JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Altered arginine metabolism in Alzheimer's disease brains.
Neurobiol. Aging
PUBLISHED: 02-27-2014
Show Abstract
Hide Abstract
L-arginine is a semi-essential amino acid with a number of bioactive metabolites. Accumulating evidence suggests the implication of altered arginine metabolism in the pathogenesis of Alzheimer's disease (AD). The present study systematically compared the metabolic profile of L-arginine in the superior frontal gyrus, hippocampus, and cerebellum from AD (mean age 80 years) and normal (mean age 80 or 60 years) cases. The activity and protein expression of nitric oxide synthase and arginase were altered with AD and age in a region-specific manner. There were also AD- and age-related changes in the tissue concentrations of L-arginine and its downstream metabolites (L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine, glutamate, ?-aminobutyric acid, and glutamine) in a metabolite- or region-specific manner. These findings demonstrate that arginine metabolism is dramatically altered in diverse regions of AD brains, thus meriting further investigation to understand its role in the pathogenesis and/or progression of the disease.
Related JoVE Video
Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain.
Neurobiol. Aging
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
DNA methylation (5-methylcytosine [5mC]) is one of several epigenetic markers altered in Alzheimer's disease (AD) brain. More recently, attention has been given to DNA hydroxymethylation (5-hydroxymethylcytosine [5hmC]), the oxidized form of 5mC. Whereas 5mC is generally associated with the inhibition of gene expression, 5hmC has been associated with increased gene expression and is involved in cellular processes such as differentiation, development, and aging. Recent findings point toward a role for 5hmC in the development of diseases including AD, potentially opening new pathways for treating AD through correcting methylation and hydroxymethylation alterations. In the present study, levels of 5mC and 5hmC were investigated in the human middle frontal gyrus (MFG) and middle temporal gyrus (MTG) by immunohistochemistry. Immunoreactivity for 5mC and 5hmC were significantly increased in AD MFG (N = 13) and MTG (N = 29) compared with age-matched controls (MFG, N = 13 and MTG, N = 29). Global levels of 5mC and 5hmC positively correlated with each other and with markers of AD including amyloid beta, tau, and ubiquitin loads. Our results showed a global hypermethylation in the AD brain and revealed that levels of 5hmC were also significantly increased in AD MFG and MTG with no apparent influence of gender, age, postmortem delay, or tissue storage time. Using double-fluorescent immunolabeling, we found that in control and AD brains, levels of 5mC and 5hmC were low in astrocytes and microglia but were elevated in neurons. In addition, our colocalization study showed that within the same nuclei, 5mC and 5hmC mostly do not coexist. The present study clearly demonstrates the involvement of 5mC and 5hmC in AD emphasizing the need for future studies determining the exact time frame of these epigenetic changes during the progression of AD pathology.
Related JoVE Video
Increased precursor cell proliferation after deep brain stimulation for Parkinson's disease: a human study.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Deep brain stimulation (DBS) has been used for more than a decade to treat Parkinson's disease (PD); however, its mechanism of action remains unknown. Given the close proximity of the electrode trajectory to areas of the brain known as the "germinal niches," we sought to explore the possibility that DBS influences neural stem cell proliferation locally, as well as more distantly.
Related JoVE Video
Identifying neural progenitor cells in the adult human brain.
Methods Mol. Biol.
PUBLISHED: 08-13-2013
Show Abstract
Hide Abstract
The discovery, in 1998, that the adult human brain contains at least two populations of progenitor cells and that progenitor cells are upregulated in response to a range of degenerative brain diseases has raised hopes for their use in replacing dying brain cells. Since these early findings the race has been on to understand the biology of progenitor cells in the human brain and they have now been isolated and studied in many major neurodegenerative diseases. Before these cells can be exploited for cell replacement purposes it is important to understand how to: (1) find them, (2) label them, (3) determine what receptors they express, (4) isolate them, and (5) examine their electrophysiological properties when differentiated. In this chapter we have described the methods we use for studying progenitor cells in the adult human brain and in particular the tissue processing, immunohistochemistry, autoradiography, progenitor cell culture, and electrophysiology on brain cells. The Neurological Foundation of New Zealand Human Brain Bank has been receiving human tissue for approximately 20 years during which time we have developed a number of unique ways to examine and isolate progenitor cells from resected surgical specimens as well as from postmortem brain tissue. There are ethical and technical considerations that are unique to working with human brain tissue and these, as well as the processing of this tissue and the culturing of it for the purpose of studying progenitor cells, are the topic of this chapter.
Related JoVE Video
M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia.
J Neuroinflammation
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation.
Related JoVE Video
Insulin and IGF1 modulate turnover of polysialylated neural cell adhesion molecule (PSA-NCAM) in a process involving specific extracellular matrix components.
J. Neurochem.
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
Cellular interactions mediated by the neural cell adhesion molecule (NCAM) are critical in cell migration, differentiation and plasticity. Switching of the NCAM-interaction mode, from adhesion to signalling, is determined by NCAM carrying a particular post-translational modification, polysialic acid (PSA). Regulation of cell-surface PSA-NCAM is traditionally viewed as a direct consequence of polysialyltransferase activity. Taking advantage of the polysialyltransferase Ca²?-dependent activity, we demonstrate in TE671 cells that downregulation of PSA-NCAM synthesis constitutes a necessary but not sufficient condition to reduce cell-surface PSA-NCAM; instead, PSA-NCAM turnover required internalization of the molecule into the cytosol. PSA-NCAM internalization was specifically triggered by collagen in the extracellular matrix (ECM) and prevented by insulin-like growth factor (IGF1) and insulin. Our results pose a novel role for IGF1 and insulin in controlling cell migration through modulation of PSA-NCAM turnover at the cell surface. Neural cell adhesion molecules (NCAMs) are critically involved in cell differentiation and migration. Polysialylation (PSA)/desialylation of NCAMs switches their functional interaction mode and, in turn, migration and differentiation. We have found that the desialylation process of PSA-NCAM occurs via endocytosis, induced by collagen-IV and blocked by insulin-like growth factor (IGF1) and insulin, suggesting a novel association between PSA-NCAM, IGF1/insulin and brain/tumour plasticity.
Related JoVE Video
GABA(A) receptor characterization and subunit localization in the human sub ventricular zone.
J. Chem. Neuroanat.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
It is now well established that the human brain continuously produces new stem cells until well into old age. One of these stem-cell rich areas in the human brain is the sub-ventricular zone (SVZ). The human SVZ is organized in four distinctive layers containing type A, B and C cells. To date, no studies have investigated the distribution of inhibitory neurotransmitters such as ?-aminobutyric acid (GABA) and their respective receptors on the different cell types in the human SVZ. GABA(A) receptors (GABA(A)R) are ubiquitously expressed, inhibitory heteropentameric chloride ion channels comprised of a variety of subunits that are targeted by many prescribed drugs. In this study we present detailed immunohistochemical data on the regional and cellular localization of ??, ??, ?3, ??,? and ?? subunits of GABA(A)R in the human SVZ. The results from our double and triple labeling studies demonstrate that the cell types and subunit composition throughout the SVZ is heterogeneous; the thickness of the SVZ and GABA(A)R ?? and ?? expression is increased especially in the vicinity of large SVZ blood vessels. GABA(A)R ?? is the most specific to the SVZ and present on various cells that express, either glial fibrillary acidic protein (GFAP?) or polysialic acid-neural cell adhesion molecule (PSA-NCAM) separately, or together in a respective ratio of 7:6:2. Proliferating (type C) cells in the SVZ express GAD65/67, GFAP? and GABA(A)R ??,? receptor subunits. Within the SVZ the majority of cells have an unexpected nuclear GABA(A)R ??,? expression that is inversely proportional to that of PCNA (proliferating cell nuclear antigen marker), which is a very different pattern of expression compared with underlying caudate nucleus cells. Taken together our results provide a detailed description of the chemo-architecture of the adult human SVZ demonstrating the importance of GABA and GABA(A) receptors on the various cell types in the SVZ.
Related JoVE Video
Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex.
Brain Res.
PUBLISHED: 01-27-2013
Show Abstract
Hide Abstract
Hyaluronan is a large glycosaminoglycan, which is abundant in the extracellular matrix of the developing rodent brain. In the adult brain however, levels of hyaluronan are significantly reduced. In this study, we used neurocan-GFP as a histochemical probe to analyze the distribution of hyaluronan in the adult mouse subventricular zone (SVZ), as well as in the rostral migratory stream (RMS). Interestingly, we observed that hyaluronan is generally downregulated in the adult brain, but notably remains at high levels in the SVZ and RMS; areas in which neural stem/progenitor cells (NSPCs) persist, proliferate and migrate throughout life. In addition, we found that the receptor for hyaluronan-mediated motility (Rhamm) was expressed in migrating neuroblasts in these areas, indicating that Rhamm could be involved in regulating hyaluronan-mediated cell migration. Hyaluronan levels are balanced by synthesis through hyaluronan synthases (Has) and degradation by hyaluronidases (Hyal). We found that Has1 and Has2, as well as Hyal1 and Hyal2 were expressed in GFAP positive cells in the adult rodent SVZ and RMS, indicating that astrocytes could be regulating hyaluronan-mediated functions in these areas. We also demonstrate that hyaluronan levels are substantially increased at six weeks following a photothrombotic stroke lesion to the adult mouse cortex. Furthermore, GFAP positive cells in the peri-infarct area express Rhamm. Thus, hyaluronan may be involved in regulating cell migration in the normal SVZ and RMS and could also be responsible for priming the peri-infarct area following an ischemic lesion for cell migration.
Related JoVE Video
Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.
APMIS
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Alexander disease (AxD) is a neurodegenerative disorder with prominent white matter degeneration and the presence of Rosenthal fibers containing aggregates of glial fibrillary acidic protein (GFAP), and small stress proteins HSP27 and ?B-crystallin, and widespread reactive gliosis. AxD is caused by mutations in GFAP, the main astrocyte intermediate filament protein. We previously showed that intermediate filament protein synemin is upregulated in reactive astrocytes after neurotrauma. Here, we examined immunohistochemically the presence of synemin in reactive astrocytes and Rosenthal fibers in two patients with AxD. There was an abundance of GFAP-positive Rosenthal fibers and widespread reactive gliosis in the white matter and subpial regions. Many of the GFAP-positive reactive astrocytes were positive for synemin, and synemin was also present in Rosenthal fibers. We show that synemin is expressed in reactive astrocytes in AxD, and is also present in Rosenthal fibers. The potential role of synemin in AxD pathogenesis remains to be investigated.
Related JoVE Video
Adult Human Glia, Pericytes and Meningeal Fibroblasts Respond Similarly to IFNy but Not to TGF?1 or M-CSF.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The chemokine Interferon gamma-induced protein 10 (IP-10) and human leukocyte antigen (HLA) are widely used indicators of glial activation and neuroinflammation and are up-regulated in many brain disorders. These inflammatory mediators have been widely studied in rodent models of brain disorders, but less work has been undertaken using human brain cells. In this study we investigate the regulation of HLA and IP-10, as well as other cytokines and chemokines, in microglia, astrocytes, pericytes, and meningeal fibroblasts derived from biopsy and autopsy adult human brain, using immunocytochemistry and a Cytometric Bead Array. Interferon? (IFN?) increased microglial HLA expression, but contrary to data in rodents, the anti-inflammatory cytokine transforming growth factor ?1 (TGF?1) did not inhibit this increase in HLA, nor did TGF?1 affect basal microglial HLA expression or IFN?-induced astrocytic HLA expression. In contrast, IFN?-induced and basal microglial HLA expression, but not IFN?-induced astrocytic HLA expression, were strongly inhibited by macrophage colony stimulating factor (M-CSF). IFN? also strongly induced HLA expression in pericytes and meningeal fibroblasts, which do not basally express HLA, and this induction was completely blocked by TGF?1, but not affected by M-CSF. In contrast, TGF?1 did not block the IFN?-induced increase in IP-10 in pericytes and meningeal fibroblasts. These results show that IFN?, TGF?1 and M-CSF have species- and cell type-specific effects on human brain cells that may have implications for their roles in adult human brain inflammation.
Related JoVE Video
Toxigenic Vibrio cholerae O1 in water and seafood, Haiti.
Emerging Infect. Dis.
PUBLISHED: 11-22-2011
Show Abstract
Hide Abstract
During the 2010 cholera outbreak in Haiti, water and seafood samples were collected to detect Vibrio cholerae. The outbreak strain of toxigenic V. cholerae O1 serotype Ogawa was isolated from freshwater and seafood samples. The cholera toxin gene was detected in harbor water samples.
Related JoVE Video
A method for generating high-yield enriched neuronal cultures from P19 embryonal carcinoma cells.
J. Neurosci. Methods
PUBLISHED: 05-19-2011
Show Abstract
Hide Abstract
P19 embryonal carcinoma (EC) cells are an invaluable tool for approximating the mechanisms that govern neuronal differentiation but with an enormous degree of simplification and have primarily been used to model the early stages of neurogenesis. However, they are often cultured under conditions that promote unrestricted non-neuronal growth that compromises neuronal viability. In this study we report an improved method to differentiate P19 EC cells that gives rise to high yields of functionally and morphologically mature neurons while significantly reducing the over-growth of non-neuronal cells in the cultures. In this protocol, P19 EC cells are induced in Minimum Essential Medium alpha supplemented with all-trans retinoic acid (RA) and 2.5% serum, and cultured as a monolayer. After RA-induction, cells are cultured on Matrigel coated-plates using defined media comprised of Neurobasal-A medium temporally supplemented with N2 and then B-27 for the remaining culture period. By treating the culture with Cytosine ?-d-arabinofuranoside and 2-Deoxycytidine for five days, the cultures are reliably promoted toward the neuronal differentiation vs non-neuronal differentiation, this accounting for a progressive neuronal enrichment of the cultures reaching 56% after 20 days of culture. P19-derived neural progenitor cells progressively expressed neuronal markers such as NeuN, Calretinin, Calbindin and Synapsin I in close resemblance to that occurring in vivo in the central nervous system (CNS). Furthermore, RA-induced P19 EC cells progressively acquired functional neuronal traits and after approximately 3 weeks in culture revealed mature neurophysiological properties, characteristics of CNS neurons. This protocol allows for a more specific assessment of the neuronal differentiation processes in vitro.
Related JoVE Video
Neurogenesis in humans.
Eur. J. Neurosci.
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
Since 1944 increasing evidence has been emerging that the adult human brain harbours progenitor cells with the potential to produce neuroblasts. However, it was not until 1998 that this fact was confirmed in the adult human brain. With the purpose of human neurogenesis being hotly debated, many research groups have focussed on the effect of neurodegenerative diseases in the brain to determine the strength of the endogenous regenerative response. Although most of the human studies have focussed on the hippocampus, there is a groundswell of evidence that there is greater plasticity in the subventricular zone and in the ventriculo-olfactory neurogenic system. In this review, we present the evidence for increased or decreased plasticity and neurogenesis in different diseases and with different drug treatments in the adult human brain. Whilst there is a paucity of studies on human neurogenesis, there are sufficient to draw some conclusions about the potential of plasticity in the human brain.
Related JoVE Video
Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta.
Aging Cell
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
A main neurogenic niche in the adult human brain is the subventricular zone (SVZ). Recent data suggest that the progenitors that are born in the human SVZ migrate via the rostral migratory stream (RMS) towards the olfactory bulb (OB), similar to what has been observed in other mammals. A subpopulation of astrocytes in the SVZ specifically expresses an assembly-compromised isoform of the intermediate filament protein glial fibrillary acidic protein (GFAP-delta). To further define the phenotype of these GFAP-delta expressing cells and to determine whether these cells are present throughout the human subventricular neurogenic system, we analysed SVZ, RMS and OB sections of 14 aged brain donors (ages 74-93). GFAP-delta was expressed in the SVZ along the ventricle, in the RMS and in the OB. The GFAP-delta cells in the SVZ co-expressed the neural stem cell (NSC) marker nestin and the cell proliferation markers proliferating cell nuclear antigen (PCNA) and Mcm2. Furthermore, BrdU retention was found in GFAP-delta positive cells in the SVZ. In the RMS, GFAP-delta was expressed in the glial net surrounding the neuroblasts. In the OB, GFAP-delta positive cells co-expressed PCNA. We also showed that GFAP-delta cells are present in neurosphere cultures that were derived from SVZ precursors, isolated postmortem from four brain donors (ages 63-91). Taken together, our findings show that GFAP-delta is expressed in an astrocytic subpopulation in the SVZ, the RMS and the OB. Importantly, we provide the first evidence that GFAP-delta is specifically expressed in longterm quiescent cells in the human SVZ, which are reminiscent of NSCs.
Related JoVE Video
The rostral migratory stream and olfactory system: smell, disease and slippery cells.
Prog. Brain Res.
PUBLISHED: 08-08-2009
Show Abstract
Hide Abstract
In the mammalian brain, olfaction is an important sense that is used to detect odors of different kinds that can warn of off food, to produce a mothering instinct in a flock or group of animals, and to warn of danger such as fire or poison. The olfactory system is made up of a long-distance rostral migratory stream that arises from the subventricular zone in the wall of the lateral ventricle, mainly comprises neuroblasts, and stretches all the way through the basal forebrain to terminate in the olfactory bulb. The olfactory bulb receives a constant supply of new neurons that allow ongoing integration of new and different smells, and these are integrated into either the granule cell layer or the periglomerular layer. The continuous turnover of neurons in the olfactory bulb allows us to study the proliferation, migration, and differentiation of neurons and their application in therapies for neurodegenerative diseases. In this chapter, we will examine the notion that the olfactory system might be the route of entry for factors that cause or contribute to neurodegeneration in the central nervous system. We will also discuss the enzymes that may be involved in the addition of polysialic acid to neural cell adhesion molecule, which is vital for allowing the neuroblasts to move through the rostral migratory stream. Finally, we will discuss a possible role of endosialidases for removing polysialic acid from neural cell adhesion molecules, which causes neuroblasts to stop migrating and terminally differentiate into olfactory bulb interneurons.
Related JoVE Video
A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells.
J. Neurosci. Methods
PUBLISHED: 06-10-2009
Show Abstract
Hide Abstract
Neuronal loss is a common feature of many neurological disorders, including stroke, Parkinsons disease, Alzheimers disease and traumatic brain injury. Human embryonic stem cell (hESC)-derived neural progenitors (NPs) may provide new ways of treatment for several diseases and injuries in the brain, as well as enhance our understanding of early human development. Here we report a method for rapid generation of proliferating NPs from feeder free cultures of undifferentiated hESCs. In this rapid and simple protocol, NPs are derived by seeding undifferentiated hESC on adherent surfaces of laminin or gelatine with normal hESC culturing medium and with the addition of basic fibroblast growth factor. After the first passage, adherent monolayer progenitors are derived that express early neuroectodermal and progenitor markers, such as Nestin, Sox1, Sox2, Sox3, Internexin, Musashi-1, NCAM, and Pax6. This novel protocol renders hESCs suitable for large scale progenitor production and long-term propagation, and the progenitors have the capacity to differentiate in vitro into all three neural lineages (neurons, astrocytes and oligodendrocytes). This method allows rapid, cost-efficient production of expandable progenitors that may be a source of cells for the restoration of cellular and functional loss after neurodegeneration and/or provide a useful source of progenitor cells for studying early brain development.
Related JoVE Video
The cellular composition and morphological organization of the rostral migratory stream in the adult human brain.
J. Chem. Neuroanat.
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
The rostral migratory stream (RMS) is the major pathway by which progenitor cells migrate from the subventricular zone (SVZ) to the olfactory bulb (OB) in rodents, rabbits and primates. However, the existence of an RMS within the adult human brain has been elusive. Immunohistochemical studies utilising cell-type specific markers for early progenitor cells (CD133), proliferating cells (PCNA), astrocytes and type B cells (GFAP) and migrating neuroblasts (PSA-NCAM), reveal that the adult human RMS is organized into layers containing glial cells, proliferating cells and neuroblasts. In addition, the RMS is arranged around a remnant of the ventricular cavity that extends from the SVZ to the OB as seen by immunohistological staining analysis and electron microscopy, showing the presence of basal bodies and a typical 9+2 arrangement of tubulin in tufts of cilia from all levels of the RMS. Overall, these findings suggest that a pathway of migratory progenitor cells similar to that seen in other mammals is present within the adult human brain and that this pathway could provide for neurogenesis in the human forebrain. These findings contribute to the scientific understanding of adult neurogenesis and establish the detailed cytoarchitecture of this novel neurogenic niche in the human brain.
Related JoVE Video
Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men.
Glia
Show Abstract
Hide Abstract
Myelin loss is frequently observed in human Alzheimers disease (AD) and may constitute to AD-related cognitive decline. A potential source to repair myelin defects are the oligodendrocyte progenitor cells (OPCs) present in an adult brain. However, until now, little is known about the reaction of these cells toward amyloid plaque deposition neither in human AD patients nor in the appropriate mouse models. Therefore, we analyzed cells of the oligodendrocyte lineage in a mouse model with chronic plaque deposition (APPPS1 mice) and samples from human patients. In APPPS1 mice defects in myelin integrity and myelin amount were prevalent at 6 months of age but normalized to control levels in 9-month-old mice. Concomitantly, we observed an increase in the proliferation and differentiation of OPCs in the APPPS1 mice at this specific time window (6-8 months) implying that improvements in myelin aberrations may result from repair mechanisms mediated by OPCs. However, while we observed a higher number of cells of the oligodendrocyte lineage (Olig2+ cells) in APPPS1 mice, OLIG2+ cells were decreased in number in postmortem human AD cortex. Our data demonstrate that oligodendrocyte progenitors specifically react to amyloid plaque deposition in an AD-related mouse model as well as in human AD pathology, although with distinct outcomes. Strikingly, possible repair mechanisms from newly generated oligodendrocytes are evident in APPPS1 mice, whereas a similar reaction of oligodendrocyte progenitors seems to be strongly limited in final stages of human AD pathology.
Related JoVE Video
Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons.
PLoS ONE
Show Abstract
Hide Abstract
The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5-6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments.
Related JoVE Video
Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation.
Dev Neurobiol
Show Abstract
Hide Abstract
For more than a decade, we have known that the human brain harbors progenitor cells capable of becoming mature neurons in the adult human brain. Since the original landmark article by Eriksson et al. in 1998 (Nat Med 4:1313-1317), there have been many studies investigating the effect that depression, epilepsy, Alzheimers disease, Huntingtons disease, and Parkinsons disease have on the germinal zones in the adult human brain. Of particular interest is the demonstration that there are far fewer progenitor cells in the hippocampal subgranular zone (SGZ) compared with the subventricular zone (SVZ) in the human brain. Furthermore, the quantity of progenitor cell proliferation in human neurodegenerative diseases differs from that of animal models of neurodegenerative diseases; there is minimal progenitor proliferation in the SGZ and extensive proliferation in the SVZ in the human. In this review, we will present the data from a range of human and rodent studies from which we can compare the amount of proliferation of cells in the SVZ and SGZ in different neurodegenerative diseases.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.