JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Metabolomics Reveals the Sex-Specific Effects of the SORT1 Low-Density Lipoprotein Cholesterol Locus in Healthy Young Adults.
J. Proteome Res.
PUBLISHED: 09-11-2014
Show Abstract
Hide Abstract
Metabolite profiles of individuals possessing either the cardiovascular risk or protective variants of the low-density lipoprotein cholesterol (LDL-C) associated 1p13.3 locus of the SORT1 gene (rs646776) were analyzed. Serum metabolites and lipids were assessed using LC-MS-based metabolomics in a healthy young population (n = 138: 95 males, 43 females). Although no significant differences were observed in the combined cohort, divergent sex effects were identified. Females carrying the protective allele showed increased phosphatidylcholines, very long chain fatty acids (>C20), and unsaturated fatty acids. Unsaturated fatty acids are considered to be protective against cardiovascular disease. In contrast, males carrying the protective allele exhibited decreased long-chain fatty acids (?C20) and sphingomyelins, which is similarly considered to decrease cardiovascular disease risk. No significant changes in clinically assessed lipids such as LDL-C, high-density lipoprotein (HDL-C), total cholesterol, or triglycerides were observed in females, whereas only LDL-C was significantly changed in males. This indicates that, apart from reducing LDL-C, other mechanisms may contribute to the protective effect of the SORT1 locus. Thus, the analysis of metabolic biomarkers might reveal early disease development that may be overlooked by relying on standard clinical parameters.
Related JoVE Video
Shape-tunable core-shell microparticles.
Langmuir
PUBLISHED: 04-02-2014
Show Abstract
Hide Abstract
Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.
Related JoVE Video
Detection of pneumonia associated pathogens using a prototype multiplexed pneumonia test in hospitalized patients with severe pneumonia.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Severe pneumonia remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR) has been shown to be more sensitive than current standard microbiological methods - particularly in patients with prior antibiotic treatment - and therefore, may improve the accuracy of microbiological diagnosis for hospitalized patients with pneumonia. Conventional detection techniques and multiplex PCR for 14 typical bacterial pneumonia-associated pathogens were performed on respiratory samples collected from adult hospitalized patients enrolled in a prospective multi-center study. Patients were enrolled from March until September 2012. A total of 739 fresh, native samples were eligible for analysis, of which 75 were sputa, 421 aspirates, and 234 bronchial lavages. 276 pathogens were detected by microbiology for which a valid PCR result was generated (positive or negative detection result by Curetis prototype system). Among these, 120 were identified by the prototype assay, 50 pathogens were not detected. Overall performance of the prototype for pathogen identification was 70.6% sensitivity (95% confidence interval (CI) lower bound: 63.3%, upper bound: 76.9%) and 95.2% specificity (95% CI lower bound: 94.6%, upper bound: 95.7%). Based on the study results, device cut-off settings were adjusted for future series production. The overall performance with the settings of the CE series production devices was 78.7% sensitivity (95% CI lower bound: 72.1%) and 96.6% specificity (95% CI lower bound: 96.1%). Time to result was 5.2 hours (median) for the prototype test and 43.5 h for standard-of-care. The Pneumonia Application provides a rapid and moderately sensitive assay for the detection of pneumonia-causing pathogens with minimal hands-on time.
Related JoVE Video
Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6-deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment.
Related JoVE Video
Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes.
J. Lipid Res.
PUBLISHED: 10-08-2013
Show Abstract
Hide Abstract
During the adipogenic differentiation process of mesenchymal stem cells, lipid droplets (LDs) grow slowly by transferring lipids between each other. Recent findings hint at the possibility that a fusion pore is involved. In this study, we analyze lipid transfer data obtained in long-term label-free microscopy studies in the framework of a Hagen-Poiseuille model. The data obtained show a LD fusion process in which the lipid transfer directionality depends on the size difference between LDs, whereas the respective rates depend on the size difference and additionally on the diameter of the smaller LDs. For the data analysis, the viscosity of the transferred material has to be known. We demonstrate that a viscosity-dependent molecular rotor dye can be used to measure LD viscosities in live cells. On this basis, we calculate the diameter of a putative lipid transfer channel which appears to have a direct dependence on the diameter of the smaller of the two participating LDs.
Related JoVE Video
The transcription factor Interferon Regulatory Factor 4 is required for the generation of protective effector CD8+ T cells.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-26-2013
Show Abstract
Hide Abstract
Robust cytotoxic CD8(+) T-cell response is important for immunity to intracellular pathogens. Here, we show that the transcription factor IFN Regulatory Factor 4 (IRF4) is crucial for the protective CD8(+) T-cell response to the intracellular bacterium Listeria monocytogenes. IRF4-deficient (Irf4(-/-)) mice could not clear L. monocytogenes infection and generated decreased numbers of L. monocytogenes-specific CD8(+) T cells with impaired effector phenotype and function. Transfer of wild-type CD8(+) T cells into Irf4(-/-) mice improved bacterial clearance, suggesting an intrinsic defect of CD8(+) T cells in Irf4(-/-) mice. Following transfer into wild-type recipients, Irf4(-/-) CD8(+) T cells became activated and showed initial proliferation upon L. monocytogenes infection. However, these cells could not sustain proliferation, produced reduced amounts of IFN-? and TNF-?, and failed to acquire cytotoxic function. Forced IRF4 expression in Irf4(-/-) CD8(+) T cells rescued the defect. During acute infection, Irf4(-/-) CD8(+) T cells demonstrated diminished expression of B lymphocyte-induced maturation protein-1 (Blimp-1), inhibitor of DNA binding (Id)2, and T-box expressed in T cells (T-bet), transcription factors programming effector-cell generation. IRF4 was essential for expression of Blimp-1, suggesting that altered regulation of Blimp-1 contributes to the defects of Irf4(-/-) CD8(+) T cells. Despite increased levels of B-cell lymphoma 6 (BCL-6), Eomesodermin, and Id3, Irf4(-/-) CD8(+) T cells showed impaired memory-cell formation, indicating additional functions for IRF4 in this process. As IRF4 governs B-cell and CD4(+) T-cell differentiation, the identification of its decisive role in peripheral CD8(+) T-cell differentiation, suggests a common regulatory function for IRF4 in adaptive lymphocytes fate decision.
Related JoVE Video
Correlations between milk and plasma levels of amino and carboxylic acids in dairy cows.
J. Proteome Res.
PUBLISHED: 08-23-2013
Show Abstract
Hide Abstract
The objective of this study was to investigate the relationship between the concentrations of 19 amino acids, glucose, and seven carboxylic acids in the blood and milk of dairy cows and their correlations with established markers of ketosis. To that end, blood plasma and milk specimens were collected throughout lactation in two breeds of dairy cows of different milk yield. Plasma concentrations of glucose, pyruvate, lactate, ?-aminobutyrate, ?-hydroxybutyrate (BHBA), and most amino acids, except for glutamate and aspartate, were on average 9.9-fold higher than their respective milk levels. In contrast, glutamate, aspartate, and the Krebs cycle intermediates succinate, fumarate, malate, and citrate were on average 9.1-fold higher in milk than in plasma. For most metabolites, with the exception of BHBA and threonine, no significant correlations were observed between their levels in plasma and milk. Additionally, milk levels of acetone showed significant direct relationships with the glycine-to-alanine ratio and the BHBA concentration in plasma. The marked decline in plasma concentrations of glucose, pyruvate, lactate, and alanine in cows with plasma BHBA levels above the diagnostic cutoff point for subclinical ketosis suggests that these animals fail to meet their glucose demand and, as a consequence, rely increasingly on ketone bodies as a source of energy. The concomitant increase in plasma glycine may reflect not only the excessive depletion of protein reserves but also a potential deficiency of vitamin B6.
Related JoVE Video
Adjunctive N-acetyl-L-cysteine in treatment of murine pneumococcal meningitis.
Antimicrob. Agents Chemother.
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
Despite antibiotic therapy, acute and long-term complications are still frequent in pneumococcal meningitis. One important trigger of these complications is oxidative stress, and adjunctive antioxidant treatment with N-acetyl-l-cysteine was suggested to be protective in experimental pneumococcal meningitis. However, studies of effects on neurological long-term sequelae are limited. Here, we investigated the impact of adjunctive N-acetyl-l-cysteine on long-term neurological deficits in a mouse model of meningitis. C57BL/6 mice were intracisternally infected with Streptococcus pneumoniae. Eighteen hours after infection, mice were treated with a combination of ceftriaxone and placebo or ceftriaxone and N-acetyl-l-cysteine, respectively. Two weeks after infection, neurologic deficits were assessed using a clinical score, an open field test (explorative activity), a t-maze test (memory function), and auditory brain stem responses (hearing loss). Furthermore, cochlear histomorphological correlates of hearing loss were assessed. Adjunctive N-acetyl-l-cysteine reduced hearing loss after pneumococcal meningitis, but the effect was minor. There was no significant benefit of adjunctive N-acetyl-l-cysteine treatment in regard to other long-term complications of pneumococcal meningitis. Cochlear morphological correlates of meningitis-associated hearing loss were not reduced by adjunctive N-acetyl-l-cysteine. In conclusion, adjunctive therapy with N-acetyl-l-cysteine at a dosage of 300 mg/kg of body weight intraperitoneally for 4 days reduced hearing loss but not other neurologic deficits after pneumococcal meningitis in mice. These results make a clinical therapeutic benefit of N-acetyl-l-cysteine in the treatment of patients with pneumococcal meningitis questionable.
Related JoVE Video
Th9 cells, new players in adaptive immunity.
Trends Immunol.
PUBLISHED: 06-06-2013
Show Abstract
Hide Abstract
Upon antigen-specific stimulation, naïve CD4(+) T cells have the potential to differentiate into various T helper (Th) cell subsets. Earlier models of Th cell differentiation focused on IFN-?-producing Th1 cells and IL-4-secreting Th2 cells. The discovery of additional CD4(+) Th cell subsets has extended our understanding of Th cell differentiation beyond this dichotomy. Among these is the recently described Th9 cell subset, which preferentially produces interleukin (IL)-9. Here, we review the latest developments in Th9 cell development and differentiation, focusing on contributing environmental signals, and discuss potential physiological and pathophysiological functions of these cells. We describe the challenges inherent to unambiguously defining roles for Th9 cells using the available experimental animal models, and suggest new experimental models to address these concerns.
Related JoVE Video
Mast cell-derived mediators promote murine neutrophil effector functions.
Int. Immunol.
PUBLISHED: 06-01-2013
Show Abstract
Hide Abstract
Mast cells are able to trigger life-saving immune responses in murine models for acute inflammation. In such settings, several lines of evidence indicate that the rapid and protective recruitment of neutrophils initiated by the release of mast cell-derived pro-inflammatory mediators is a key element of innate immunity. Herein, we investigate the impact of mast cells on critical parameters of neutrophil effector function. In the presence of activated murine bone marrow-derived mast cells, neutrophils freshly isolated from bone marrow rapidly lose expression of CD62L and up-regulate CD11b, the latter being partly driven by mast cell-derived TNF and GM-CSF. Mast cells also strongly enhance neutrophil phagocytosis and generation of reactive oxygen species. All these phenomena partly depend on mast cell-derived TNF and to a greater extend on GM-CSF. Furthermore, spontaneous apoptosis of neutrophils is greatly diminished due to the ability of mast cells to deliver antiapoptotic GM-CSF. Finally, we show in a murine model for acute lung inflammation that neutrophil phagocytosis is impaired in mast cell-deficient Kit (W-sh) /Kit (W-sh) mice but can be restored upon mast cell engraftment. Thus, a previously underrated feature of mast cells is their ability to boost neutrophil effector functions in immune responses.
Related JoVE Video
MetaboQuant: a tool combining individual peak calibration and outlier detection for accurate metabolite quantification in 1D (1)H and (1)H-(13)C HSQC NMR spectra.
BioTechniques
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is widely used to analyze complex mixtures of organic compounds such as biological fluids and tissue extracts. Targeted profiling approaches with reliable compound quantitifcation are hampered, however, by signal overlap and other interferences. Here, we present a tool named MetaboQuant for automated compound quantification from pre-processed 1D and 2D heteronuclear single quantum coherence (HSQC) NMR spectral data and concomitant validation of results. Performance of MetaboQuant was tested on a urinary spike-in data set and compared with other quantification strategies. The use of individual calibration factors in combination with the validation algorithms of MetaboQuant raises the reliability of the quantification results. MetaboQuant can be downloaded at http://genomics.uni-regensburg.de/site/institute/software/metaboquant/ as stand-alone software for Windows or run on other operating systems from within Matlab. Separate software for peak fitting and integration is necessary in order to use MetaboQuant.
Related JoVE Video
High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis.
Brain
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
Neutrophilic inflammation, which often persists over days despite appropriate antibiotic therapy, contributes substantially to brain damage in bacterial meningitis. We hypothesized that persistent inflammation is the consequence of a vicious cycle in which inflammation-induced cell injury leads to the release of endogenous danger molecules (e.g. high mobility group box 1) that drive the inflammatory response, causing further damage. The present study aimed to assess the mechanisms of high mobility group box 1 protein release and its functional relevance for the development and progression of pneumococcal meningitis. High mobility group box 1 was found in large quantities in cerebrospinal fluid samples of patients and mice with pneumococcal meningitis (predominantly in advanced stages of the disease). By using macrophages, we demonstrated that the release of high mobility group box 1 from macrophages following pneumococcal challenge is passive in nature and probably not connected with inflammasome- and oxidative stress-dependent inflammatory cell death forms. In a mouse meningitis model, treatment with the high mobility group box 1 antagonists ethyl pyruvate or Box A protein had no effect on the development of meningitis, but led to better resolution of inflammation during antibiotic therapy, which was accompanied by reduced brain pathology and better disease outcome. Additional experiments using gene-deficient mice and murine neutrophils provided evidence that high mobility group box 1 acts as a chemoattractant for neutrophils in a receptor for advanced glycosylation end products-dependent fashion. In conclusion, the present study implicated high mobility group box 1, likely released from dying cells, as a central propagator of inflammation in pneumococcal meningitis. Because persistent inflammation contributes to meningitis-associated brain damage, high mobility group box 1 may represent a promising target for adjunctive therapy of this disease.
Related JoVE Video
Changes in the hepatic mitochondrial and membrane proteome in mice fed a non-alcoholic steatohepatitis inducing diet.
J Proteomics
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Non-alcoholic steatohepatitis (NASH) accounts for a large proportion of cryptic cirrhosis in the Western societies. Nevertheless, we lack a deeper understanding of the underlying pathomolecular processes, particularly those preceding hepatic inflammation and fibrosis. In order to gain novel insights into early NASH-development from the first appearance of proteomic alterations to the onset of hepatic inflammation and fibrosis, we conducted a time-course analysis of proteomic changes in liver mitochondria and membrane-enriched fractions of female C57Bl/6N mice fed either a mere steatosis or NASH inducing diet. This data was complemented by quantitative measurements of hepatic glycerol-containing lipids, cholesterol and intermediates of the methionine cycle. Aside from energy metabolism and stress response proteins, enzymes of the urea cycle and methionine metabolism were found regulated. Alterations in the methionine cycle occur early in disease progression preceding molecular signs of inflammation. Proteins that hold particular promise in the early distinction between benign steatosis and NASH are methyl-transferase Mettl7b, the glycoprotein basigin and the microsomal glutathione-transferase.
Related JoVE Video
Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells.
J. Immunol.
PUBLISHED: 12-21-2011
Show Abstract
Hide Abstract
The main molecular mechanism of human regulatory T cell (Treg)-mediated suppression has not been elucidated. We show in this study that cAMP represents a key regulator of human Treg function. Repression of cAMP production by inhibition of adenylate cyclase activity or augmentation of cAMP degradation through ectopic expression of a cAMP-degrading phosphodiesterase greatly reduces the suppressive activity of human Treg in vitro and in a humanized mouse model in vivo. Notably, cAMP repression additionally abrogates the anergic state of human Treg, accompanied by nuclear translocation of NFATc1 and induction of its short isoform NFATc1/?A. Treg expanded under cAMP repression, however, do not convert into effector T cells and regain their anergic state and suppressive activity upon proliferation. Together, these findings reveal the cAMP pathway as an attractive target for clinical intervention with Treg function.
Related JoVE Video
NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis.
J. Proteome Res.
PUBLISHED: 12-09-2011
Show Abstract
Hide Abstract
Ketosis is a common metabolic disease in dairy cows. Diagnostic markers for ketosis such as acetone and beta-hydroxybutyric acid (BHBA) are known, but disease prediction remains an unsolved challenge. Milk is a steadily available biofluid and routinely collected on a daily basis. This high availability makes milk superior to blood or urine samples for diagnostic purposes. In this contribution, we show that high milk glycerophosphocholine (GPC) levels and high ratios of GPC to phosphocholine (PC) allow for the reliable selection of healthy and metabolically stable cows for breeding purposes. Throughout lactation, high GPC values are connected with a low ketosis incidence. During the first month of lactation, molar GPC/PC ratios equal or greater than 2.5 indicate a very low risk for developing ketosis. This threshold was validated for different breeds (Holstein-Friesian, Brown Swiss, and Simmental Fleckvieh) and for animals in different lactations, with observed odds ratios between 1.5 and 2.38. In contrast to acetone and BHBA, these measures are independent of the acute disease status. A possible explanation for the predictive effect is that GPC and PC are measures for the ability to break down phospholipids as a fatty acid source to meet the enhanced energy requirements of early lactation.
Related JoVE Video
Bacterial meningitis: current therapy and possible future treatment options.
Expert Rev Anti Infect Ther
PUBLISHED: 10-28-2011
Show Abstract
Hide Abstract
Despite targeted therapy, case-fatality rates and neurologic sequelae of bacterial meningitis remain unacceptably high. The poor outcome is mainly due to secondary systemic and intracranial complications. These complications seem to be both a consequence of the inflammatory response to the invading pathogen and release of bacterial components by the pathogen itself. Therefore, within the last decades, research has focused on the mechanism underlying immune regulation and the inhibition of bacterial lysis in order to identify new targets for adjuvant therapy. The scope of this article is to give an overview on current treatment strategies of bacterial meningitis, to summarize new insights on the pathophysiology of bacterial meningitis, and to give an outlook on new treatment strategies derived from experimental models.
Related JoVE Video
The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release.
J. Immunol.
PUBLISHED: 10-14-2011
Show Abstract
Hide Abstract
Streptococcus pneumoniae meningitis causes brain damage through inflammation-related pathways whose identity and mechanisms of action are yet unclear. We previously identified caspase-1, which activates precursor IL-1 type cytokines, as a central mediator of inflammation in pneumococcal meningitis. In this study, we demonstrate that lack of the inflammasome components ASC or NLRP3 that are centrally involved in caspase-1 activation decreases scores of clinical and histological disease severity as well as brain inflammation in murine pneumococcal meningitis. Using specific inhibitors (anakinra and rIL-18-binding protein), we further show that ASC- and NLRP3-dependent pathologic alterations are solely related to secretion of both IL-1? and IL-18. Moreover, using differentiated human THP-1 cells, we demonstrate that the pneumococcal pore-forming toxin pneumolysin is a key inducer of IL-1? expression and inflammasome activation upon pneumococcal challenge. The latter depends on the release of ATP, lysosomal destabilization (but not disruption), and cathepsin B activation. The in vivo importance of this pathway is supported by our observation that the lack of pneumolysin and cathepsin B inhibition is associated with a better clinical course and less brain inflammation in murine pneumococcal meningitis. Collectively, our study indicates a central role of the NLRP3 inflammasome in the pathology of pneumococcal meningitis. Thus, interference with inflammasome activation might be a promising target for adjunctive therapy of this disease.
Related JoVE Video
Uncomplicated pregnancy and delivery after previous severe postpartum cerebral angiopathy.
Case Rep Neurol
PUBLISHED: 10-11-2011
Show Abstract
Hide Abstract
Postpartum cerebral angiopathy (PCA) is a cerebral vasoconstriction syndrome developing shortly after delivery, without signs of preceding eclampsia. The risk for recurrence of PCA is unknown. Here, we report on a closely monitored, uneventful pregnancy of a woman with a previous severe episode of PCA. In summary, this case report demonstrates that PCA does not necessarily recur in following pregnancies, even after previous severe episodes.
Related JoVE Video
Long term in vitro functional stability and recording longevity of fully integrated wireless neural interfaces based on the Utah Slant Electrode Array.
J Neural Eng
PUBLISHED: 07-20-2011
Show Abstract
Hide Abstract
We evaluate the encapsulation and packaging reliability of a fully integrated wireless neural interface based on a Utah Slant Electrode Array/integrated neural interface-recording version 5 (USEA/INI-R5) system by monitoring the long term in vitro functional stability and recording longevity. The INI encapsulated with 6 µm Parylene-C was immersed in phosphate buffered saline (PBS) for a period of over 276 days (with the monitoring of the functional device still ongoing). The full functionality (wireless radio-frequency power, command and signal transmission) and the ability of the electrodes to record artificial neural signals even after 276 days of PBS soaking with little change (within 14%) in signal/noise amplitude constitute a major milestone in long term stability and allow us to study and evaluate the encapsulation reliability, functional stability and its potential usefulness for a wireless neural interface for future chronic implants.
Related JoVE Video
Arterial cerebrovascular complications in 94 adults with acute bacterial meningitis.
Crit Care
PUBLISHED: 07-04-2011
Show Abstract
Hide Abstract
Intracranial vascular complications are an important complication of acute bacterial meningitis. Ischemic stroke in meningitis is reported as a result of vasculitis, vasospasm, endocarditis or intraarterial thrombosis. The aim of the study was to identify the value of measuring cerebral blood flow velocity (CBFv) on transracranial doppler (TCD) in the identification of patients at risk for meningitis-associated stroke.
Related JoVE Video
Genetic variation determines mast cell functions in experimental asthma.
J. Immunol.
PUBLISHED: 05-13-2011
Show Abstract
Hide Abstract
Mast cell-deficient mice are a key for investigating the function of mast cells in health and disease. Allergic airway disease induced as a Th2-type immune response in mice is employed as a model to unravel the mechanisms underlying inception and progression of human allergic asthma. Previous work done in mast cell-deficient mouse strains that otherwise typically mount Th1-dominated immune responses revealed contradictory results as to whether mast cells contribute to the development of airway hyperresponsiveness and airway inflammation. However, a major contribution of mast cells was shown using adjuvant-free protocols to achieve sensitization. The identification of a traceable genetic polymorphism closely linked to the Kit(W-sh) allele allowed us to generate congenic mast cell-deficient mice on a Th2-prone BALB/c background, termed C.B6-Kit(W-sh). In accordance with the expectations, C.B6-Kit(W-sh) mice do not develop IgE- and mast cell-dependent passive cutaneous anaphylaxis. Yet, unexpectedly, C.B6-Kit(W-sh) mice develop full-blown airway inflammation, airway hyperresponsiveness, and mucus production despite the absence of mast cells. Thus, our findings demonstrate a major influence of genetic background on the contribution of mast cells in an important disease model and introduce a novel strain of mast cell-deficient mice.
Related JoVE Video
State-of-the art data normalization methods improve NMR-based metabolomic analysis.
Metabolomics
PUBLISHED: 04-05-2011
Show Abstract
Hide Abstract
Extracting biomedical information from large metabolomic datasets by multivariate data analysis is of considerable complexity. Common challenges include among others screening for differentially produced metabolites, estimation of fold changes, and sample classification. Prior to these analysis steps, it is important to minimize contributions from unwanted biases and experimental variance. This is the goal of data preprocessing. In this work, different data normalization methods were compared systematically employing two different datasets generated by means of nuclear magnetic resonance (NMR) spectroscopy. To this end, two different types of normalization methods were used, one aiming to remove unwanted sample-to-sample variation while the other adjusts the variance of the different metabolites by variable scaling and variance stabilization methods. The impact of all methods tested on sample classification was evaluated on urinary NMR fingerprints obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was investigated on a dataset following a Latin-square design, where varied amounts of 8 different metabolites were spiked into a human urine matrix while keeping the total spike-in amount constant. In addition, specific tests were conducted to systematically investigate the influence of the different preprocessing methods on the structure of the analyzed data. In conclusion, preprocessing methods originally developed for DNA microarray analysis, in particular, Quantile and Cubic-Spline Normalization, performed best in reducing bias, accurately detecting fold changes, and classifying samples. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0350-z) contains supplementary material, which is available to authorized users.
Related JoVE Video
Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine.
Kidney Int.
PUBLISHED: 03-09-2011
Show Abstract
Hide Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a frequent cause of kidney failure; however, urinary biomarkers for the disease are lacking. In a step towards identifying such markers, we used multidimensional-multinuclear nuclear magnetic resonance (NMR) spectroscopy with support vector machine-based classification and analyzed urine specimens of 54 patients with ADPKD and slightly reduced estimated glomerular filtration rates. Within this cohort, 35 received medication for arterial hypertension and 19 did not. The results were compared with NMR profiles of 46 healthy volunteers, 10 ADPKD patients on hemodialysis with residual renal function, 16 kidney transplant patients, and 52 type 2 diabetic patients with chronic kidney disease. Based on the average of 51 out of 701 NMR features, we could reliably discriminate ADPKD patients with moderately advanced disease from ADPKD patients with end-stage renal disease, patients with chronic kidney disease of other etiologies, and healthy probands with an accuracy of >80%. Of the 35 patients with ADPKD receiving medication for hypertension, most showed increased excretion of proteins and also methanol. In contrast, elevated urinary methanol was not found in any of the control and other patient groups. Thus, we found that NMR fingerprinting of urine differentiates ADPKD from several other kidney diseases and individuals with normal kidney function. The diagnostic and prognostic potential of these profiles requires further evaluation.
Related JoVE Video
Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1).
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
Inducible cAMP early repressor (ICER) is a transcriptional repressor, which, because of alternate promoter use, is generated from the 3 region of the cAMP response modulator (Crem) gene. Its expression and nuclear occurrence are elevated by high cAMP levels in naturally occurring regulatory T cells (nTregs). Using two mouse models, we demonstrate that nTregs control the cellular localization of ICER/CREM, and thereby inhibit IL-2 synthesis in conventional CD4(+) T cells. Ablation of nTregs in depletion of regulatory T-cell (DEREG) mice resulted in cytosolic localization of ICER/CREM and increased IL-2 synthesis upon stimulation. Direct contacts between nTregs and conventional CD4(+) T cells led to nuclear accumulation of ICER/CREM and suppression of IL-2 synthesis on administration of CD28 superagonistic (CD28SA) Ab. In a similar way, nTregs communicated with B cells and induced the cAMP-driven nuclear localization of ICER/CREM. High levels of ICER suppressed the induction of nuclear factor of activated T cell c1 (Nfatc1) gene in T cells whose inducible Nfatc1 P1 promoter bears two highly conserved cAMP-responsive elements to which ICER/CREM can bind. These findings suggest that nTregs suppress T-cell responses by the cAMP-dependent nuclear accumulation of ICER/CREM and inhibition of NFATc1 and IL-2 induction.
Related JoVE Video
Reduced spiral ganglion neuronal loss by adjunctive neurotrophin-3 in experimental pneumococcal meningitis.
J Neuroinflammation
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
Hearing loss is a frequent long-term complication of pneumococcal meningitis (PM). Its main pathological correlate is damage to the organ of Corti and loss of spiral ganglion neurons. The only current treatment option is cochlear implants which require surviving neurons. Here, we investigated the impact of systemically applied neurotrophin-3 (NT-3) on long-term hearing loss and the survival of neurons.
Related JoVE Video
Regulatory T cells more effectively suppress Th1-induced airway inflammation compared with Th2.
J. Immunol.
PUBLISHED: 01-17-2011
Show Abstract
Hide Abstract
Asthma is a syndrome with different inflammatory phenotypes. Animal models have shown that, after sensitization and allergen challenge, Th2 and Th1 cells contribute to the development of allergic airway disease. We have previously demonstrated that naturally occurring regulatory T cells (nTregs) can only marginally suppress Th2-induced airway inflammation and airway hyperresponsiveness. In this study, we investigated nTreg-mediated suppression of Th2-induced and Th1-induced acute allergic airway disease. We demonstrate in vivo that nTregs exert their suppressive potency via cAMP transfer on Th2- and Th1-induced airway disease. A comparison of both phenotypes revealed that, despite similar cAMP transfers, Th1-driven airway hyperresponsiveness and inflammation are more susceptible to nTreg-dependent suppression, suggesting that potential nTreg-based therapeutic strategies might be more effective in patients with predominantly neutrophilic airway inflammation based on deregulated Th1 response.
Related JoVE Video
Embryo culture media for human IVF: which possibilities exist?
J Turk Ger Gynecol Assoc
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
The last three decades have seen considerable progress in the development of culture media for ART and infertility treatment. Basic research on the metabolism of mammalian preimplantation embryos demonstrated the specific needs in the evolving stage of the embryo growing in vitro. Two different philosophies led to two different culture strategies for human preimplantation embryos: the back-to-nature or sequential culture principle, and let-the-embryo-choose or one-step culture principle. Both systems are commercially available and the discussion between the different groups of scientists is ongoing. As a matter of fact, all ART culture media currently used are not optimal for the growing human preimplantation embryo. However, further research is needed to reduce stress to the human preimplantation embryo and determine how many embryos from a treatment cycle are capable of producing a live birth.
Related JoVE Video
Impact of glutamine transporters on pneumococcal fitness under infection-related conditions.
Infect. Immun.
PUBLISHED: 11-15-2010
Show Abstract
Hide Abstract
The genomic analysis of Streptococcus pneumoniae predicted six putative glutamine uptake systems, which are expressed under in vitro conditions, as shown here by reverse transcription-PCR. Four of these operons consist of glnHPQ, while two lack glnH, which encodes a soluble glutamine-binding protein. Here, we studied the impact of two of these glutamine ATP-binding cassette transporters on S. pneumoniae D39 virulence and phagocytosis, which consist of GlnQ and a translationally fused protein of GlnH and GlnP. Mice infected intranasally with D39?gln0411/0412 showed significantly increased survival times and a significant delay in the development of pneumococcal pneumonia compared to those infected with D39, as observed in real time using bioluminescent pneumococci. In a mouse sepsis model, the mutant D39?gln0411/0412 showed only moderate but significant attenuation. In contrast, the D39?gln1098/1099 knockout strain was massively attenuated in the pneumonia and septicemia mouse infection model. To cause pneumonia or sepsis with D39?gln1098/1099, infection doses 100- to 10,000-fold higher than those used for wild-type strain D39 were required. In an experimental mouse meningitis model, D39?gln1098/1099 produced decreased levels of white blood cells in cerebrospinal fluid and showed decreased numbers of bacteria in the bloodstream compared to D39 and D39?gln0411/0412. Phagocytosis experiments revealed significantly decreased intracellular survival rates of mutants D39?gln1098/1099 and D39?gln0411/0412 compared to wild-type D39, suggesting that the deficiency of Gln uptake systems impairs resistance to oxidative stress. Taken together, our results demonstrate that both glutamine uptake systems are required for full virulence of pneumococci but exhibit different impacts on the pathogenesis of pneumococci under in vivo conditions.
Related JoVE Video
CXCL16 contributes to neutrophil recruitment to cerebrospinal fluid in pneumococcal meningitis.
J. Infect. Dis.
PUBLISHED: 09-30-2010
Show Abstract
Hide Abstract
In this study, we analyzed the expression and function of CXCL16 in pneumococcal meningitis. CXCL16 was found to be up‐regulated in RAW264.7 macrophages (but not in neutrophils and endothelial cells) upon pneumococcal stimulation, in the cerebrospinal fluid of patients, and in the brains as well as the cerebrospinal fluid of mice with pneumococcal meningitis. CXCL16 up‐regulation in vivo was dependent on Toll‐like receptor (TLR) 2/TLR4 and MyD88 signaling. Neutralization of CXCL16 in animals before intracisternal pneumococcal infection (using anti‐CXCL16 antibodies) resulted in reduced cerebrospinal fluid pleocytosis. In vitro, murine neutrophils expressed the CXCL16 receptor CXCR6 and showed dose‐dependant migration toward a CXCL16 gradient. Thus, this study implicates CXCL16 as an additional neutrophil chemoattractant in cerebrospinal fluid in early pneumococcal meningitis.
Related JoVE Video
Modulation of brain injury as a target of adjunctive therapy in bacterial meningitis.
Curr Infect Dis Rep
PUBLISHED: 04-22-2010
Show Abstract
Hide Abstract
Despite effective antimicrobial therapy, mortality and morbidity from bacterial meningitis remain unacceptably high. Meningitis deaths occur as a consequence of intracranial and systemic complications. The neurologic and otologic sequelae reflect structural injury to brain and cochlear tissues. Over the past decade, experimental studies have demonstrated that meningitis-related vascular and cortical injury is largely caused by the massive neutrophilic inflammatory reaction, whereas hippocampal and cochlear injury is driven by both the host response and bacterial toxins. The benefit of adjunctive corticosteroid therapy proves the principle that the key to improve clinical outcome is combining antibiotics with drugs directed against pathophysiologically relevant targets; its limitations in efficacy and applicability highlight the need for novel adjunctive therapies. Promising targets were identified recently through animal studies, and include limiting the release of toxic bacterial products (by using nonbacteriolytic antibiotics) and interfering with the generation of host-derived cytotoxins (by using neutrophil apoptosis-inducing agents).
Related JoVE Video
Cyclic adenosine monophosphate and IL-10 coordinately contribute to nTreg cell-mediated suppression of dendritic cell activation.
Cell. Immunol.
PUBLISHED: 04-20-2010
Show Abstract
Hide Abstract
In humans and mice naturally occurring regulatory T cells (nTregs) are crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Here we show that co-culture of murine dendritic cells (DC) and nTregs results in an immediate increase of cAMP in DC, responsible for a rapid down-regulation of co-stimulatory molecules (CD80, CD86). In addition, the inhibitory surface molecule B7-H3 on DC is up-regulated. Subsequently, nTreg-derived IL-10 inhibits the cytokine production (IL-6, IL-12) of suppressed DC therewith preserving their silent phenotype. Hence, our data indicate that nTregs effectively control exuberant immune responses by directly limiting the stimulatory capacity of DC via a sophisticated chronologic action of inhibitory signals.
Related JoVE Video
Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells.
Immunity
PUBLISHED: 03-22-2010
Show Abstract
Hide Abstract
Interferon-regulatory factor 4 (IRF4) is essential for the development of T helper 2 (Th2) and Th17 cells. Herein, we report that IRF4 is also crucial for the development and function of an interleukin-9 (IL-9)-producing CD4(+) T cell subset designated Th9. IRF4-deficient CD4(+) T cells failed to develop into IL-9-producing Th9 cells, and IRF4-specific siRNA inhibited IL-9 production in wild-type CD4(+) T cells. Chromatin-immunoprecipitation (ChIP) analyses revealed direct IRF4 binding to the Il9 promoter in Th9 cells. In a Th9-dependent asthma model, neutralization of IL-9 substantially ameliorated asthma symptoms. The relevance of these findings is emphasized by the fact that the induction of IL-9 production also occurs in human CD4(+) T cells accompanied by the upregulation of IRF4. Our data clearly demonstrate the central function of IRF4 in the development of Th9 cells and underline the contribution of this T helper cell subset to the pathogenesis of asthma.
Related JoVE Video
New understandings on the pathophysiology of bacterial meningitis.
Curr. Opin. Infect. Dis.
PUBLISHED: 03-11-2010
Show Abstract
Hide Abstract
Currently, dexamethasone is the only adjuvant of proven benefit in bacterial meningitis. Dexamethasone halves the risk of poor outcome, but only in selected patient groups. New therapies based upon an understanding of the pathophysiology are needed. This article summarizes our knowledge on the pathophysiology of bacterial meningitis with special emphasis on pneumococcal meningitis, the experimentally best characterized subtype.
Related JoVE Video
Adjuvant glycerol is not beneficial in experimental pneumococcal meningitis.
BMC Infect. Dis.
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Bacterial meningitis in children causes high rates of mortality and morbidity. In a recent clinical trial, oral glycerol significantly reduced severe neurological sequelae in paediatric meningitis caused by Haemophilus influenzae type b, and a tendency towards a benefit of adjunctive glycerol was seen in pneumococcal meningitis.
Related JoVE Video
The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis.
J Neuroinflammation
PUBLISHED: 10-28-2009
Show Abstract
Hide Abstract
The chemokine CXCL13 is known to dictate homing and motility of B cells in lymphoid tissue and has been implicated in the formation of ectopic lymphoid tissue in chronic inflammation. Whether it influences B cell trafficking during acute infection, is largely unclear. In previous studies, we showed that (I) CXCL13 levels are markedly increased in the B cell-rich cerebrospinal fluid (CSF) of patients with acute Lyme neuroborreliosis (LNB), and (II) CXCL13 is released by monocytes upon recognition of borrelial outer surface proteins by Toll-like receptor 2. Here, we assessed the role of CXCL13--in comparison to other chemokines--in the recruitment of B cells to the CSF of patients with acute LNB.
Related JoVE Video
Impaired mast cell-driven immune responses in mice lacking the transcription factor NFATc2.
J. Immunol.
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
The three calcium-dependent factors NFATc1, c2, and c3 are expressed in cells of the immune system and play pivotal roles in modulating cellular activation. With regard to NFATc2, it was reported that NFATc2-deficient mice display increased immune responses in several models for infection and allergy in vivo. This led to the assumption that NFATc2 is involved in the maintenance of immune homeostasis. Using the synthetic TLR7 agonist imiquimod as an adjuvant in epicutaneous peptide immunization, we observed that both the inflammatory reaction and the peptide-specific CTL response are severely impaired in NFATc2-deficient mice. Detailed analyses revealed that early production of proinflammatory cytokines, lymph node hypertrophy, and migration of Langerhans cells are strongly reduced in NFATc2-deficient animals. With the aid of mast cell-deficient mice and reconstitution experiments using mast cells derived from either NFATc2-deficient mice or wild-type controls, we were able to show that NFATc2 expressed in mast cells is critical for the initiation of inflammation, migration of Langerhans cells, and the development of full-blown CTL responses following epicutaneous immunization. Thus, NFATc2 is an important factor controlling mast cell accessory function at the interface of innate and adaptive immunity.
Related JoVE Video
Inhibition of cAMP degradation improves regulatory T cell-mediated suppression.
J. Immunol.
PUBLISHED: 03-21-2009
Show Abstract
Hide Abstract
Naturally occurring regulatory T cells (nTreg cells) are crucial for the maintenance of peripheral tolerance. We have previously shown that a key mechanism of their suppressive action is based on a contact-dependent transfer of cAMP from nTreg cells to responder T cells. Herein, we further elucidate the important role of cAMP for the suppressive properties of nTreg cells. Prevention of cAMP degradation by application of the phosphodiesterase 4 inhibitor rolipram led to strongly increased suppressive potency of nTreg cells for Th2 cells in vitro and in vivo. Detailed analyses revealed that rolipram caused, in the presence of nTreg cells, a synergistic increase of cAMP in responder Th2 cells. In vivo, the application of nTreg cells in a strictly Th2-dependent preclinical model of asthma had only a marginal effect. However, the additional treatment with rolipram led to a considerable reduction of airway hyperresponsiveness and inflammation in a prophylactic as well as in a therapeutic model. This amelioration was correlated with enhanced cAMP-levels in lung Th2 cells in vivo. Collectively, these data support our observation that cAMP has a key function for nTreg cell-based suppression and they clearly demonstrate that the effect of cAMP on T responder cells can be greatly enhanced upon application of phosphodiesterase 4 inhibitors.
Related JoVE Video
Polyneuropathy associated with cholesterol crystal embolism.
Neurocrit Care
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
Cholesterol crystal embolism complicating arterial catheterization usually presents as a multiorgan disease with renal failure, abdominal problems, and skin manifestations.
Related JoVE Video
Performance evaluation of algorithms for the classification of metabolic 1H NMR fingerprints.
J. Proteome Res.
Show Abstract
Hide Abstract
Nontargeted metabolite fingerprinting is increasingly applied to biomedical classification. The choice of classification algorithm may have a considerable impact on outcome. In this study, employing nested cross-validation for assessing predictive performance, six binary classification algorithms in combination with different strategies for data-driven feature selection were systematically compared on five data sets of urine, serum, plasma, and milk one-dimensional fingerprints obtained by proton nuclear magnetic resonance (NMR) spectroscopy. Support Vector Machines and Random Forests combined with t-score-based feature filtering performed well on most data sets, whereas the performance of the other tested methods varied between data sets.
Related JoVE Video
Cyclic AMP underpins suppression by regulatory T cells.
Eur. J. Immunol.
Show Abstract
Hide Abstract
Elevated levels of intracellular cyclic adenosine monophosphate (cAMP) in naturally occurring T regulatory (nTreg) cells play a key role in nTreg-cell-mediated suppression. Upon contact with nTreg cells, cAMP is transferred from nTreg cells into activated target CD4(+) T cells and/or antigen-presenting cells (APCs) via gap junctions to suppress CD4(+) T-cell function. cAMP facilitates the expression and nuclear function of a potent transcriptional inhibitor, inducible cAMP early repressor (ICER), resulting in ICER-mediated suppression of interleukin-2 (IL-2). Furthermore, ICER inhibits transcription of nuclear factor of activated T cell c1/? (NFATc1/?) and forms inhibitory complexes with preexisting NFATc1/c2, thereby inhibiting NFAT-driven transcription, including that of IL-2. In addition to its suppressive effects mediated via ICER, cAMP can also modulate the levels of surface-expressed cytotoxic T lymphocyte antigen-4 (CTLA-4) and its cognate B7 ligands on conventional CD4(+) T cells and/or APCs, fine-tuning suppression. These cAMP-driven nTreg-cell suppression mechanisms are the focus of this review.
Related JoVE Video
Early changes in the liver-soluble proteome from mice fed a nonalcoholic steatohepatitis inducing diet.
Proteomics
Show Abstract
Hide Abstract
Despite the increasing incidence of nonalcoholic steatohepatitis (NASH) with the rise in lifestyle-related diseases such as the metabolic syndrome, little is known about the changes in the liver proteome that precede the onset of inflammation and fibrosis. Here, we investigated early changes in the liver-soluble proteome of female C57BL/6N mice fed an NASH-inducing diet by 2D-DIGE and nano-HPLC-MS/MS. In parallel, histology and measurements of hepatic content of triglycerides, cholesterol and intermediates of the methionine cycle were performed. Hepatic steatosis manifested itself after 2 days of feeding, albeit significant changes in the liver-soluble proteome were not evident before day 10 in the absence of inflammatory or fibrotic signs. Proteomic alterations affected mainly energy and amino acid metabolism, detoxification processes, urea cycle, and the one-carbon/S-adenosylmethionine pathways. Additionally, intermediates of relevant affected pathways were quantified from liver tissue, confirming the findings from the proteomic analysis.
Related JoVE Video
The tick salivary protein sialostatin L inhibits the Th9-derived production of the asthma-promoting cytokine IL-9 and is effective in the prevention of experimental asthma.
J. Immunol.
Show Abstract
Hide Abstract
Ticks developed a multitude of different immune evasion strategies to obtain a blood meal. Sialostatin L is an immunosuppressive cysteine protease inhibitor present in the saliva of the hard tick Ixodes scapularis. In this study, we demonstrate that sialostatin L strongly inhibits the production of IL-9 by Th9 cells. Because we could show recently that Th9-derived IL-9 is essentially involved in the induction of asthma symptoms, sialostatin L was used for the treatment of experimental asthma. Application of sialostatin L in a model of experimental asthma almost completely abrogated airway hyperresponsiveness and eosinophilia. Our data suggest that sialostatin L can prevent experimental asthma, most likely by inhibiting the IL-9 production of Th9 cells. Thus, alternative to IL-9 neutralization sialostatin L provides the basis for the development of innovative therapeutic strategies to treat asthma.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.