JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
PIM2 Kinase Is Induced by Cisplatin in Ovarian Cancer Cells and Limits Drug Efficacy.
J. Proteome Res.
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
Platinum-based chemotherapy is widely used to treat various cancers, but many patients ultimately relapse due to drug resistance. We employed phosphoproteomic analysis and functional assays of the response of SK-OV-3 ovarian cancer cells to cisplatin as a strategy to identify kinases as candidate druggable targets to sensitize cells to platinum. A SILAC-based approach combined with TiO2-based phosphopeptide enrichment allowed the direct identification of ERK1/2, p90RSK, and ERBB2 as kinases whose phosphorylation is regulated by cisplatin. Bioinformatic analysis revealed enrichment in linear phosphorylation motifs predicted to be targets of p38MAPK, CDK2, and PIM2. All three PIM kinases were found expressed in a panel of 10 ovarian cancer cell lines, with the oncogenic PIM2 being the most commonly induced by cisplatin. Targeting PIM2 kinase by either biochemical inhibitors or RNA interference impaired cell growth, decreased cisplatin-triggered BAD phosphorylation, and sensitized ovarian cancer cells to drug-induced apoptosis. Overexpression of PIM2 triggered anchorage-independent growth and resulted in increased BAD phosphorylation and cell resistance to DNA damaging agents. The data show that the PIM2 kinase plays a role in the response of ovarian cancer cells to platinum drugs and suggest that PIM inhibitors may find clinical application as an adjunct to platinum-based therapies.
Related JoVE Video
Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity.
Nat. Cell Biol.
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
DNA double-strand breaks (DSBs) are perhaps the most toxic of all DNA lesions, with defects in the DNA-damage response to DSBs being associated with various human diseases. Although it is known that DSB repair pathways are tightly regulated by ubiquitylation, we do not yet have a comprehensive understanding of how deubiquitylating enzymes (DUBs) function in DSB responses. Here, by carrying out a multidimensional screening strategy for human DUBs, we identify several with hitherto unknown links to DSB repair, the G2/M DNA-damage checkpoint and genome-integrity maintenance. Phylogenetic analyses reveal functional clustering within certain DUB subgroups, suggesting evolutionally conserved functions and/or related modes of action. Furthermore, we establish that the DUB UCHL5 regulates DSB resection and repair by homologous recombination through protecting its interactor, NFRKB, from degradation. Collectively, our findings extend the list of DUBs promoting the maintenance of genome integrity, and highlight their potential as therapeutic targets for cancer.
Related JoVE Video
Plasticity of mammary cell boundaries governed by EGF and actin remodeling.
Cell Rep
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Defined signals that dictate the architecture of cellular boundaries in confluent cultures are poorly characterized. Here, we report dramatic remodeling, invoked by long-term epidermal growth factor (EGF) withdrawal from mammary-derived MCF10A cells. Such intervention generates an interdigitated, desmosome-rich monolayer, wherein cells project actin-containing protrusions deep into neighboring cells. These changes protect cellular sheets from mechanical disruption and dramatically restrict the freedom of cells to roam within the monolayer. Ectopic expression of activated Rac counteracts interdigitation and induces membrane ruffling, but cells remain confined by their interdigitated neighbors. Interdigitations are rapidly dissolved by acute EGF application in a process that is sensitive to actin depolymerization and myosin II inhibition. These assays for formation and dissolution of interdigitations provide a platform for the dissection of novel signaling pathways that are highly specific to EGF receptor (EGFR) activation.
Related JoVE Video
Ubiquitin code assembly and disassembly.
Curr. Biol.
PUBLISHED: 03-22-2014
Show Abstract
Hide Abstract
Ubiquitin, a 76 amino-acid polypeptide, presents a compact three-dimensional structure, utilising a fold that recurs within larger polypeptides and in other protein modifiers, such as NEDD8 and SUMO. Ubiquitylation was initially recognised as a signal for proteasome-mediated degradation. We shall consider here how this view has evolved to appreciate that the dynamic appendage of different types of ubiquitin chains represents a versatile, three-dimensional code, fundamental to the control of many cellular processes.
Related JoVE Video
USP8 controls the trafficking and sorting of lysosomal enzymes.
Traffic
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
The endosomal deubiquitylase USP8 has profound effects on endosomal morphology and organisation. Previous reports have proposed both positive (EGFR, MET) and negative roles in the down-regulation of receptors (Frizzled, Smoothened). Here we report an additional influence of USP8 on the retromer-dependent shuttling of ci-M6PR between the sorting endosome and biosynthetic pathway. Depletion of USP8 leads to a steady state redistribution of ci-M6PR from the Trans-Golgi Network (TGN) to endosomal compartments. Consequently we observe a defect in sorting of lysosomal enzymes, evidenced by increased levels of unprocessed Cathepsin D, which is secreted into the medium. The normal distribution of receptor can be restored by expression of siRNA-resistant USP8 but not by a catalytically inactive mutant or a truncated form, lacking a MIT domain required for endosomal localisation. We suggest that effects of USP8 depletion may reflect the loss of ESCRT-0 components which associate with retromer components Vps35 and SNX1, whilst failure to efficiently deliver lysosomal enzymes may also contribute to the observed block in receptor tyrosine kinase degradation.
Related JoVE Video
Deubiquitylases from genes to organism.
Physiol. Rev.
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Related JoVE Video
The deubiquitylase USP15 stabilizes newly synthesized REST and rescues its expression at mitotic exit.
Cell Cycle
PUBLISHED: 05-20-2013
Show Abstract
Hide Abstract
Reversible ubiquitylation of proteins contributes to their integrity, abundance and activity. The RE1-silencing transcription factor (REST) plays key physiological roles and is dysregulated in a spectrum of disease. It is rapidly turned over and is phosphorylated, polyubiquitylated and degraded en masse during neuronal differentiation and cell cycle progression. Through siRNA screening we identified the deubiquitylase USP15 as a key regulator of cellular REST. Both antagonism of REST polyubiquitylation and rescue of endogenous REST levels are dependent on the deubiquitylase activity of USP15. However, USP15 depletion does not destabilize pre-existing REST, but rather specifically impairs de novo REST synthesis. Indeed, we find that a small fraction of endogenous USP15 is associated with polysomes. In accordance with these findings, USP15 does not antagonize the degradation of phosphorylated REST at mitosis. Instead it is required for the rapid accumulation of newly synthesized REST on mitotic exit, thus playing a key role in its cell cycle oscillations. Importantly, this study reveals a novel role for a DUB in specifically promoting new protein synthesis.
Related JoVE Video
Met receptor: a moving target.
Sci Signal
PUBLISHED: 09-06-2011
Show Abstract
Hide Abstract
The activated hepatocyte growth factor (HGF) receptor (Met) undergoes rapid endocytosis and ubiquitin-dependent sorting to the lysosomal degradative pathway. New data suggest that this mode of down-regulation can be circumvented by mutant receptors bearing kinase-activating mutations that instead recycle to the plasma membrane. These mutant receptors can elicit enhanced signaling from endosomes, which is critical for cell motility and tumorigenesis. A proportion of HGF-activated wild-type receptors will also take the endosomal recycling route. This requires the recruitment of the adaptor protein GGA3, mediated through the interaction of GGA3 with the activated form of the small guanosine triphosphatase Arf6 and indirect binding to phosphorylated Met receptor through the adaptor protein Crk. This ability of receptors and effectors to be spatially controlled by the endosomal recycling pathway may play a prominent role in cellular functions such as motility.
Related JoVE Video
Isoform-specific localization of the deubiquitinase USP33 to the Golgi apparatus.
Traffic
PUBLISHED: 08-25-2011
Show Abstract
Hide Abstract
Ubiquitin-specific protease 33 (USP33) is a deubiquitinase that has been associated with a variety of physiological events. Here, we show the existence of multiple USP33 splice variants and characterize the sub-cellular localization of endogenous USP33 as well as GFP-USP33 isoforms 1-3. The localization of USP33 is broadly confined to the secretory pathway, with all variants localizing to endoplasmic reticulum-associated structures. In addition, GFP-USP33 variant 3 shows a marked accumulation at the Golgi apparatus. Several deubiquitinases have large insertions within their otherwise highly conserved catalytic domains, the function of which is poorly characterized. Analysis of USP33 reveals a role for two distinct inserts within the catalytic domain. One is required for association with the endoplasmic reticulum, whilst the second is required for membrane association, but can be alternatively spliced (variant 3) to excise eight amino acids, which otherwise suppress Golgi localization. We propose that varying the expression of differentially localized isoforms provides a means to influence the spectrum of substrates encountered by USP33.
Related JoVE Video
Structural variability of the ubiquitin specific protease DUSP-UBL double domains.
FEBS Lett.
PUBLISHED: 07-22-2011
Show Abstract
Hide Abstract
USP4, 11 and 15 are three closely related paralogues of the ubiquitin specific protease (USP) family of deubiquitinating enzymes. The DUSP domain and the UBL domain in these proteins are juxtaposed which may provide a functional unit conferring specificity. We determined the structures of the USP15 DUSP-UBL double domain unit in monomeric and dimeric states. We then conducted comparative analysis of the structural and physical properties of all three DUSP-UBL units. We identified structural features that dictate different dispositions between constituent domains, which in turn may influence respective binding properties.
Related JoVE Video
Ubiquitin: same molecule, different degradation pathways.
Cell
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
Ubiquitin is a common demoninator in the targeting of substrates to all three major protein degradation pathways in mammalian cells: the proteasome, the lysosome, and the autophagosome. The factors that direct a substrate toward a particular route of degradation likely include ubiquitin chain length and linkage type, which may favor interaction with particular receptors or confer differential susceptibility to deubiquitinase activities associated with each pathway.
Related JoVE Video
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation.
Autophagy
PUBLISHED: 05-16-2010
Show Abstract
Hide Abstract
Autophagosome formation is a complex process that begins with the nucleation of a pre-autophagosomal structure (PAS) that expands into a phagophore or isolation membrane, the precursor of the autophagosome. A key event in the formation of the phagophore is the production of PtdIns3P by the phosphatidylinsitol kinase Vps34. In yeast the two closely related proteins, Atg18 and Atg21, are the only known effectors of PtdIns3P that act in the autophagy pathway. The recruitment of Atg18 or Atg21 to the PAS is an essential step in the formation of the phagophore. Our bioinformatic analysis of the Atg18 and Atg21 orthologues in all eukaryotes shows that WIPI1 and WIPI2 are both mammalian orthologues of Atg18. We show that WIPI2 is a mammalian effector of PtdIns3P and is ubiquitously expressed in a variety of cell lines. WIPI2 is recruited to early autophagosomal structures along with Atg16L and ULK1 and is required for the formation of LC3-positive autophagosomes. Furthermore, when WIPI2 is depleted, we observe a remarkable accumulation of omegasomes, ER-localized PtdIns3P-containing structures labeled by DFCP1 (double FYVE domain-containing protein 1), which are thought to act as platforms for autophagosome formation. In view of our data we propose a role for WIPI2 in the progression of omegasomes into autophagosomes.
Related JoVE Video
Quantitative analysis of HGF and EGF-dependent phosphotyrosine signaling networks.
J. Proteome Res.
PUBLISHED: 03-13-2010
Show Abstract
Hide Abstract
We have used stable isotope labeling by amino acids in cell culture (SILAC), in combination with high-resolution mass spectrometry, to identify common and discrete components of the respective receptor tyrosine kinase-dependent phosphotyrosine-associated networks induced by acute stimulation of A549 lung adenocarcinoma cells with EGF or HGF. In total, we obtained quantitative information for 274 proteins, which respond to either or both stimuli by >1.5 fold changes in enrichment, following immuno-precipitation with antiphosphotyrosine antibodies. The data reveal a high degree of overlap between the respective signaling networks but also clear points of departure. A small number of HGF specific effectors were identified including myosin-X, galectin-1, ELMO2 and EphrinB1, while a larger set of EGF specific effectors (39 proteins) includes both novel (e.g., MAP4K3) and established components of receptor tyrosine kinase receptor signaling pathways. Using available protein-interaction data the identified proteins have been assembled into a highly connected network that can be visualized using the Cytoscape tool.
Related JoVE Video
Emerging roles of deubiquitinases in cancer-associated pathways.
IUBMB Life
PUBLISHED: 01-15-2010
Show Abstract
Hide Abstract
Deubiquitinases (DUBs) are emerging as important regulators of many pathways germane to cancer. They may regulate the stability of key oncogenes, exemplified by USP28 stabilisation of c-Myc. Alternatively they can negatively regulate ubiquitin-dependent signalling cascades such as the NF-kappaB activation pathway. We review the current literature that associates DUBs with cancer and discuss their suitability as drug targets of the future.
Related JoVE Video
Breaking the chains: structure and function of the deubiquitinases.
Nat. Rev. Mol. Cell Biol.
PUBLISHED: 07-24-2009
Show Abstract
Hide Abstract
Ubiquitylation is a reversible protein modification that is implicated in many cellular functions. Recently, much progress has been made in the characterization of a superfamily of isopeptidases that remove ubiquitin: the deubiquitinases (DUBs; also known as deubiquitylating or deubiquitinating enzymes). Far from being uniform in structure and function, these enzymes display a myriad of distinct mechanistic features. The small number (<100) of DUBs might at first suggest a low degree of selectivity; however, DUBs are subject to multiple layers of regulation that modulate both their activity and their specificity. Due to their wide-ranging involvement in key regulatory processes, these enzymes might provide new therapeutic targets.
Related JoVE Video
PIKfyve regulation of endosome-linked pathways.
Traffic
PUBLISHED: 07-08-2009
Show Abstract
Hide Abstract
The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5)P2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5)P2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies.
Related JoVE Video
Phosphoinositides and the endocytic pathway.
Exp. Cell Res.
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
Phosphorylation of the phosphatidylinositol headgroup generates seven varieties of phosphoinositide of which PtdIns(4,5)P(2), PtdIns3P and PtdIns (3,5)P(2) have established roles on the endocytic pathway. In this review, we discuss the enzymes responsible for generation and turnover of these lipids, which are keys to determining compartmental identity and the flux of material through the endocytic system. The enzymatic generation of lipids serves as an amplification mechanism through which a wide variety of effector molecules can be recruited.
Related JoVE Video
Deubiquitinase activities required for hepatocyte growth factor-induced scattering of epithelial cells.
Curr. Biol.
PUBLISHED: 05-03-2009
Show Abstract
Hide Abstract
The scattering response of epithelial cells to activation of the Met receptor tyrosine kinase represents one facet of an "invasive growth" program. It is a complex event that incorporates loss of cell-cell adhesion, morphological changes, and cell motility. Ubiquitination is a reversible posttranslational modification that may target proteins for degradation or coordinate signal transduction pathways. There are approximately 79 active deubiquitinating enzymes (DUBs) predicted in the human genome. Here, via a small interfering RNA (siRNA) library approach, we have identified 12 DUBs that are necessary for aspects of the hepatocyte growth factor (HGF)-dependent scattering response of A549 cells. Different phenotypes are evident that range from full loss of scattering, similar to receptor knockdown (e.g., USP30, USP33, USP47), to loss of cell-cell contacts even in the absence of HGF but defective motility (e.g., USP3, ATXN3L). The knockdowns do not incur defective receptor, phosphatidylinositol 3-kinase, or MAP kinase activation. Our data suggest widespread involvement of the ubiquitin system at multiple stages of the Met activation response, implying significant crosstalk with phosphorylation-based transduction pathways. Development of small-molecule inhibitors of particular DUBs may offer a therapeutic approach to contain metastasis.
Related JoVE Video
Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC.
J. Proteome Res.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
The proteome of any system is a dynamic entity, such that the intracellular concentration of a protein is dictated by the relative rates of synthesis and degradation. In this work, we have analyzed time-dependent changes in the incorporation of a stable amino acid resolved precursor, a protocol we refer to as "dynamic SILAC", using 1-D gel separation followed by in-gel digestion and LC-MS/MS analyses to profile the intracellular stability of almost 600 proteins from human A549 adenocarcinoma cells, requiring multiple measures of the extent of labeling with stable isotope labeled amino acids in a classic label-chase experiment. As turnover rates are acquired, a profile can be built up that allows exploration of the dynamic proteome and of putative features that predispose a protein to a high or a low rate of turnover. Moreover, measurement of the turnover rate of individual components of supramolecular complexes provides a unique insight in processes of protein complex assembly and turnover.
Related JoVE Video
Ab initio protein modelling reveals novel human MIT domains.
FEBS Lett.
PUBLISHED: 02-08-2009
Show Abstract
Hide Abstract
Database searches can fail to detect all truly homologous sequences, particularly when dealing with short, highly sequence diverse protein families. Here, using microtubule interacting and transport (MIT) domains as an example, we have applied an approach of profile-profile matching followed by ab initio structure modelling to the detection of true homologues in the borderline significant zone of database searches. Novel MIT domains were confidently identified in USP54, containing an apparently inactive ubiquitin carboxyl-terminal hydrolase domain, a katanin-like ATPase KATNAL1, and an uncharacterized protein containing a VPS9 domain. As a proof of principle, we have confirmed the novel MIT annotation for USP54 by in vitro profiling of binding to CHMP proteins.
Related JoVE Video
Regulation of ErbB2 receptor status by the proteasomal DUB POH1.
PLoS ONE
PUBLISHED: 01-25-2009
Show Abstract
Hide Abstract
Understanding the factors, which control ErbB2 and EGF receptor (EGFR) status in cells is likely to inform future therapeutic approaches directed at these potent oncogenes. ErbB2 is resistant to stimulus-induced degradation and high levels of over-expression can inhibit EGF receptor down-regulation. We now show that for HeLa cells expressing similar numbers of EGFR and ErbB2, EGFR down-regulation is efficient and insensitive to reduction of ErbB2 levels. Deubiquitinating enzymes (DUBs) may extend protein half-lives by rescuing ubiquitinated substrates from proteasomal degradation or from ubiquitin-dependent lysosomal sorting. Using a siRNA library directed at the full complement of human DUBs, we identified POH1 (also known as Rpn11 or PSMD14), a component of the proteasome lid, as a critical DUB controlling the apparent ErbB2 levels. Moreover, the effects on ErbB2 levels can be reproduced by administration of proteasomal inhibitors such as epoxomicin used at maximally tolerated doses. However, the extent of this apparent loss and specificity for ErbB2 versus EGFR could not be accounted for by changes in transcription or degradation rate. Further investigation revealed that cell surface ErbB2 levels are only mildly affected by POH1 knock-down and that the apparent loss can at least partially be explained by the accumulation of higher molecular weight ubiquitinated forms of ErbB2 that are detectable with an extracellular but not intracellular domain directed antibody. We propose that POH1 may deubiquitinate ErbB2 and that this activity is not necessarily coupled to proteasomal degradation.
Related JoVE Video
Direct and indirect control of mitogen-activated protein kinase pathway-associated components, BRAP/IMP E3 ubiquitin ligase and CRAF/RAF1 kinase, by the deubiquitylating enzyme USP15.
J. Biol. Chem.
Show Abstract
Hide Abstract
The opposing regulators of ubiquitylation status, E3 ligases and deubiquitylases, are often found to be associated in complexes. Here we report on a novel interaction between the E3 ligase BRAP (also referred to as IMP), a negative regulator of the MAPK scaffold protein KSR, and two closely related deubiquitylases, USP15 and USP4. We map the interaction to the N-terminal DUSP-UBL domain of USP15 and the coiled coil region of BRAP. USP15 as well as USP4 oppose the autoubiquitylation of BRAP, whereas BRAP promotes the ubiquitylation of USP15. Importantly, USP15 but not USP4 depletion destabilizes BRAP by promoting its proteasomal degradation, and BRAP-protein levels can be rescued by reintroducing catalytically active but not inactive mutant USP15. Unexpectedly, USP15 depletion results in a decrease in amplitude of MAPK signaling in response to EGF and PDGF. We provide evidence for a model in which the dominant effect of prolonged USP15 depletion upon signal amplitude is due to a decrease in CRAF levels while allowing for the possibility that USP15 may also function to dampen MAPK signaling through direct stabilization of a negative regulator, the E3 ligase BRAP.
Related JoVE Video
Governance of endocytic trafficking and signaling by reversible ubiquitylation.
Dev. Cell
Show Abstract
Hide Abstract
The endosomal pathway provides a major platform for ubiquitin-modifying enzymes, which act upon membrane-associated proteins in transit. Ubiquitylated cargo proteins are recognized by ubiquitin-binding domains inherent to key adaptor proteins at the plasma membrane and sorting endosome. A balance between ubiquitylation and deubiquitylation activities may govern the efficiency of recycling from endosomes to the plasma membrane versus lysosomal sorting through the multivesicular body pathway. We discuss the current knowledge of the properties of adaptors and ubiquitin-modifying proteins and their effects upon the trafficking and signaling of receptors and ligands associated with pathways fundamental to development.
Related JoVE Video
Global snapshot of the influence of endocytosis upon EGF receptor signaling output.
J. Proteome Res.
Show Abstract
Hide Abstract
Trafficking of activated receptors may dictate the signaling output through the exposure to a changing palette of substrates and effectors. Here, we have used the acute application of a chemical inhibitor of dynamin activity, Dynasore, to inhibit internalization of activated EGF receptors together with quantitative mass spectrometry. This has generated a global snapshot of phosphorylation associated changes, which are contingent upon the endosomal trafficking of the activated EGF receptor. Using a SILAC approach, we have been able to quantitate >500 proteins in pTyr immunoprecipitation experiments and close to 800 individual phosphopeptides through affinity based enrichment strategies. This study provides >2 orders of magnitude increase in the coverage of potential EGF effectors than hitherto assessed in the context of endocytosis. There is a strong positive correlation between EGF responsiveness and sensitivity to Dynasore, with ~40% of EGF responses being significantly changed by endocytic inhibition. Proteins which are functionally linked to endosomal sorting are strongly influenced by receptor entry, suggesting that the activated receptor can govern its fate by influencing endosomal dynamics. However, the majority of EGF-responsive enzymes which we quantify, do not exhibit this property. Hence, our results provide many examples of key signaling proteins that are impervious to EGFR receptor endocytosis but nevertheless confirm the broad principle of endocytosis influence upon the network response.
Related JoVE Video
Guidelines for the use and interpretation of assays for monitoring autophagy.
Daniel J Klionsky, Fábio C Abdalla, Hagai Abeliovich, Robert T Abraham, Abraham Acevedo-Arozena, Khosrow Adeli, Lotta Agholme, Maria Agnello, Patrizia Agostinis, Julio A Aguirre-Ghiso, Hyung Jun Ahn, Ouardia Ait-Mohamed, Slimane Ait-Si-Ali, Takahiko Akematsu, Shizuo Akira, Hesham M Al-Younes, Munir A Al-Zeer, Matthew L Albert, Roger L Albin, Javier Alegre-Abarrategui, Maria Francesca Aleo, Mehrdad Alirezaei, Alexandru Almasan, Maylin Almonte-Becerril, Atsuo Amano, Ravi Amaravadi, Shoba Amarnath, Amal O Amer, Nathalie Andrieu-Abadie, Vellareddy Anantharam, David K Ann, Shailendra Anoopkumar-Dukie, Hiroshi Aoki, Nadezda Apostolova, Giuseppe Arancia, John P Aris, Katsuhiko Asanuma, Nana Y O Asare, Hisashi Ashida, Valerie Askanas, David S Askew, Patrick Auberger, Misuzu Baba, Steven K Backues, Eric H Baehrecke, Ben A Bahr, Xue-Yuan Bai, Yannick Bailly, Robert Baiocchi, Giulia Baldini, Walter Balduini, Andrea Ballabio, Bruce A Bamber, Edward T W Bampton, Gábor Bánhegyi, Clinton R Bartholomew, Diane C Bassham, Robert C Bast, Henri Batoko, Boon-Huat Bay, Isabelle Beau, Daniel M Béchet, Thomas J Begley, Christian Behl, Christian Behrends, Soumeya Bekri, Bryan Bellaire, Linda J Bendall, Luca Benetti, Laura Berliocchi, Henri Bernardi, Francesca Bernassola, Sébastien Besteiro, Ingrid Bhatia-Kiššová, Xiaoning Bi, Martine Biard-Piechaczyk, Janice S Blum, Lawrence H Boise, Paolo Bonaldo, David L Boone, Beat C Bornhauser, Karina R Bortoluci, Ioannis Bossis, Fréderic Bost, Jean-Pierre Bourquin, Patricia Boya, Michaël Boyer-Guittaut, Peter V Bozhkov, Nathan R Brady, Claudio Brancolini, Andreas Brech, Jay E Brenman, Ana Brennand, Emery H Bresnick, Patrick Brest, Dave Bridges, Molly L Bristol, Paul S Brookes, Eric J Brown, John H Brumell, Nicola Brunetti-Pierri, Ulf T Brunk, Dennis E Bulman, Scott J Bultman, Geert Bultynck, Lena F Burbulla, Wilfried Bursch, Jonathan P Butchar, Wanda Buzgariu, Sérgio P Bydlowski, Ken Cadwell, Monika Cahova, Dongsheng Cai, Jiyang Cai, Qian Cai, Bruno Calabretta, Javier Calvo-Garrido, Nadine Camougrand, Michelangelo Campanella, Jenny Campos-Salinas, Eleonora Candi, Lizhi Cao, Allan B Caplan, Simon R Carding, Sandra M Cardoso, Jennifer S Carew, Cathleen R Carlin, Virginie Carmignac, Leticia A M Carneiro, Serena Carra, Rosario A Caruso, Giorgio Casari, Caty Casas, Roberta Castino, Eduardo Cebollero, Francesco Cecconi, Jean Celli, Hassan Chaachouay, Han-Jung Chae, Chee-Yin Chai, David C Chan, Edmond Y Chan, Raymond Chuen-Chung Chang, Chi-Ming Che, Ching-Chow Chen, Guang-Chao Chen, Guo-Qiang Chen, Min Chen, Quan Chen, Steve S-L Chen, WenLi Chen, Xi Chen, Xiangmei Chen, Xiequn Chen, Ye-Guang Chen, Yingyu Chen, Yongqiang Chen, Yu-Jen Chen, Zhixiang Chen, Alan Cheng, Christopher H K Cheng, Yan Cheng, Heesun Cheong, Jae-Ho Cheong, Sara Cherry, Russ Chess-Williams, Zelda H Cheung, Eric Chevet, Hui-Ling Chiang, Roberto Chiarelli, Tomoki Chiba, Lih-Shen Chin, Shih-Hwa Chiou, Francis V Chisari, Chi Hin Cho, Dong-Hyung Cho, Augustine M K Choi, DooSeok Choi, Kyeong Sook Choi, Mary E Choi, Salem Chouaib, Divaker Choubey, Vinay Choubey, Charleen T Chu, Tsung-Hsien Chuang, Sheau-Huei Chueh, Taehoon Chun, Yong-Joon Chwae, Mee-Len Chye, Roberto Ciarcia, Maria R Ciriolo, Michael J Clague, Robert S B Clark, Peter G H Clarke, Robert Clarke, Patrice Codogno, Hilary A Coller, María I Colombo, Sergio Comincini, Maria Condello, Fabrizio Condorelli, Mark R Cookson, Graham H Coombs, Isabelle Coppens, Ramón Corbalán, Pascale Cossart, Paola Costelli, Safia Costes, Ana Coto-Montes, Eduardo Couve, Fraser P Coxon, James M Cregg, José L Crespo, Marianne J Cronjé, Ana Maria Cuervo, Joseph J Cullen, Mark J Czaja, Marcello D'Amelio, Arlette Darfeuille-Michaud, Lester M Davids, Faith E Davies, Massimo De Felici, John F de Groot, Cornelis A M de Haan, Luisa De Martino, Angelo De Milito, Vincenzo De Tata, Jayanta Debnath, Alexei Degterev, Benjamin Dehay, Lea M D Delbridge, Francesca Demarchi, Yi Zhen Deng, Jörn Dengjel, Paul Dent, Donna Denton, Vojo Deretic, Shyamal D Desai, Rodney J Devenish, Mario Di Gioacchino, Gilbert Di Paolo, Chiara Di Pietro, Guillermo Díaz-Araya, Inés Díaz-Laviada, Maria T Diaz-Meco, Javier Diaz-Nido, Ivan Dikic, Savithramma P Dinesh-Kumar, Wen-Xing Ding, Clark W Distelhorst, Abhinav Diwan, Mojgan Djavaheri-Mergny, Svetlana Dokudovskaya, Zheng Dong, Frank C Dorsey, Victor Dosenko, James J Dowling, Stephen Doxsey, Marlène Dreux, Mark E Drew, Qiuhong Duan, Michel A Duchosal, Karen Duff, Isabelle Dugail, Madeleine Durbeej, Michael Duszenko, Charles L Edelstein, Aimee L Edinger, Gustavo Egea, Ludwig Eichinger, N Tony Eissa, Suhendan Ekmekcioglu, Wafik S El-Deiry, Zvulun Elazar, Mohamed Elgendy, Lisa M Ellerby, Kai Er Eng, Anna-Mart Engelbrecht, Simone Engelender, Jekaterina Erenpreisa, Ricardo Escalante, Audrey Esclatine, Eeva-Liisa Eskelinen, Lucile Espert, Virginia Espina, Huizhou Fan, Jia Fan, Qi-Wen Fan, Zhen Fan, Shengyun Fang, Yongqi Fang, Manolis Fanto, Alessandro Fanzani, Thomas Farkas, Jean-Claude Farré, Mathias Faure, Marcus Fechheimer, Carl G Feng, Jian Feng, Qili Feng, Youji Feng, László Fésüs, Ralph Feuer, Maria E Figueiredo-Pereira, Gian Maria Fimia, Diane C Fingar, Steven Finkbeiner, Toren Finkel, Kim D Finley, Filomena Fiorito, Edward A Fisher, Paul B Fisher, Marc Flajolet, Maria L Florez-McClure, Salvatore Florio, Edward A Fon, Francesco Fornai, Franco Fortunato, Rati Fotedar, Daniel H Fowler, Howard S Fox, Rodrigo Franco, Lisa B Frankel, Marc Fransen, José M Fuentes, Juan Fueyo, Jun Fujii, Kozo Fujisaki, Eriko Fujita, Mitsunori Fukuda, Ruth H Furukawa, Matthias Gaestel, Philippe Gailly, Malgorzata Gajewska, Brigitte Galliot, Vincent Galy, Subramaniam Ganesh, Barry Ganetzky, Ian G Ganley, Fen-Biao Gao, George F Gao, Jinming Gao, Lorena Garcia, Guillermo Garcia-Manero, Mikel Garcia-Marcos, Marjan Garmyn, Andrei L Gartel, Evelina Gatti, Mathias Gautel, Thomas R Gawriluk, Matthew E Gegg, Jiefei Geng, Marc Germain, Jason E Gestwicki, David A Gewirtz, Saeid Ghavami, Pradipta Ghosh, Anna M Giammarioli, Alexandra N Giatromanolaki, Spencer B Gibson, Robert W Gilkerson, Michael L Ginger, Henry N Ginsberg, Jakub Golab, Michael S Goligorsky, Pierre Golstein, Candelaria Gomez-Manzano, Ebru Goncu, Céline Gongora, Claudio D Gonzalez, Ramon Gonzalez, Cristina González-Estévez, Rosa Ana González-Polo, Elena Gonzalez-Rey, Nikolai V Gorbunov, Sharon Gorski, Sandro Goruppi, Roberta A Gottlieb, Devrim Gozuacik, Giovanna Elvira Granato, Gary D Grant, Kim N Green, Aleš Gregorc, Frédéric Gros, Charles Grose, Thomas W Grunt, Philippe Gual, Jun-Lin Guan, Kun-Liang Guan, Sylvie M Guichard, Anna S Gukovskaya, Ilya Gukovsky, Jan Gunst, Asa B Gustafsson, Andrew J Halayko, Amber N Hale, Sandra K Halonen, Maho Hamasaki, Feng Han, Ting Han, Michael K Hancock, Malene Hansen, Hisashi Harada, Masaru Harada, Stefan E Hardt, J Wade Harper, Adrian L Harris, James Harris, Steven D Harris, Makoto Hashimoto, Jeffrey A Haspel, Shin-Ichiro Hayashi, Lori A Hazelhurst, Congcong He, You-Wen He, Marie-Josee Hebert, Kim A Heidenreich, Miep H Helfrich, Gudmundur V Helgason, Elizabeth P Henske, Brian Herman, Paul K Herman, Claudio Hetz, Sabine Hilfiker, Joseph A Hill, Lynne J Hocking, Paul Hofman, Thomas G Hofmann, Jörg Höhfeld, Tessa L Holyoake, Ming-Huang Hong, David A Hood, Gökhan S Hotamisligil, Ewout J Houwerzijl, Maria Høyer-Hansen, Bingren Hu, Chien-An A Hu, Hong-Ming Hu, Ya Hua, Canhua Huang, Ju Huang, Shengbing Huang, Wei-Pang Huang, Tobias B Huber, Won-Ki Huh, Tai-Ho Hung, Ted R Hupp, Gang Min Hur, James B Hurley, Sabah N A Hussain, Patrick J Hussey, Jung Jin Hwang, Seungmin Hwang, Atsuhiro Ichihara, Shirin Ilkhanizadeh, Ken Inoki, Takeshi Into, Valentina Iovane, Juan L Iovanna, Nancy Y Ip, Yoshitaka Isaka, Hiroyuki Ishida, Ciro Isidoro, Ken-Ichi Isobe, Akiko Iwasaki, Marta Izquierdo, Yotaro Izumi, Panu M Jaakkola, Marja Jäättelä, George R Jackson, William T Jackson, Bassam Janji, Marina Jendrach, Ju-Hong Jeon, Eui-Bae Jeung, Hong Jiang, Hongchi Jiang, Jean X Jiang, Ming Jiang, Qing Jiang, Xuejun Jiang, Alberto Jiménez, Meiyan Jin, Shengkan Jin, Cheol O Joe, Terje Johansen, Daniel E Johnson, Gail V W Johnson, Nicola L Jones, Bertrand Joseph, Suresh K Joseph, Annie M Joubert, Gábor Juhász, Lucienne Juillerat-Jeanneret, Chang Hwa Jung, Yong-Keun Jung, Kai Kaarniranta, Allen Kaasik, Tomohiro Kabuta, Motoni Kadowaki, Katarina Kågedal, Yoshiaki Kamada, Vitaliy O Kaminskyy, Harm H Kampinga, Hiromitsu Kanamori, Chanhee Kang, Khong Bee Kang, Kwang Il Kang, Rui Kang, Yoon-A Kang, Tomotake Kanki, Thirumala-Devi Kanneganti, Haruo Kanno, Anumantha G Kanthasamy, Arthi Kanthasamy, Vassiliki Karantza, Gur P Kaushal, Susmita Kaushik, Yoshinori Kawazoe, Po-Yuan Ke, John H Kehrl, Ameeta Kelekar, Claus Kerkhoff, David H Kessel, Hany Khalil, Jan A K W Kiel, Amy A Kiger, Akio Kihara, Deok Ryong Kim, Do-Hyung Kim, Dong-Hou Kim, Eun-Kyoung Kim, Hyung-Ryong Kim, Jae-Sung Kim, Jeong Hun Kim, Jin Cheon Kim, John K Kim, Peter K Kim, Seong Who Kim, Yong-Sun Kim, Yonghyun Kim, Adi Kimchi, Alec C Kimmelman, Jason S King, Timothy J Kinsella, Vladimir Kirkin, Lorrie A Kirshenbaum, Katsuhiko Kitamoto, Kaio Kitazato, Ludger Klein, Walter T Klimecki, Jochen Klucken, Erwin Knecht, Ben C B Ko, Jan C Koch, Hiroshi Koga, Jae-Young Koh, Young Ho Koh, Masato Koike, Masaaki Komatsu, Eiki Kominami, Hee Jeong Kong, Wei-jia Kong, Viktor I Korolchuk, Yaichiro Kotake, Michael I Koukourakis, Juan B Kouri Flores, Attila L Kovács, Claudine Kraft, Dimitri Krainc, Helmut Krämer, Carole Kretz-Remy, Anna M Krichevsky, Guido Kroemer, Rejko Krüger, Oleg Krut, Nicholas T Ktistakis, Chia-Yi Kuan, Róza Kucharczyk, Ashok Kumar, Raj Kumar, Sharad Kumar, Mondira Kundu, Hsing-Jien Kung, Tino Kurz, Ho Jeong Kwon, Albert R La Spada, Frank Lafont, Trond Lamark, Jacques Landry, Jon D Lane, Pierre Lapaquette, Jocelyn F Laporte, Lajos László, Sergio Lavandero, Josée N Lavoie, Robert Layfield, Pedro A Lazo, Weidong Le, Laurent Le Cam, Daniel J Ledbetter, Alvin J X Lee, Byung-Wan Lee, Gyun Min Lee, Jongdae Lee, Ju-Hyun Lee, Michael Lee, Myung-Shik Lee, Sug Hyung Lee, Christiaan Leeuwenburgh, Patrick Legembre, Renaud Legouis, Michael Lehmann, Huan-Yao Lei, Qun-Ying Lei, David A Leib, José Leiro, John J Lemasters, Antoinette Lemoine, Maciej S Lesniak, Dina Lev, Victor V Levenson, Beth Levine, Efrat Levy, Faqiang Li, Jun-lin Li, Lian Li, Sheng Li, Weijie Li, Xue-Jun Li, Yan-Bo Li, Yi-Ping Li, Chengyu Liang, Qiangrong Liang, Yung-Feng Liao, Pawel P Liberski, Andrew Lieberman, Hyunjung J Lim, Kah-Leong Lim, Kyu Lim, Chiou-Feng Lin, Fu-Cheng Lin, Jian Lin, Jiandie D Lin, Kui Lin, Wan-Wan Lin, Weei-Chin Lin, Yi-Ling Lin, Rafael Linden, Paul Lingor, Jennifer Lippincott-Schwartz, Michael P Lisanti, Paloma B Liton, Bo Liu, Chun-Feng Liu, Kaiyu Liu, Leyuan Liu, Qiong A Liu, Wei Liu, Young-Chau Liu, Yule Liu, Richard A Lockshin, Chun-Nam Lok, Sagar Lonial, Benjamin Loos, Gabriel Lopez-Berestein, Carlos Lopez-Otin, Laura Lossi, Michael T Lotze, Péter Low, Binfeng Lu, Bingwei Lu, Bo Lu, Zhen Lu, Fredéric Luciano, Nicholas W Lukacs, Anders H Lund, Melinda A Lynch-Day, Yong Ma, Fernando Macian, Jeff P MacKeigan, Kay F Macleod, Frank Madeo, Luigi Maiuri, Maria Chiara Maiuri, Davide Malagoli, May Christine V Malicdan, Walter Malorni, Na Man, Eva-Maria Mandelkow, Stéphen Manon, Irena Manov, Kai Mao, Xiang Mao, Zixu Mao, Philippe Marambaud, Daniela Marazziti, Yves L Marcel, Katie Marchbank, Piero Marchetti, Stefan J Marciniak, Mateus Marcondes, Mohsen Mardi, Gabriella Marfè, Guillermo Mariño, Maria Markaki, Mark R Marten, Seamus J Martin, Camille Martinand-Mari, Wim Martinet, Marta Martinez-Vicente, Matilde Masini, Paola Matarrese, Saburo Matsuo, Raffaele Matteoni, Andreas Mayer, Nathalie M Mazure, David J McConkey, Melanie J McConnell, Catherine McDermott, Christine McDonald, Gerald M McInerney, Sharon L McKenna, BethAnn McLaughlin, Pamela J McLean, Christopher R McMaster, G Angus McQuibban, Alfred J Meijer, Miriam H Meisler, Alicia Meléndez, Thomas J Melia, Gerry Melino, Maria A Mena, Javier A Menendez, Rubem F S Menna-Barreto, Manoj B Menon, Fiona M Menzies, Carol A Mercer, Adalberto Merighi, Diane E Merry, Stefania Meschini, Christian G Meyer, Thomas F Meyer, Chao-Yu Miao, Jun-Ying Miao, Paul A M Michels, Carine Michiels, Dalibor Mijaljica, Ana Milojkovic, Saverio Minucci, Clelia Miracco, Cindy K Miranti, Ioannis Mitroulis, Keisuke Miyazawa, Noboru Mizushima, Baharia Mograbi, Simin Mohseni, Xavier Molero, Bertrand Mollereau, Faustino Mollinedo, Takashi Momoi, Iryna Monastyrska, Martha M Monick, Mervyn J Monteiro, Michael N Moore, Rodrigo Mora, Kevin Moreau, Paula I Moreira, Yuji Moriyasu, Jorge Moscat, Serge Mostowy, Jeremy C Mottram, Tomasz Motyl, Charbel E-H Moussa, Sylke Müller, Sylviane Muller, Karl Münger, Christian Münz, Leon O Murphy, Maureen E Murphy, Antonio Musarò, Indira Mysorekar, Eiichiro Nagata, Kazuhiro Nagata, Aimable Nahimana, Usha Nair, Toshiyuki Nakagawa, Kiichi Nakahira, Hiroyasu Nakano, Hitoshi Nakatogawa, Meera Nanjundan, Naweed I Naqvi, Derek P Narendra, Masashi Narita, Miguel Navarro, Steffan T Nawrocki, Taras Y Nazarko, Andriy Nemchenko, Mihai G Netea, Thomas P Neufeld, Paul A Ney, Ioannis P Nezis, Huu Phuc Nguyen, Daotai Nie, Ichizo Nishino, Corey Nislow, Ralph A Nixon, Takeshi Noda, Angelika A Noegel, Anna Nogalska, Satoru Noguchi, Lucia Notterpek, Ivana Novak, Tomoyoshi Nozaki, Nobuyuki Nukina, Thorsten Nürnberger, Beat Nyfeler, Keisuke Obara, Terry D Oberley, Salvatore Oddo, Michinaga Ogawa, Toya Ohashi, Koji Okamoto, Nancy L Oleinick, F Javier Oliver, Laura J Olsen, Stefan Olsson, Onya Opota, Timothy F Osborne, Gary K Ostrander, Kinya Otsu, Jing-hsiung James Ou, Mireille Ouimet, Michael Overholtzer, Bulent Ozpolat, Paolo Paganetti, Ugo Pagnini, Nicolas Pallet, Glen E Palmer, Camilla Palumbo, Tianhong Pan, Theocharis Panaretakis, Udai Bhan Pandey, Zuzana Papackova, Issidora Papassideri, Irmgard Paris, Junsoo Park, Ohkmae K Park, Jan B Parys, Katherine R Parzych, Susann Patschan, Cam Patterson, Sophie Pattingre, John M Pawelek, Jianxin Peng, David H Perlmutter, Ida Perrotta, George Perry, Shazib Pervaiz, Matthias Peter, Godefridus J Peters, Morten Petersen, Goran Petrovski, James M Phang, Mauro Piacentini, Philippe Pierre, Valérie Pierrefite-Carle, Gérard Pierron, Ronit Pinkas-Kramarski, Antonio Piras, Natik Piri, Leonidas C Platanias, Stefanie Pöggeler, Marc Poirot, Angelo Poletti, Christian Poüs, Mercedes Pozuelo-Rubio, Mette Prætorius-Ibba, Anil Prasad, Mark Prescott, Muriel Priault, Nathalie Produit-Zengaffinen, Ann Progulske-Fox, Tassula Proikas-Cezanne, Serge Przedborski, Karin Przyklenk, Rosa Puertollano, Julien Puyal, Shu-Bing Qian, Liang Qin, Zheng-Hong Qin, Susan E Quaggin, Nina Raben, Hannah Rabinowich, Simon W Rabkin, Irfan Rahman, Abdelhaq Rami, Georg Ramm, Glenn Randall, Felix Randow, V Ashutosh Rao, Jeffrey C Rathmell, Brinda Ravikumar, Swapan K Ray, Bruce H Reed, John C Reed, Fulvio Reggiori, Anne Regnier-Vigouroux, Andreas S Reichert, John J Reiners, Russel J Reiter, Jun Ren, Jose L Revuelta, Christopher J Rhodes, Konstantinos Ritis, Elizete Rizzo, Jeffrey Robbins, Michel Roberge, Hernan Roca, Maria C Roccheri, Stéphane Rocchi, H Peter Rodemann, Santiago Rodríguez de Córdoba, Bärbel Rohrer, Igor B Roninson, Kirill Rosen, Magdalena M Rost-Roszkowska, Mustapha Rouis, Kasper M A Rouschop, Francesca Rovetta, Brian P Rubin, David C Rubinsztein, Klaus Ruckdeschel, Edmund B Rucker, Assaf Rudich, Emil Rudolf, Nelson Ruiz-Opazo, Rossella Russo, Tor Erik Rusten, Kevin M Ryan, Stefan W Ryter, David M Sabatini, Junichi Sadoshima, Tapas Saha, Tatsuya Saitoh, Hiroshi Sakagami, Yasuyoshi Sakai, Ghasem Hoseini Salekdeh, Paolo Salomoni, Paul M Salvaterra, Guy Salvesen, Rosa Salvioli, Anthony M J Sanchez, José A Sánchez-Alcázar, Ricardo Sánchez-Prieto, Marco Sandri, Uma Sankar, Poonam Sansanwal, Laura Santambrogio, Shweta Saran, Sovan Sarkar, Minnie Sarwal, Chihiro Sasakawa, Ausra Sasnauskiene, Miklós Sass, Ken Sato, Miyuki Sato, Anthony H V Schapira, Michael Scharl, Hermann M Schätzl, Wiep Scheper, Stefano Schiaffino, Claudio Schneider, Marion E Schneider, Regine Schneider-Stock, Patricia V Schoenlein, Daniel F Schorderet, Christoph Schüller, Gary K Schwartz, Luca Scorrano, Linda Sealy, Per O Seglen, Juan Segura-Aguilar, Iban Seiliez, Oleksandr Seleverstov, Christian Sell, Jong Bok Seo, Duska Separovic, Vijayasaradhi Setaluri, Takao Setoguchi, Carmine Settembre, John J Shacka, Mala Shanmugam, Irving M Shapiro, Eitan Shaulian, Reuben J Shaw, James H Shelhamer, Han-Ming Shen, Wei-Chiang Shen, Zu-Hang Sheng, Yang Shi, Kenichi Shibuya, Yoshihiro Shidoji, Jeng-Jer Shieh, Chwen-Ming Shih, Yohta Shimada, Shigeomi Shimizu, Takahiro Shintani, Orian S Shirihai, Gordon C Shore, Andriy A Sibirny, Stan B Sidhu, Beata Sikorska, Elaine C M Silva-Zacarin, Alison Simmons, Anna Katharina Simon, Hans-Uwe Simon, Cristiano Simone, Anne Simonsen, David A Sinclair, Rajat Singh, Debasish Sinha, Frank A Sinicrope, Agnieszka Sirko, Parco M Siu, Efthimios Sivridis, Vojtech Skop, Vladimir P Skulachev, Ruth S Slack, Soraya S Smaili, Duncan R Smith, María S Soengas, Thierry Soldati, Xueqin Song, Anil K Sood, Tuck Wah Soong, Federica Sotgia, Stephen A Spector, Claudia D Spies, Wolfdieter Springer, Srinivasa M Srinivasula, Leonidas Stefanis, Joan S Steffan, Ruediger Stendel, Harald Stenmark, Anastasis Stephanou, Stephan T Stern, Cinthya Sternberg, Björn Stork, Peter Stralfors, Carlos S Subauste, Xinbing Sui, David Sulzer, Jiaren Sun, Shi-Yong Sun, Zhi-Jun Sun, Joseph J Y Sung, Kuninori Suzuki, Toshihiko Suzuki, Michele S Swanson, Charles Swanton, Sean T Sweeney, Lai-King Sy, Gyorgy Szabadkai, Ira Tabas, Heinrich Taegtmeyer, Marco Tafani, Krisztina Takács-Vellai, Yoshitaka Takano, Kaoru Takegawa, Genzou Takemura, Fumihiko Takeshita, Nicholas J Talbot, Kevin S W Tan, Keiji Tanaka, Kozo Tanaka, Daolin Tang, Dingzhong Tang, Isei Tanida, Bakhos A Tannous, Nektarios Tavernarakis, Graham S Taylor, Gregory A Taylor, J Paul Taylor, Lance S Terada, Alexei Terman, Gianluca Tettamanti, Karin Thevissen, Craig B Thompson, Andrew Thorburn, Michael Thumm, Fengfeng Tian, Yuan Tian, Glauco Tocchini-Valentini, Aviva M Tolkovsky, Yasuhiko Tomino, Lars Tönges, Sharon A Tooze, Cathy Tournier, John Tower, Roberto Towns, Vladimir Trajkovic, Leonardo H Travassos, Ting-Fen Tsai, Mario P Tschan, Takeshi Tsubata, Allan Tsung, Boris Turk, Lorianne S Turner, Suresh C Tyagi, Yasuo Uchiyama, Takashi Ueno, Midori Umekawa, Rika Umemiya-Shirafuji, Vivek K Unni, Maria I Vaccaro, Enza Maria Valente, Greet Van den Berghe, Ida J van der Klei, Wouter van Doorn, Linda F van Dyk, Marjolein van Egmond, Leo A van Grunsven, Peter Vandenabeele, Wim P Vandenberghe, Ilse Vanhorebeek, Eva C Vaquero, Guillermo Velasco, Tibor Vellai, Jose Miguel Vicencio, Richard D Vierstra, Miquel Vila, Cécile Vindis, Giampietro Viola, Maria Teresa Viscomi, Olga V Voitsekhovskaja, Clarissa von Haefen, Marcela Votruba, Keiji Wada, Richard Wade-Martins, Cheryl L Walker, Craig M Walsh, Jochen Walter, Xiang-Bo Wan, Aimin Wang, Chenguang Wang, Dawei Wang, Fan Wang, Fen Wang, Guanghui Wang, Haichao Wang, Hong-Gang Wang, Horng-Dar Wang, Jin Wang, Ke Wang, Mei Wang, Richard C Wang, Xinglong Wang, Xuejun Wang, Ying-Jan Wang, Yipeng Wang, Zhen Wang, Zhigang Charles Wang, Zhinong Wang, Derick G Wansink, Diane M Ward, Hirotaka Watada, Sarah L Waters, Paul Webster, Lixin Wei, Conrad C Weihl, William A Weiss, Scott M Welford, Long-Ping Wen, Caroline A Whitehouse, J Lindsay Whitton, Alexander J Whitworth, Tom Wileman, John W Wiley, Simon Wilkinson, Dieter Willbold, Roger L Williams, Peter R Williamson, Bradly G Wouters, Chenghan Wu, Dao-Cheng Wu, William K K Wu, Andreas Wyttenbach, Ramnik J Xavier, Zhijun Xi, Pu Xia, Gengfu Xiao, Zhiping Xie, Zhonglin Xie, Da-zhi Xu, Jianzhen Xu, Liang Xu, Xiaolei Xu, Ai Yamamoto, Akitsugu Yamamoto, Shunhei Yamashina, Michiaki Yamashita, Xianghua Yan, Mitsuhiro Yanagida, Dun-Sheng Yang, Elizabeth Yang, Jin-Ming Yang, Shi Yu Yang, Wannian Yang, Wei Yuan Yang, Zhifen Yang, Meng-Chao Yao, Tso-Pang Yao, Behzad Yeganeh, Wei-Lien Yen, Jia-Jing Yin, Xiao-Ming Yin, Ook-Joon Yoo, Gyesoon Yoon, Seung-Yong Yoon, Tomohiro Yorimitsu, Yuko Yoshikawa, Tamotsu Yoshimori, Kohki Yoshimoto, Ho Jin You, Richard J Youle, Anas Younes, Li Yu, Long Yu, Seong-Woon Yu, Wai Haung Yu, Zhi-Min Yuan, Zhenyu Yue, Cheol-Heui Yun, Michisuke Yuzaki, Olga Zabirnyk, Elaine Silva-Zacarin, David Zacks, Eldad Zacksenhaus, Nadia Zaffaroni, Zahra Zakeri, Herbert J Zeh, Scott O Zeitlin, Hong Zhang, Hui-Ling Zhang, Jianhua Zhang, Jing-Pu Zhang, Lin Zhang, Long Zhang, Ming-Yong Zhang, Xu Dong Zhang, Mantong Zhao, Yi-Fang Zhao, Ying Zhao, Zhizhuang J Zhao, Xiaoxiang Zheng, Boris Zhivotovsky, Qing Zhong, Cong-Zhao Zhou, Changlian Zhu, Wei-Guo Zhu, Xiao-feng Zhu, Xiongwei Zhu, Yuangang Zhu, Teresa Zoladek, Wei-Xing Zong, Antonio Zorzano, Jürgen Zschocke, Brian Zuckerbraun.
Autophagy
Show Abstract
Hide Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Related JoVE Video
Cellular functions of the DUBs.
J. Cell. Sci.
Show Abstract
Hide Abstract
Ubiquitylation is a reversible post-translational modification that has emerged as a key regulator of most complex cellular processes. It may rival phosphorylation in scope and exceed it in complexity. The dynamic nature of ubiquitylation events is important for governing protein stability, maintaining ubiquitin homeostasis and controlling ubiquitin-dependent signalling pathways. The human genome encodes ~80 active deubiquitylating enzymes (DUBs, also referred to as deubiquitinases), which exhibit distinct specificity profiles towards the various ubiquitin chain topologies. As a result of their ability to reverse ubiquitylation, these enzymes control a broad range of key cellular processes. In this Commentary we discuss the cellular functions of DUBs, such as their role in governing membrane traffic and protein quality control. We highlight two key signalling pathways--the Wnt and transforming growth factor ? (TGF-?) pathways, for which dynamic ubiquitylation has emerged as a key regulator. We also discuss the roles of DUBs in the nucleus, where they govern transcriptional activity and DNA repair pathways.
Related JoVE Video
Selective protein degradation in cell signalling.
Semin. Cell Dev. Biol.
Show Abstract
Hide Abstract
A variety of post-translational modifications such as phosphorylation, acetylation and ubiquitylation transduce cellular signals, which culminate in changes in gene transcription. In this article we examine the ways in which selective protein degradation provides an extra dimension to the regulation of such signalling cascades. We discuss (i) how both lysosomal and proteasomal systems are used to attenuate kinase and rho family GTPase signalling, thereby coupling activation with degradation, (ii) signal propagation contingent upon the selective degradation of inhibitory components, exemplified by the degradation of I?B to activate NF-?B signalling, and (iii) tonic suppression of signalling pathways by turnover of the transcription factors ?-catenin and p53.
Related JoVE Video
Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions.
Mol. Biol. Cell
Show Abstract
Hide Abstract
Ubiquitination is a reversible modification that influences a broad range of physiological processes. There are approximately 90 deubiquitinases (DUBs) encoded in the human genome, of which 79 are predicted to have catalytic activity. We tagged 66 DUBs with green fluorescent protein and systematically surveyed their subcellular distribution, identifying enzymes specific to the nucleus, plasma membrane, and secretory and endocytic pathways. USP21 is unique in showing clear association with both centrosomes and microtubules. Using an in vitro assay, we show that microtubule binding is direct and identify a novel microtubule-binding motif encompassed within amino acids 59-75 of the N-terminus of USP21. Our functional studies indicate a key role for USP21 in the governance of microtubule- and centrosome-associated physiological processes: Depletion of USP21 in A549 cells compromises the reestablishment of a radial array of microtubules during recovery from cold-induced depolymerization and also reduces the probability of primary cilium formation, whereas USP21 knockdown in PC12 cells inhibits nerve growth factor-induced neurite outgrowth.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.