JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Regulation of immune responses by proton channels.
Immunology
PUBLISHED: 03-15-2014
Show Abstract
Hide Abstract
The identification of the HVCN1 gene, encoding the only mammalian voltage-gated proton channel, prompted a number of studies on how proton channels affect cellular functions. As their expression is mainly restricted to immune cells, it is not surprising that proton channels regulate different aspects of immune responses. In this review, I will examine the current knowledge of voltage-gated proton channels in both innate and adaptive responses and assess the remaining outstanding questions.
Related JoVE Video
Proton channels in non-phagocytic cells of the immune system.
Wiley Interdiscip Rev Membr Transp Signal
PUBLISHED: 05-28-2013
Show Abstract
Hide Abstract
Proton channels are expressed in all cells of the immune system to various degrees. While their function in phagocytic cells, immune cells that engulf bacteria and cell debris for clearance, has been the object of extensive research, the function of proton channels in non-phagocytic cells has remained more elusive until recently. Further studies have been helped by the discovery of the gene coding for the mammalian proton channel, HVCN1, which has prompted a new wave of research in this area. Recent findings show how proton channels regulate cell function in non-phagocytic cells of the immune system such as basophils and lymphocytes.
Related JoVE Video
pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1.
Trends Cell Biol.
PUBLISHED: 07-21-2010
Show Abstract
Hide Abstract
Electrophysiological studies have implicated voltage-gated proton channels in several specific cellular contexts. In neutrophils, they mediate charge compensation that is associated with the oxidative burst of phagocytosis. Molecular characterization of the hydrogen voltage-gated channel 1 (HVCN1) has enabled identification of unanticipated and diverse functions: HVCN1 not only modulates signaling from the B-cell receptor following B-cell activation and histamine release from basophils, but also mediates pH-dependent activation of spermatozoa, as well as acid secretion by tracheal epithelium. The importance of HVCN1 in pH regulation during phagocytosis was established by surprising evidence that indicated its first-responder role. In this review, we discuss recent findings from a functional perspective, and the potential of HVCN1 as a therapeutic target for autoimmune and other diseases.
Related JoVE Video
HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species.
Nat. Immunol.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Voltage-gated proton currents regulate generation of reactive oxygen species (ROS) in phagocytic cells. In B cells, stimulation of the B cell antigen receptor (BCR) results in the production of ROS that participate in B cell activation, but the involvement of proton channels is unknown. We report here that the voltage-gated proton channel HVCN1 associated with the BCR complex and was internalized together with the BCR after activation. BCR-induced generation of ROS was lower in HVCN1-deficient B cells, which resulted in attenuated BCR signaling via impaired BCR-dependent oxidation of the tyrosine phosphatase SHP-1. This resulted in less activation of the kinases Syk and Akt, impaired mitochondrial respiration and glycolysis and diminished antibody responses in vivo. Our findings identify unanticipated functions for proton channels in B cells and demonstrate the importance of ROS in BCR signaling and downstream metabolism.
Related JoVE Video
Immunoglobulin heavy chain locus chromosomal translocations in B-cell precursor acute lymphoblastic leukemia: rare clinical curios or potent genetic drivers?
Blood
PUBLISHED: 12-30-2009
Show Abstract
Hide Abstract
Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus define common subgroups of B-cell lymphoma but are rare in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Recent fluorescent in situ hybridization and molecular cloning studies have identified several novel IGH translocations involving genes that play important roles in normal hemopoiesis, including the cytokine receptor genes CRLF2 and EPOR, all members of the CCAAT enhancer-binding protein gene family, as well as genes not normally expressed in hemopoietic cells including inhibitor of DNA binding 4. IGH translocation results in deregulated target gene expression because of juxtaposition with IGH transcriptional enhancers. However, many genes targeted by IGH translocations are also more commonly deregulated in BCP-ALL as a consequence of other genetic or epigenetic mechanisms. For example, interstitial genomic deletions also result in deregulated CRLF2 expression, whereas EPOR expression is deregulated as a consequence of the ETV6-RUNX1 fusion. The possible clinical importance of many of the various IGH translocations in BCP-ALL remains to be determined from prospective studies, but CRLF2 expression is associated with a poor prognosis. Despite their rarity, IGH chromosomal translocations in BCP-ALL therefore define not only new mechanisms of B-cell transformation but also clinically important subgroups of disease and suggest new targeted therapeutic approaches.
Related JoVE Video
Identification of Thr29 as a critical phosphorylation site that activates the human proton channel Hvcn1 in leukocytes.
J. Biol. Chem.
PUBLISHED: 12-26-2009
Show Abstract
Hide Abstract
Voltage-gated proton channels and NADPH oxidase function cooperatively in phagocytes during the respiratory burst, when reactive oxygen species are produced to kill microbial invaders. Agents that activate NADPH oxidase also enhance proton channel gating profoundly, facilitating its roles in charge compensation and pH(i) regulation. The "enhanced gating mode" appears to reflect protein kinase C (PKC) phosphorylation. Here we examine two candidates for PKC-delta phosphorylation sites in the human voltage-gated proton channel, H(V)1 (Hvcn1), Thr(29) and Ser(97), both in the intracellular N terminus. Channel phosphorylation was reduced in single mutants S97A or T29A, and further in the double mutant T29A/S97A, by an in vitro kinase assay with PKC-delta. Enhanced gating was evaluated by expressing wild-type (WT) or mutant H(V)1 channels in LK35.2 cells, a B cell hybridoma. Stimulation by phorbol myristate acetate enhanced WT channel gating, and this effect was reversed by treatment with the PKC inhibitor GF109203X. The single mutant T29A or double mutant T29A/S97A failed to respond to phorbol myristate acetate or GF109203X. In contrast, the S97A mutant responded like cells transfected with WT H(V)1. We conclude that under these conditions, direct phosphorylation of the proton channel molecule at Thr(29) is primarily responsible for the enhancement of proton channel gating. This phosphorylation is crucial to activation of the proton conductance during the respiratory burst in phagocytes.
Related JoVE Video
Voltage-gated proton channels maintain pH in human neutrophils during phagocytosis.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-05-2009
Show Abstract
Hide Abstract
Phagocytosis of microbial invaders represents a fundamental defense mechanism of the innate immune system. The subsequent killing of microbes is initiated by the respiratory burst, in which nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates vast amounts of superoxide anion, precursor to bactericidal reactive oxygen species. Cytoplasmic pH regulation is crucial because NADPH oxidase functions optimally at neutral pH, yet produces enormous quantities of protons. We monitored pH(i) in individual human neutrophils during phagocytosis of opsonized zymosan, using confocal imaging of the pH sensing dye SNARF-1, enhanced by shifted excitation and emission ratioing, or SEER. Despite long-standing dogma that Na(+)/H(+) antiport regulates pH during the phagocyte respiratory burst, we show here that voltage-gated proton channels are the first transporter to respond. During the initial phagocytotic event, pH(i) decreased sharply, and recovery required both Na(+)/H(+) antiport and proton current. Inhibiting myeloperoxidase attenuated the acidification, suggesting that diffusion of HOCl into the cytosol comprises a substantial acid load. Inhibiting proton channels with Zn(2+) resulted in profound acidification to levels that inhibit NADPH oxidase. The pH changes accompanying phagocytosis in bone marrow phagocytes from HVCN1-deficient mice mirrored those in control mouse cells treated with Zn(2+). Both the rate and extent of acidification in HVCN1-deficient cells were twice larger than in control cells. In summary, acid extrusion by proton channels is essential to the production of reactive oxygen species during phagocytosis.
Related JoVE Video
Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia.
Blood
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
We report 2 novel, cryptic chromosomal abnormalities in precursor B-cell acute lymphoblastic leukemia (BCP-ALL): a translocation, either t(X;14)(p22;q32) or t(Y;14)(p11;q32), in 33 patients and an interstitial deletion, either del(X)(p22.33p22.33) or del(Y)(p11.32p11.32), in 64 patients, involving the pseudoautosomal region (PAR1) of the sex chromosomes. The incidence of these abnormalities was 5% in childhood ALL (0.8% with the translocation, 4.2% with the deletion). Patients with the translocation were older (median age, 16 years), whereas the patients with the deletion were younger (median age, 4 years). The 2 abnormalities result in deregulated expression of the cytokine receptor, cytokine receptor-like factor 2, CRLF2 (also known as thymic stromal-derived lymphopoietin receptor, TSLPR). Overexpression of CRLF2 was associated with activation of the JAK-STAT pathway in cell lines and transduced primary B-cell progenitors, sustaining their proliferation and indicating a causal role of CRLF2 overexpression in lymphoid transformation. In Down syndrome (DS) ALL and 2 non-DS BCP-ALL cell lines, CRLF2 deregulation was associated with mutations of the JAK2 pseudokinase domain, suggesting oncogenic cooperation as well as highlighting a link between non-DS ALL and JAK2 mutations.
Related JoVE Video
B regulatory cells in cancer.
Trends Immunol.
Show Abstract
Hide Abstract
B regulatory cells are a newly described subpopulation of B cells that appear to play important roles in autoimmunity and more recently, in cancer. In this review we summarize our current knowledge of B regulatory cells, as well as the body of evidence pointing towards a role for B cells in general, and B regulatory cells in particular, in promoting tumor growth.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.