JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion.
Nat Commun
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Cytotoxic T lymphocytes kill virus-infected and tumorigenic target cells through the release of perforin and granzymes via fusion of lytic granules at the contact site, the immunological synapse. It has been postulated that this fusion process is mediated by non-neuronal members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex protein family. Here, using a synaptobrevin2-monomeric red fluorescence protein knock-in mouse we demonstrate that, surprisingly, the major neuronal v-SNARE synaptobrevin2 is expressed in cytotoxic T lymphocytes and exclusively localized on granzyme B-containing lytic granules. Cleavage of synaptobrevin2 by tetanus toxin or ablation of the synaptobrevin2 gene leads to a complete block of lytic granule exocytosis while leaving upstream events unaffected, identifying synaptobrevin2 as the v-SNARE responsible for the fusion of lytic granules at the immunological synapse.
Related JoVE Video
Super-resolution microscopy in studying neuroendocrine cell function.
Front Neurosci
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The last two decades have seen a tremendous development in high resolution microscopy techniques giving rise to acronyms such as TIRFM, SIM, PALM, STORM, and STED. The goal of all these techniques is to overcome the physical resolution barrier of light microscopy in order to resolve precise protein localization and possibly their interaction in cells. Neuroendocrine cell function is to secrete hormones and peptides on demand. This fine-tuned multi-step process is mediated by a large array of proteins. Here, we review the new microscopy techniques used to obtain high resolution and how they have been applied to increase our knowledge of the molecular mechanisms involved in neuroendocrine cell secretion. Further the limitations of these methods are discussed and insights in possible new applications are provided.
Related JoVE Video
Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation.
EMBO J.
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
Cell polarization enables restriction of signalling into microdomains. Polarization of lymphocytes following formation of a mature immunological synapse (IS) is essential for calcium-dependent T-cell activation. Here, we analyse calcium microdomains at the IS with total internal reflection fluorescence microscopy. We find that the subplasmalemmal calcium signal following IS formation is sufficiently low to prevent calcium-dependent inactivation of ORAI channels. This is achieved by localizing mitochondria close to ORAI channels. Furthermore, we find that plasma membrane calcium ATPases (PMCAs) are re-distributed into areas beneath mitochondria, which prevented PMCA up-modulation and decreased calcium export locally. This nano-scale distribution-only induced following IS formation-maximizes the efficiency of calcium influx through ORAI channels while it decreases calcium clearance by PMCA, resulting in a more sustained NFAT activity and subsequent activation of T cells.
Related JoVE Video
Measuring mitochondrial and cytoplasmic Ca2+ in EGFP expressing cells with a low-affinity calcium Ruby and its dextran conjugate.
Cell Calcium
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
The limited choice and poor performance of red-emitting calcium (Ca(2+)) indicators have hampered microfluorometric measurements of the intracellular free Ca(2+) concentration in cells expressing yellow- or green-fluorescent protein constructs. A long-wavelength Ca(2+) indicator would also permit a better discrimination against cellular autofluorescence than the commonly used fluorescein-based probes. Here, we report an improved synthesis and characterization of Calcium Ruby, a red-emitting probe consisting of an extended rhodamine chromophore (578/602 nm peak excitation/emission) conjugated to BAPTA and having an additional NH(2) linker arm. The low-affinity variant (K(D,Ca) approximately 30 microM) with a chloride in meta position that was specifically designed for the detection of large and rapid Ca(2+) transients. While Calcium Ruby is a mitochondrial Ca(2+)probe, its conjugation, via the NH(2) tail, to a 10,000 MW dextran abolishes the sub-cellular compartmentalization and generates a cytosolic Ca(2+) probe with an affinity matched to microdomain Ca(2+) signals. As an example, we show depolarization-evoked Ca(2+) signals triggering the exocytosis of individual chromaffin granules. Calcium Ruby should be of use in a wide range of applications involving dual- or triple labeling schemes or targeted sub-cellular Ca(2+) measurements.
Related JoVE Video
Docking of LDCVs is modulated by lower intracellular [Ca2+] than priming.
PLoS ONE
Show Abstract
Hide Abstract
Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca(2+) concentration ([Ca(2+)](i)). However, the functional implications of [Ca(2+)](i) in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca(2+)](i). Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca(2+)](i). We found that a free [Ca(2+)](i) of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca(2+)](i) of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca(2+) concentrations, with docking efficiency being the most robust at 500 nM.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.