JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Therapeutic effects of an anti-myc drug on mouse pancreatic cancer.
J. Natl. Cancer Inst.
PUBLISHED: 12-01-2014
Show Abstract
Hide Abstract
Pancreatic ductal adenocarcinoma (PDA) is frequently driven by oncogenic KRAS(KRAS*) mutations. We developed a mouse model of KRAS*-induced PDA and, based on genetic results demonstrating that KRAS* tumorigenicity depends on Myc activity, we evaluated the therapeutic potential of an orally administered anti-Myc drug.
Related JoVE Video
Metformin and erlotinib synergize to inhibit basal breast cancer.
Oncotarget
PUBLISHED: 07-11-2014
Show Abstract
Hide Abstract
Basal-like breast cancers (BBCs) are enriched for increased EGFR expression and decreased expression of PTEN. We found that treatment with metformin and erlotinib synergistically induced apoptosis in a subset of BBC cell lines. The drug combination led to enhanced reduction of EGFR, AKT, S6 and 4EBP1 phosphorylation, as well as prevented colony formation and inhibited mammosphere outgrowth. Our data with other compounds suggested that biguanides combined with EGFR inhibitors have the potential to outperform other targeted drug combinations and could be employed in other breast cancer subtypes, as well as other tumor types, with activated EGFR and PI3K signaling. Analysis of BBC cell line alterations led to the hypothesis that loss of PTEN sensitized cells to the drug combination which was confirmed using isogenic cell line models with and without PTEN expression. Combined metformin and erlotinib led to partial regression of PTEN-null and EGFR-amplified xenografted MDA-MB-468 BBC tumors with evidence of significant apoptosis, reduction of EGFR and AKT signaling, and lack of altered plasma insulin levels. Combined treatment also inhibited xenografted PTEN null HCC-70 BBC cells. Measurement of trough plasma drug levels in xenografted mice and a separately performed pharmacokinetics modeling study support possible clinical translation.
Related JoVE Video
HMGA2 is a driver of tumor metastasis.
Cancer Res.
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
The non-histone chromatin-binding protein HMGA2 is expressed predominantly in the mesenchyme before its differentiation, but it is also expressed in tumors of epithelial origin. Ectopic expression of HMGA2 in epithelial cells induces epithelial-mesenchymal transition (EMT), which has been implicated in the acquisition of metastatic characters in tumor cells. However, little is known about in vivo modulation of HMGA2 and its effector functions in tumor metastasis. Here, we report that HMGA2 loss of function in a mouse model of cancer reduces tumor multiplicity. HMGA2-positive cells were identified at the invasive front of human and mouse tumors. In addition, in a mouse allograft model, HMGA2 overexpression converted nonmetastatic 4TO7 breast cancer cells to metastatic cells that homed specifically to liver. Interestingly, expression of HMGA2 enhanced TGF? signaling by activating expression of the TGF? type II receptor, which also localized to the invasive front of tumors. Together our results argued that HMGA2 plays a critical role in EMT by activating the TGF? signaling pathway, thereby inducing invasion and metastasis of human epithelial cancers.
Related JoVE Video
The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression.
J. Cell Biol.
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
The CtIP protein facilitates homology-directed repair (HDR) of double-strand DNA breaks (DSBs) by initiating DNA resection, a process in which DSB ends are converted into 3-ssDNA overhangs. The BRCA1 tumor suppressor, which interacts with CtIP in a phospho-dependent manner, has also been implicated in DSB repair through the HDR pathway. It was recently reported that the BRCA1-CtIP interaction is essential for HDR in chicken DT40 cells. To examine the role of this interaction in mammalian cells, we generated cells and mice that express Ctip polypeptides (Ctip-S326A) that fail to bind BRCA1. Surprisingly, isogenic lines of Ctip-S326A mutant and wild-type cells displayed comparable levels of HDR function and chromosomal stability. Although Ctip-S326A mutant cells were modestly sensitive to topoisomerase inhibitors, mice expressing Ctip-S326A polypeptides developed normally and did not exhibit a predisposition to cancer. Thus, in mammals, the phospho-dependent BRCA1-CtIP interaction is not essential for HDR-mediated DSB repair or for tumor suppression.
Related JoVE Video
High prevalence of BRCA1 and BRCA2 germline mutations with loss of heterozygosity in a series of resected pancreatic adenocarcinoma and other neoplastic lesions.
Clin. Cancer Res.
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with the breast ovarian cancer syndrome (BRCA1/BRCA2) mutations. It is unknown if this association is causal.
Related JoVE Video
Portal Hypertension, Nodular Regenerative Hyperplasia of the Liver, and Obstructive Portal Venopathy due to Metastatic Breast Cancer.
Case Rep Pathol
PUBLISHED: 05-05-2013
Show Abstract
Hide Abstract
Nodular regenerative hyperplasia (NRH) of the liver is associated with noncirrhotic portal hypertension, rheumatologic and hematologic disorders, administration of certain drugs, and other underlying conditions. This report describes a 64-year-old man with clinically presumed cirrhosis who presented to our institution with coffee-ground emesis, esophageal varices, ascites, and encephalopathy. Eleven years earlier he had been treated for breast cancer with mastectomy and chemo-radiotherapy. He died suddenly, and the autopsy showed no evidence of cirrhosis but instead demonstrated NRH with extensive emboli of recurrent breast carcinoma within the portal vein and its intrahepatic branches. Neoplastic occlusion of the portal vein as a cause of presinusoidal noncirrhotic portal hypertension has not previously been reported for metastatic breast carcinoma. This case highlights the importance of obstructive portal venopathy in the pathogenesis of NRH as well as the diagnostic difficulties that may be encountered in determining the cause of portal hypertension.
Related JoVE Video
BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity.
Science
PUBLISHED: 10-29-2011
Show Abstract
Hide Abstract
Germline mutations of the breast cancer 1 (BRCA1) gene are a major cause of familial breast and ovarian cancer. The BRCA1 protein displays E3 ubiquitin ligase activity, and this enzymatic function is thought to be required for tumor suppression. To test this hypothesis, we generated mice that express an enzymatically defective Brca1. We found that this mutant Brca1 prevents tumor formation to the same degree as does wild-type Brca1 in three different genetically engineered mouse (GEM) models of cancer. In contrast, a mutation that ablates phosphoprotein recognition by the BRCA C terminus (BRCT) domains of BRCA1 elicits tumors in each of the three GEM models. Thus, BRCT phosphoprotein recognition, but not the E3 ligase activity, is required for BRCA1 tumor suppression.
Related JoVE Video
Genetic analysis of type-1 insulin-like growth factor receptor signaling through insulin receptor substrate-1 and -2 in pancreatic beta cells.
J. Biol. Chem.
PUBLISHED: 10-14-2010
Show Abstract
Hide Abstract
Signaling by receptor tyrosine kinases regulates pancreatic ? cell function. Inactivation of insulin receptor (InsR), IGF1 receptor (Igf1r), or Irs1 in ? cells impairs insulin secretion. Conversely, Irs2 ablation impairs ? cell replication. In this study, we examined aspects of the Igf1r regulatory signaling cascade in ? cells. To examine genetically the involvement of Irs1 and Irs2 in Igf1r signaling, we generated double mutant mice lacking Igf1r specifically in pancreatic ? cells in an Irs1- or Irs2-null background. We show that Igf1r/Irs1 double mutants do not differ phenotypically from Irs1 single mutants and exhibit hyperinsulinemia, while maintaining normal ? cell mass and glucose tolerance. In contrast, lack of Igf1r function in ? cells aggravates the consequences of Irs2 ablation in double mutants and results in lethal diabetes by 6 weeks of age. This additivity of phenotypic manifestations indicates that Irs2 serves a pathway that is largely independent of Igf1r signaling. Consistent with the view that the latter is the InsR pathway, we show that combined ? cell-specific knock-out of both Insr and Igf1r results in a phenocopy of double mutants lacking Igf1r and Irs2. We conclude that Igf1r signals primarily through Irs1 and affects insulin secretion, whereas ? cell proliferation is mainly regulated by InsR using Irs2 as a downstream signaling effector. The insulin and IGF pathways appear to control ? cell functions independently and selectively.
Related JoVE Video
Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study.
Circulation
PUBLISHED: 02-07-2009
Show Abstract
Hide Abstract
In depolarized myocardial infarct epicardial border zones, the cardiac sodium channel (SCN5A) is largely inactivated, contributing to low action potential upstroke velocity (V(max)), slow conduction, and reentry. We hypothesized that a fast inward current such as the skeletal muscle sodium channel (SkM1) operating more effectively at depolarized membrane potentials might restore fast conduction in epicardial border zones and be antiarrhythmic.
Related JoVE Video
Irs2 inactivation suppresses tumor progression in Pten+/- mice.
Am. J. Pathol.
PUBLISHED: 02-04-2009
Show Abstract
Hide Abstract
Mutations in the phosphatase and tensin homologue (PTEN)/phosphatidylinositol-3 kinase-alpha (PI3K) signaling pathway are frequently found in human cancer. In addition, Pten(+/-) mice develop tumors in multiple organs because of the activation of the PI3K signaling cascade. Because activation of PI3K signaling leads to feedback inhibition of insulin receptor substrate-2 (IRS2) expression, an upstream activator of PI3K, we therefore anticipated that IRS2 expression would be low in tumors that lack PTEN. Surprisingly, however, an elevation of IRS2 was often detected in tumor samples in which PTEN levels were compromised. To determine the potential contribution of Irs2 to tumor progression, Pten(+/-) mice were crossed with Irs2(+/-) mice. Deletion of Irs2 did not affect the initiation of neoplasia found in Pten(+/-) mice but suppressed cancer cell growth, proliferation, and invasion through the basement membrane. Deletion of Irs2 also attenuated the expression of Myc in prostatic intraepithelial neoplasia in Pten(+/-) mice. In addition, the expression levels of IRS2 and MYC were highly correlated in human prostate cancer, and IRS2 could stimulate MYC expression in cultured cells. Our findings provide evidence that the PI3K-activating adaptor Irs2 contributes to tumor progression in Pten(+/-) mice by stimulating both Myc and DNA synthesis.
Related JoVE Video
Igf1r as a therapeutic target in a mouse model of basal-like breast cancer.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-27-2009
Show Abstract
Hide Abstract
Considering the strong association between dysregulated insulin-like growth factor (IGF) signaling and various human cancers, we have used an expedient combination of genetic analysis and pharmacological treatment to evaluate the potential of the type 1 IGF receptor (Igf1r) for targeted anticancer therapy in a mouse model of mammary tumorigenesis. In this particular strain of genetically modified animals, histopathologically heterogeneous invasive carcinomas exhibiting up-regulation of the Igf1r gene developed extremely rapidly by mammary gland-specific overexpression of constitutively active oncogenic Kras* (mutant Kras(G12D)). Immunophenotyping data and expression profiling analyses showed that, except for a minor luminal component, these mouse tumors resembled basal-like human breast cancers. This is a group of aggressive tumors of poor prognosis for which there is no targeted therapy currently available, and it includes a subtype correlating with KRAS locus amplification. Conditional ablation of Igf1r in the mouse mammary epithelium increased the latency of Kras*-induced tumors very significantly (approximately 11-fold in comparison with the intact model), whereas treatment of tumor-bearing animals by administration of picropodophyllin (PPP), a specific Igf1r inhibitor, resulted in a dramatic decrease in tumor mass of the main forms of basal-like carcinomas. PPP also was effective against xenografts of the human basal-like cancer cell line MDA-MB-231, which carries a KRAS(G13D) mutation.
Related JoVE Video
Hypomethylating therapy in an aggressive stroma-rich model of pancreatic carcinoma.
Cancer Res.
Show Abstract
Hide Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that resists current treatments. To test epigenetic therapy against this cancer, we used the DNA demethylating drug 5-aza-2-deoxycytidine (DAC) in an aggressive mouse model of stromal rich PDAC (KPC-Brca1 mice). In untreated tumors, we found globally decreased 5-methyl-cytosine (5-mC) in malignant epithelial cells and in cancer-associated myofibroblasts (CAF), along with increased amounts of 5-hydroxymethyl-cytosine (5-HmC) in CAFs, in progression from pancreatic intraepithelial neoplasia to PDAC. DAC further reduced DNA methylation and slowed PDAC progression, markedly extending survival in an early-treatment protocol and significantly though transiently inhibiting tumor growth when initiated later, without adverse side effects. Escaping tumors contained areas of sarcomatoid transformation with disappearance of CAFs. Mixing-allografting experiments and proliferation indices showed that DAC efficacy was due to inhibition of both the malignant epithelial cells and the CAFs. Expression profiling and immunohistochemistry highlighted DAC induction of STAT1 in the tumors, and DAC plus IFN-? produced an additive antiproliferative effect on PDAC cells. DAC induced strong expression of the testis antigen deleted in azoospermia-like (DAZL) in CAFs. These data show that DAC is effective against PDAC in vivo and provide a rationale for future studies combining hypomethylating agents with cytokines and immunotherapy.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.