JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China.
New Phytol.
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
We performed a landscape-scale investigation to compare the arbuscular mycorrhizal fungal (AMF) communities between grasslands and farmlands in the farming-pastoral ecotone of northern China. AMF richness and community composition were examined with 454 pyrosequencing. Structural equation modelling (SEM) and multivariate analyses were applied to disentangle the direct and indirect effects (mediated by multiple environmental factors) of land use on AMF. Land use conversion from grassland to farmland significantly reduced AMF richness and extraradical hyphal length density, and these land use types also differed significantly in AMF community composition. SEM showed that the effects of land use on AMF richness and hyphal length density in soil were primarily mediated by available phosphorus and soil structural quality. Soil texture was the strongest predictor of AMF community composition. Soil carbon, nitrogen and soil pH were also significantly correlated with AMF community composition, indicating that these abiotic variables could be responsible for some of the community composition differences among sites. Our study shows that land use has a partly predictable effect on AMF communities across this ecologically relevant area of China, and indicates that high soil phosphorus concentrations and poor soil structure are particularly detrimental to AMF in this fragile ecosystem.
Related JoVE Video
Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales.
ISME J
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota.
Related JoVE Video
Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest.
Glob Chang Biol
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co-limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454-pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.
Related JoVE Video
Ecological understanding of root-infecting fungi using trait-based approaches.
Trends Plant Sci.
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
Classification schemes have been popular to tame the diversity of root-infecting fungi. However, the usefulness of these schemes is limited to descriptive purposes. We propose that a shift to a multidimensional trait-based approach to disentangle the saprotrophic-symbiotic continuum will provide a better framework to understand fungal evolutionary ecology. Trait information reflecting the separation of root-infecting fungi from free-living soil relatives will help to understand the evolutionary process of symbiosis, the role that species interactions play in maintaining their large diversity in soil and in planta, and their contributions at the ecosystem level. Methodological advances in several areas such as microscopy, plant immunology, and metatranscriptomics represent emerging opportunities to populate trait databases.
Related JoVE Video
Exploring continental-scale stand health - N : P ratio relationships for European forests.
New Phytol.
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
Understanding the relationship between nitrogen (N) availability and stand health in forest ecosystems is crucial, because a large proportion of European forests is subjected to N-deposition levels beyond their retention capacity. We used data from a long-term forest monitoring programme (ICP Forests) to test the relationship between an index of N availability, foliar nitrogen : phosphorus (N : P) ratios, tree defoliation and discoloration. We hypothesized a segmented response of stand health to N : P ratios and an improved model-fit after correcting for climatic covariates. In accordance with the hypothesis, we found a segmented response with a breakpoint for conifer defoliation at N : P ratios as low as 7.3. Inclusion of climatic variables improved the fit of the models, but there was significant collinearity with N : P. Increases in N availability appear, at least for conifers, to have a negative effect on tree health even under N-limiting conditions. Regulation of N-deposition levels is consequently as timely as ever. We propose that increases in tree defoliation, other than resulting in serious plant fitness issues, may represent early diagnostic symptoms of N-addition related imbalances.
Related JoVE Video
Interannual variation in land-use intensity enhances grassland multidiversity.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-24-2013
Show Abstract
Hide Abstract
Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
Related JoVE Video
Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology.
Ecology
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
Plant traits have been widely used to characterize different aspects of the ecology of plant species. Despite its wide distribution and its proven significance at the level of individuals, communities, and populations, the ability to form mycorrhizal associations has been largely neglected in these studies so far. Analyzing plant traits associated with the occurrence of mycorrhizas in plants can therefore enhance our understanding of plant strategies and distributions. Using a comparative approach, we tested for associations between mycorrhizal status and habitat characteristics, life history traits, and plant distribution patterns in 1752 species of the German flora (a major part of the Central European flora). Data were analyzed using log-linear models or generalized linear models, both accounting for phylogenetic relationships. Obligatorily mycorrhizal (OM) species tended to be positively associated with higher temperature, drier habitats, and higher pH; and negatively associated with moist, acidic, and fertile soils. Competitive species were more frequently OM, and stress tolerators were non-mycorrhizal (NM), while ruderal species did not show any preference. Facultatively mycorrhizal (FM) species showed the widest geographic and ecological amplitude. Indigenous species were more frequently FM and neophytes (recent aliens) more frequently OM than expected. FM species differed markedly from OM and NM species in almost all analyzed traits. Specifically, they showed a wider geographic distribution and ecological niche. Our study of the relationships between mycorrhizal status and other plant traits provides a comprehensive test of existing hypotheses and reveals novel patterns. The clear distinction between FM and OM + NM species in terms of their ecology opens up a new field of research in plant-mycorrhizal ecology.
Related JoVE Video
Interactive effects of root endophytes and arbuscular mycorrhizal fungi on an experimental plant community.
Oecologia
PUBLISHED: 05-05-2013
Show Abstract
Hide Abstract
Plant-soil microbial interactions have moved into focus as an important mechanism for understanding plant coexistence and composition of communities. Both arbuscular mycorrhizal (AM) as well as other root endophytic fungi co-occur in plant roots, and therefore have the potential to influence relative abundances of plant species in local assemblages. However, no study has experimentally examined how these key root endosymbiont groups might interact and affect plant community composition. Here, using an assemblage of five plant species in mesocosms in a fully factorial experiment, we added an assemblage of AM fungi and/or a mixture of root endophytic fungal isolates, all obtained from the same grassland field site. The results demonstrate that the AM fungi and root endophytes interact to affect plant community composition by changing relative species abundance, and consequently aboveground productivity. Our study highlights the need to explicitly consider interactions of root-inhabiting fungal groups in studies of plant assemblages.
Related JoVE Video
Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success.
New Phytol.
PUBLISHED: 03-16-2013
Show Abstract
Hide Abstract
Soil biota provide a number of key ecological services to natural and agricultural ecosystems. Increasingly, inoculation of soils with beneficial soil biota is being considered as a tool to enhance plant productivity and sustainability of agricultural ecosystems. However, one important bottleneck is the establishment of viable microbial populations that can persist over multiple seasons. Here, we explore the factors responsible for establishment of the beneficial soil fungi, arbuscular mycorrhizal fungi (AMF), which can enhance the yield of a wide range of agricultural crops. We evaluate field application potential and discuss ecological and evolutionary factors responsible for application success. We identify three factors that determine inoculation success and AM fungal persistence in soils: species compatibility (can the introduced species thrive under the imposed circumstances?); field carrying capacity (the habitat niche available to AMF); and priority effects (the influence of timing and competition on the establishment of alternative stable communities). We explore how these factors can be employed for establishment and persistence of AMF. We address the importance of inoculum choice, plant choice, management practices and timing of inoculation for the successful manipulation of the resulting AMF community.
Related JoVE Video
Changes of AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China.
PLoS ONE
PUBLISHED: 01-26-2013
Show Abstract
Hide Abstract
Arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected, and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical hyphal length density (HLD) in the soil. The results indicated that HLD were positively correlated with mean annual temperature (MAT), soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC) and soil available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC) and relative abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content. With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal contribution to soil carbon pools.
Related JoVE Video
Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi.
Biol. Lett.
PUBLISHED: 10-19-2011
Show Abstract
Hide Abstract
Arbuscular mycorrhizal (AM) fungi represent ubiquitous mutualists of terrestrial plants. Through the symbiosis, plant hosts, among other benefits, receive protection from pathogens. A meta-analysis was conducted on 106 articles to determine whether, following pathogen infection of AM-colonized plants, the identity of the organisms involved (pathogens, AM fungi and host plants) had implications for the extent of the AM-induced pathogen suppression. Data on fungal and nematode pathogens were analysed separately. Although we found no differences in AM effectiveness with respect to the identity of the plant pathogen, the identity of the AM isolate had a dramatic effect on the level of pathogen protection. AM efficiency differences with respect to nematode pathogens were mainly limited to the number of AM isolates present; by contrast, modification of the ability to suppress fungal pathogens could occur even through changing the identity of the Glomeraceae isolate applied. N-fixing plants received more protection from fungal pathogens than non-N-fixing dicotyledons; this was attributed to the more intense AM colonization in N-fixing plants. Results have implications for understanding mycorrhizal ecology and agronomic applications.
Related JoVE Video
The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus--salinity increases glomalin content.
PLoS ONE
PUBLISHED: 06-28-2011
Show Abstract
Hide Abstract
Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and the soil fraction containing glomalin is correlated with soil aggregation. Thus, factors potentially influencing glomalin production could be of relevance for this ecosystem process and for understanding AM fungal physiology. Previous work indicated that glomalin production in AM fungi may be a stress response, or related to suboptimal mycelium growth. We show here that environmental stress can enhance glomalin production in the mycelium of the AM fungus Glomus intraradices. We applied NaCl and glycerol in different intensities to the medium in which the fungus was grown in vitro, causing salinity stress and osmotic stress, respectively. As a third stress type, we simulated grazing on the extraradical hyphae of the fungus by mechanically injuring the mycelium by clipping. NaCl caused a strong increase, while the clipping treatment led to a marginally significant increase in glomalin production. Even though salinity stress includes osmotic stress, we found substantially different responses in glomalin production due to the NaCl and the glycerol treatment, as glycerol addition did not cause any response. Thus, our results indicate that glomalin is involved in inducible stress responses in AM fungi for salinity, and possibly grazing stress.
Related JoVE Video
Indigenous arbuscular mycorrhizal fungal assemblages protect grassland host plants from pathogens.
PLoS ONE
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Plant roots can establish associations with neutral, beneficial and pathogenic groups of soil organisms. Although it has been recognized from the study of individual isolates that these associations are individually important for plant growth, little is known about interactions of whole assemblages of beneficial and pathogenic microorganisms associating with plants.We investigated the influence of an interaction between local arbuscular mycorrhizal (AM) fungal and pathogenic/saprobic microbial assemblages on the growth of two different plant species from semi-arid grasslands in NE Germany (Mallnow near Berlin). In a greenhouse experiment each plant species was grown for six months in either sterile soil or in sterile soil with one of three different treatments: 1) an AM fungal spore fraction isolated from field soil from Mallnow; 2) a soil pathogen/saprobe fraction consisting of a microbial community prepared with field soil from Mallnow and; 3) the combined AM fungal and pathogen/saprobe fractions. While both plant species grew significantly larger in the presence of AM fungi, they responded negatively to the pathogen/saprobe treatment. For both plant species, we found evidence of pathogen protection effects provided by the AM fungal assemblages. These results indicate that interactions between assemblages of beneficial and pathogenic microorganisms can influence the growth of host plants, but that the magnitude of these effects is plant species-specific.
Related JoVE Video
The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils.
PLoS ONE
PUBLISHED: 06-07-2011
Show Abstract
Hide Abstract
Allelopathy, a phenomenon where compounds produced by one plant limit the growth of surrounding plants, is a controversially discussed factor in plant-plant interactions with great significance for plant community structure. Common mycorrhizal networks (CMNs) form belowground networks that interconnect multiple plant species; yet these networks are typically ignored in studies of allelopathy. We tested the hypothesis that CMNs facilitate transport of allelochemicals from supplier to target plants, thereby affecting allelopathic interactions. We analyzed accumulation of a model allelopathic substance, the herbicide imazamox, and two allelopathic thiophenes released from Tagetes tenuifolia roots, by diffusion through soil and CMNs. We also conducted bioassays to determine how the accumulated substances affected plant growth. All compounds accumulated to greater levels in target soils with CMNs as opposed to soils without CMNs. This increased accumulation was associated with reduced growth of target plants in soils with CMNs. Our results show that CMNs support transfer of allelochemicals from supplier to target plants and thus lead to allelochemical accumulation at levels that could not be reached by diffusion through soil alone. We conclude that CMNs expand the bioactive zones of allelochemicals in natural environments, with significant implications for interspecies chemical interactions in plant communities.
Related JoVE Video
Soil microbes drive the classic plant diversity-productivity pattern.
Ecology
PUBLISHED: 05-31-2011
Show Abstract
Hide Abstract
Ecosystem productivity commonly increases asymptotically with plant species diversity, and determining the mechanisms responsible for this well-known pattern is essential to predict potential changes in ecosystem productivity with ongoing species loss. Previous studies attributed the asymptotic diversity-productivity pattern to plant competition and differential resource use (e.g., niche complementarity). Using an analytical model and a series of experiments, we demonstrate theoretically and empirically that host-specific soil microbes can be major determinants of the diversity-productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500%, primarily because of the strong effect of density-dependent disease on productivity at low diversity. Correspondingly, disease was higher in plants grown in conspecific-trained soils than heterospecific-trained soils (demonstrating host-specificity), and productivity increased and host-specific disease decreased with increasing community diversity, suggesting that disease was the primary cause of reduced productivity in species-poor treatments. In sterilized, microbe-free soils, the increase in productivity with increasing plant species number was markedly lower than the increase measured in the presence of soil microbes, suggesting that niche complementarity was a weaker determinant of the diversity-productivity relationship. Our results demonstrate that soil microbes play an integral role as determinants of the diversity-productivity relationship.
Related JoVE Video
Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction.
Oecologia
PUBLISHED: 05-22-2011
Show Abstract
Hide Abstract
Our experiments addressed systemic metabolic effects in above-ground plant tissue as part of the plants response to the arbuscular mycorrhizal (AM) interaction. Due to the physiology of this interaction, we expected effects in the areas of plant mineral nutrition, carbon allocation and stress-related metabolism, but also a notable dependence of respective metabolic changes on environmental conditions and on plant developmental programs. To assess these issues, we analyzed metabolite profiles from mycorrhizal and non-mycorrhizal Lotus japonicus grown under greenhouse conditions at three different time points in the growing season in three different above-ground organs (flowers, sink leaves and source leaves). Statistical analysis of our data revealed a number of significant changes in individual experiments with little overlap between these experiments, indicating the expected impact of external conditions on the plants response to AM colonization. Partial least square-discriminant analysis (PLS-DA) nevertheless revealed considerable similarities between the datasets, and loading analysis of the component separating mycorrhizal and non-mycorrhizal plants allowed the defining of a core set of metabolites responsible for this separation. This core set was observed in experiments with and without mycorrhiza-induced growth effects. It corroborated trends already indicated by the significant changes from individual experiments and suggested a negative systemic impact of AM colonization on central catabolic metabolism as well as on amino acid metabolism. In addition, metabolic signals for an increase in stress experienced by plant tissue were recorded in flowers and source leaves.
Related JoVE Video
Weak conspecific feedbacks and exotic dominance in a species-rich savannah.
Proc. Biol. Sci.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
Whether dominance drives species loss can depend on the power of conspecific self-limitation as dominant populations expand; these limitations can stabilize competitive imbalances that might otherwise cause displacement. We quantify the relative strength of conspecific and heterospecific soil feedbacks in an exotic-dominated savannah, using greenhouse trials and field surveys to test whether dominants are less self-suppressed, highly suppressive of others or both. Soil feedbacks can impact plant abundance, including invasion, but their implications for coexistence in invader-dominated systems are unclear. We found that conspecific feedbacks were significantly more negative than heterospecific ones for all species including the dominant invaders; even the rarest natives performed significantly better in the soils of other species. The strength of these negative feedbacks, however, was approximately 50 per cent stronger for natives and matched their field abundance--the most self-limited natives were rare and narrowly distributed. These results suggest that exotics dominate by interacting with natives carrying heavier conspecific feedback burdens, without cultivating either negative heterospecific effects that suppress natives or positive ones that accelerate their own expansion. These feedbacks, however, could contribute to coexistence because all species were self-limited in their own soils. Although the net impact of this feedback stabilization will probably interact with other factors (e.g. herbivory), soil feedbacks may thus contribute to invader dominance without necessarily being detrimental to species richness.
Related JoVE Video
Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010.
Mycorrhiza
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
Arbuscular mycorrhizas (AM) are ubiquitous root symbioses with often pervasive effects on the plant host, one of which may be above- and belowground biomass allocation. A meta-analysis was conducted on 516 trials that were described in 90 available articles to examine whether AM colonization could result in a modification of partitioning of plant biomass in shoots and roots. It was hypothesized that alleviating plant nutrient limitations could result in a decrease of root to shoot (R/S) ratio in AM plants or, alternatively, the direction of shifts in the R/S ratio would be determined by the changes in total dry biomass. In our analysis, we considered four types of stresses: drought stress, single heavy metal stress, multiple heavy metal stress, and other potential abiotic plant stress factors. When disregarding any factors that could regulate effects, including stress status and mode of propagation, the overall AM effect was a significant modification of biomass towards shoot growth. However, the responses of stressed and clonally propagated plants differed from those of seed-grown unstressed plants. Our meta-analysis detected a considerable decline in the R/S ratio when plants were grown from seeds in the absence of abiotic stresses. Moreover, we demonstrate that additional regulators of the AM-mediated impact on R/S ratio were presence of competition from other plants, plant growth outcome of the symbiosis, growth substrate volume, experimental duration, and the identities of both plant and AM fungus. Our results indicate that a prediction of AM effects on R/S allocation becomes more accurate when considering regulators, most notably propagation mode and stress. We discuss possible mechanisms through which stress and other regulators may operate.
Related JoVE Video
Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories.
Mol. Ecol.
PUBLISHED: 12-24-2010
Show Abstract
Hide Abstract
Analyses of the structure and function of microbial communities are highly constrained by the diversity of organisms present within most environmental samples. A common approach is to rely almost entirely on DNA sequence data for estimates of microbial diversity, but to date there is no objective method of clustering sequences into groups that is grounded in evolutionary theory of what constitutes a biological lineage. The general mixed Yule-coalescent (GMYC) model uses a likelihood-based approach to distinguish population-level processes within lineages from processes associated with speciation and extinction, thus identifying a distinct point where extant lineages became independent. Using two independent surveys of DNA sequences associated with a group of ubiquitous plant-symbiotic fungi, we compared estimates of species richness derived using the GMYC model to those based on operational taxonomic units (OTUs) defined by fixed levels of sequence similarity. The model predicted lower species richness in these surveys than did traditional methods of sequence similarity. Here, we show for the first time that groups delineated by the GMYC model better explained variation in the distribution of fungi in relation to putative niche-based variables associated with host species identity, edaphic factors, and aspects of how the sampled ecosystems were managed. Our results suggest the coalescent-based GMYC model successfully groups environmental sequences of fungi into clusters that are ecologically more meaningful than more arbitrary approaches for estimating species richness.
Related JoVE Video
Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins.
New Phytol.
PUBLISHED: 09-28-2010
Show Abstract
Hide Abstract
A considerable amount of phenotypic, genetic and symbiotic functional variability has been documented in arbuscular mycorrhizal fungi (AMF). However, little is known about whether distinct AMF ecotypes have evolved within their geographic range. We tested the hypothesis that AMF growing at temperatures closer to those prevalent within their origin would benefit their host and grow more than isolates distant from their native conditions. For each of six AMF species, we chose pairs of isolates that originated from distant areas with contrasting climates. Each isolate was grown in association with two grass species of different thermal optima at two temperature settings. Thus, we also tested whether AMF from different climatic origins were dependent on the thermal adaptation of the host plant species or to temperature per se. Although fungal growth was not directly affected by temperature, we found that AMF isolates originating from contrasting climates consistently and differentially altered plant growth. Our results suggest that AMF from contrasting climates have altered symbiotic function, thus linking an abiotic factor to ecotypic differentiation of putatively important symbionts.
Related JoVE Video
Rooting theories of plant community ecology in microbial interactions.
Trends Ecol. Evol. (Amst.)
PUBLISHED: 02-13-2010
Show Abstract
Hide Abstract
Predominant frameworks for understanding plant ecology have an aboveground bias that neglects soil micro-organisms. This is inconsistent with recent work illustrating the importance of soil microbes in terrestrial ecology. Microbial effects have been incorporated into plant community dynamics using ideas of niche modification and plant-soil community feedbacks. Here, we expand and integrate qualitative conceptual models of plant niche and feedback to explore implications of microbial interactions for understanding plant community ecology. At the same time we review the empirical evidence for these processes. We also consider common mycorrhizal networks, and propose that these are best interpreted within the feedback framework. Finally, we apply our integrated model of niche and feedback to understanding plant coexistence, monodominance and invasion ecology.
Related JoVE Video
Hyporheic microbial community development is a sensitive indicator of metal contamination.
Environ. Sci. Technol.
PUBLISHED: 09-15-2009
Show Abstract
Hide Abstract
Accurate natural resource damage assessment necessitates monitoring organisms or communities that respond most sensitively to contaminants. Observational studies have demonstrated a correlation between fluvial heavy metal deposition and hyporheic microbial community structure. To establish a causal relationship between sediment metal content and the structure of colonizing bacterial communities, we performed a controlled field experiment River sediments of 1.75-2.36 mm in diameter with five different contaminant concentrations were collected from an environmental metal contamination gradient. Sediments were sterilized and then recolonized by incubation in the hyporheic zone of an uncontaminated river (i.e., a common garden experiment was performed). A significant correlation between hyporheic microbial community structure and heavy metal contamination (R2 = 0.81) was observed. The abundance of two phylogenetic groups was highly correlated with the level of heavy metal contamination (Group I, R2 = 0.96; Group III, R2 = 0.96, most closely affiliated with the alpha- and gamma-proteobacteria, respectively). Microbial community structural responses were detected at metal concentrations an order of magnitude lower than those previously reported to impact benthic macroinvertebrate communities. We conclude that hyporheic microbial communities could offer the most sensitive method for assessing natural resource damage in lotic ecosystems in response to fluvial heavy metal deposition.
Related JoVE Video
Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection.
Proteomics
PUBLISHED: 09-11-2009
Show Abstract
Hide Abstract
Soil contains low amounts of protein but high amounts of interfering substances. Current extraction methods for soil protein cannot produce high-quality samples suitable for proteomic analysis. To resolve the problem, we devised a sequential extraction method, through sequentially extracting soil in citrate and SDS buffers, followed by phenol extraction. The method allows for obtaining applicable 1-D and 2-D protein profiles with various agricultural soils and detecting glomalin-related soil protein. The method may be a valuable tool for soil proteomics.
Related JoVE Video
Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi.
Proc. Biol. Sci.
PUBLISHED: 09-09-2009
Show Abstract
Hide Abstract
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.
Related JoVE Video
Untangling the biological contributions to soil stability in semiarid shrublands.
Ecol Appl
PUBLISHED: 03-28-2009
Show Abstract
Hide Abstract
Communities of plants, biological soil crusts (BSCs), and arbuscular mycorrhizal (AM) fungi are known to influence soil stability individually, but their relative contributions, interactions, and combined effects are not well understood, particularly in arid and semiarid ecosystems. In a landscape-scale field study we quantified plant, BSC, and AM fungal communities at 216 locations along a gradient of soil stability levels in southern Utah, USA. We used multivariate modeling to examine the relative influences of plants, BSCs, and AM fungi on surface and subsurface stability in a semiarid shrubland landscape. Models were found to be congruent with the data and explained 35% of the variation in surface stability and 54% of the variation in subsurface stability. The results support several tentative conclusions. While BSCs, plants, and AM fungi all contribute to surface stability, only plants and AM fungi contribute to subsurface stability. In both surface and subsurface models, the strongest contributions to soil stability are made by biological components of the system. Biological soil crust cover was found to have the strongest direct effect on surface soil stability (0.60; controlling for other factors). Surprisingly, AM fungi appeared to influence surface soil stability (0.37), even though they are not generally considered to exist in the top few millimeters of the soil. In the subsurface model, plant cover appeared to have the strongest direct influence on soil stability (0.42); in both models, results indicate that plant cover influences soil stability both directly (controlling for other factors) and indirectly through influences on other organisms. Soil organic matter was not found to have a direct contribution to surface or subsurface stability in this system. The relative influence of AM fungi on soil stability in these semiarid shrublands was similar to that reported for a mesic tallgrass prairie. Estimates of effects that BSCs, plants, and AM fungi have on soil stability in these models are used to suggest the relative amounts of resources that erosion control practitioners should devote to promoting these communities. This study highlights the need for system approaches in combating erosion, soil degradation, and arid-land desertification.
Related JoVE Video
Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments.
Ecol. Lett.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
We examined the role of arbuscular mycorrhizal fungi (AMF) in ecosystems using soil aggregate stability and C and N storage as representative ecosystem processes. We utilized a wide gradient in AMF abundance, obtained through long-term (17 and 6 years) large-scale field manipulations. Burning and N-fertilization increased soil AMF hyphae, glomalin-related soil protein (GRSP) pools and water-stable macroaggregates while fungicide applications reduced AMF hyphae, GRSP and water-stable macroaggregates. We found that AMF abundance was a surprisingly dominant factor explaining the vast majority of variability in soil aggregation. This experimental field study, involving long-term diverse management practices of native multispecies prairie communities, invariably showed a close positive correlation between AMF hyphal abundance and soil aggregation, and C and N sequestration. This highly significant linear correlation suggests there are serious consequences to the loss of AMF from ecosystems.
Related JoVE Video
Tropical Andean forests are highly susceptible to nutrient inputs--rapid effects of experimental N and P addition to an Ecuadorian montane forest.
PLoS ONE
Show Abstract
Hide Abstract
Tropical regions are facing increasing atmospheric inputs of nutrients, which will have unknown consequences for the structure and functioning of these systems. Here, we show that Neotropical montane rainforests respond rapidly to moderate additions of N (50 kg ha(-1) yr(-1)) and P (10 kg ha(-1) yr(-1)). Monitoring of nutrient fluxes demonstrated that the majority of added nutrients remained in the system, in either soil or vegetation. N and P additions led to not only an increase in foliar N and P concentrations, but also altered soil microbial biomass, standing fine root biomass, stem growth, and litterfall. The different effects suggest that trees are primarily limited by P, whereas some processes-notably aboveground productivity--are limited by both N and P. Highly variable and partly contrasting responses of different tree species suggest marked changes in species composition and diversity of these forests by nutrient inputs in the long term. The unexpectedly fast response of the ecosystem to moderate nutrient additions suggests high vulnerability of tropical montane forests to the expected increase in nutrient inputs.
Related JoVE Video
Fungal superhighways: do common mycorrhizal networks enhance below ground communication?
Trends Plant Sci.
Show Abstract
Hide Abstract
In many natural communities communication between plants and other organisms below ground drives community dynamics. This communication is primarily through the release and detection of infochemicals, which must traverse the soil matrix to be effective. In this opinion article, we propose the Network Enhanced Bioactive Zone (NEBaZ) model, which posits that common mycorrhizal networks (CMNs) increase the bioactive zones of infochemicals by serving as superhighways directly connecting plants below ground. Here we argue that infochemical transport via CMNs allows for systemic defense signaling across plant populations and directed allelochemical delivery to target plants. Plant-animal interactions may also be facilitated by CMNs, suggesting that these fungal networks may be crucial components of many natural ecosystems.
Related JoVE Video
Compositional divergence and convergence in local communities and spatially structured landscapes.
PLoS ONE
Show Abstract
Hide Abstract
Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition) are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence) than, less dissimilar (convergence) than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index) using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect). The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community assembly in a spatially explicit and complex context.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.