The accessory protein UNC93B1 is indispensable for activation of NAS TLRs because it regulates their response through trafficking to endosomes. We observed that poly(I:C) up-regulates transcription of UNC93B1 and promotes trafficking of TLR3 to the plasma membrane in human epithelial cell line. Up-regulation of UNC93B1 is triggered through TLR3 activation by poly(I:C). Further studies revealed that expression of UNC93B1 promotes trafficking of differentially glycosylated TLR3, but not other NAS TLRs, to the plasma membrane. UNC93B1 promoter region contains binding sites for poly(I:C)- and type I interferon-inducible regulatory elements. UNC93B1 also increases the protein lifetime of TLR3 and TLR9 and augments signaling of all NAS TLRs. Furthermore, we discovered that poly(I:C) pretreatment primes B-cells to the activation by ssDNA via up-regulation of UNC93B1. Our findings identified TLR3 as the important regulator of UNC93B1 that in turn governs the responsiveness of all NAS TLRs.
Related JoVE Video
The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition.
PLoS Pathog.
Show Abstract
Hide Abstract
Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
Related JoVE Video
MARCKS as a negative regulator of lipopolysaccharide signaling.
J. Immunol.
Show Abstract
Hide Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) is an intrinsically unfolded protein with a conserved cationic effector domain, which mediates the cross-talk between several signal transduction pathways. Transcription of MARCKS is increased by stimulation with bacterial LPS. We determined that MARCKS and MARCKS-related protein specifically bind to LPS and that the addition of the MARCKS effector peptide inhibited LPS-induced production of TNF-? in mononuclear cells. The LPS binding site within the effector domain of MARCKS was narrowed down to a heptapeptide that binds to LPS in an extended conformation as determined by nuclear magnetic resonance spectroscopy. After LPS stimulation, MARCKS moved from the plasma membrane to FYVE-positive endosomes, where it colocalized with LPS. MARCKS-deficient mouse embryonic fibroblasts (MEFs) responded to LPS with increased IL-6 production compared with the matched wild-type MEFs. Similarly, small interfering RNA knockdown of MARCKS also increased LPS signaling, whereas overexpression of MARCKS inhibited LPS signaling. TLR4 signaling was enhanced by the ablation of MARCKS, which had no effect on stimulation by TLR2, TLR3, and TLR5 agonists. These findings demonstrate that MARCKS contributes to the negative regulation of the cellular response to LPS.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.