JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The ect2 rho Guanine nucleotide exchange factor is essential for early mouse development and normal cell cytokinesis and migration.
Genes Cancer
PUBLISHED: 11-01-2011
Show Abstract
Hide Abstract
Ect2 is a member of the human Dbl family of guanine nucleotide exchange factors (RhoGEFs) that serve as activators of Rho family small GTPases. Although Ect2 is one of at least 25 RhoGEFs that can activate the RhoA small GTPase, cell culture studies using established cell lines determined that Ect2 is essential for mammalian cell cytokinesis and proliferation. To address the function of Ect2 in normal mammalian development, we performed gene targeting to generate Ect2 knockout mice. The heterozygous Ect2(+/-) mice showed normal development and life span, indicating that Ect2 haplodeficiency was not deleterious for development or growth. In contrast, Ect2(-/-) embryos were not found at birth or postimplantation stages. Ect2(-/-) blastocysts were recovered at embryonic day 3.5 but did not give rise to viable outgrowths in culture, indicating that Ect2 is required for peri-implantation development. To further assess the importance of Ect2 in normal cell physiology, we isolated primary fibroblasts from Ect2(fl/fl) embryos (MEFs) and ablated Ect2 using adenoviral delivery of Cre recombinase. We observed a significant increase in multinucleated cells and accumulation of cells in G2/M phase, consistent with a role for Ect2 in cytokinesis. Ect2 deficiency also caused enlargement of the cytoplasm and impaired cell migration. Finally, although Ect2-dependent activation of RhoA has been implicated in cytokinesis, Ect2 can also activate Rac1 and Cdc42 to cause growth transformation. Surprisingly, ectopic expression of constitutively activated RhoA, Rac1, or Cdc42, known substrates of Ect2, failed to phenocopy Ect2 and did not rescue the defect in cytokinesis caused by loss of Ect2. In summary, our results establish the unique role of Ect2 in development and normal cell proliferation.
Related JoVE Video
Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimers disease.
PLoS ONE
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
Transgenic mice expressing mutated amyloid precursor protein (APP) and presenilin (PS)-1 or -2 have been successfully used to model cerebral beta-amyloidosis, one of the characteristic hallmarks of Alzheimers disease (AD) pathology. However, the use of many transgenic lines is limited by premature death, low breeding efficiencies and late onset and high inter-animal variability of the pathology, creating a need for improved animal models. Here we describe the detailed characterization of a new homozygous double-transgenic mouse line that addresses most of these issues.
Related JoVE Video
GPR30 does not mediate estrogenic responses in reproductive organs in mice.
Biol. Reprod.
PUBLISHED: 02-20-2009
Show Abstract
Hide Abstract
The G protein-coupled receptor Gpr30 (Gper) was recently claimed to bind to estradiol and to activate cytoplasmic signal transduction pathways in response to estradiol. However, there are conflicting data regarding the role of Gpr30 as an estrogen receptor (ER): several laboratories were unable to demonstrate estradiol binding to GPR30 or estradiol-activated signal transduction in Gpr30-expressing cells. To clarify the potential role of Gpr30 as an ER, we generated Gpr30-deficient mice. Although Gpr30 was expressed in all reproductive organs, histopathological analysis did not reveal any abnormalities in these organs in Gpr30-deficient mice. Mutant male and female mice were as fertile as their wild-type littermates, indicating normal function of the hypothalamic-pituitary-gonadal axis. Moreover, we analyzed estrogenic responses in two major estradiol target organs, the uterus and the mammary gland. For that purpose, we examined different readout paradigms such as morphological measures, cellular proliferation, and target gene expression. Our data demonstrate that in vivo Gpr30 is dispensable for the mediation of estradiol effects in reproductive organs. These results are in clear contrast to the phenotype of mice lacking the classic ER alpha (Esr1) or aromatase (Cyp19a1). We conclude that the perception of Gpr30 (based on homology related to peptide receptors) as an ER might be premature and has to be reconsidered.
Related JoVE Video
Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice.
J. Clin. Invest.
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
The mammalian epididymis provides sperm with an environment that promotes their maturation and protects them from external stresses. For example, it harbors an array of antioxidants, including non-conventional glutathione peroxidase 5 (GPX5), to protect them from oxidative stress. To explore the role of GPX5 in the epididymis, we generated mice that lack epididymal expression of the enzyme. Histological analyses of Gpx5-/- epididymides and sperm cells revealed no obvious defects. Furthermore, there were no apparent differences in the fertilization rate of sexually mature Gpx5-/- male mice compared with WT male mice. However, a higher incidence of miscarriages and developmental defects were observed when WT female mice were mated with Gpx5-deficient males over 1 year old compared with WT males of the same age. Flow cytometric analysis of spermatozoa recovered from Gpx5-null and WT male mice revealed that sperm DNA compaction was substantially lower in the cauda epididymides of Gpx5-null animals and that they suffered from DNA oxidative attacks. Real-time PCR analysis of enzymatic scavengers expressed in the mouse epididymis indicated that the cauda epididymidis epithelium of Gpx5-null male mice mounted an antioxidant response to cope with an excess of ROS. These observations suggest that GPX5 is a potent antioxidant scavenger in the luminal compartment of the mouse cauda epididymidis that protects spermatozoa from oxidative injuries that could compromise their integrity and, consequently, embryo viability.
Related JoVE Video
Small-animal PET imaging of amyloid-beta plaques with [11C]PiB and its multi-modal validation in an APP/PS1 mouse model of Alzheimers disease.
PLoS ONE
Show Abstract
Hide Abstract
In vivo imaging and quantification of amyloid-? plaque (A?) burden in small-animal models of Alzheimers disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of A? in mouse brain with [(11)C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure A? at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [(11)C]PiB uptake in individual brain regions with A? deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of A? pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [(11)C]PiB imaging of A? in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal A? imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice.
Related JoVE Video
Spatial and temporal variation in indicator microbe sampling is influential in beach management decisions.
Water Res.
Show Abstract
Hide Abstract
Fecal indicator microbes, such as enterococci, are often used to assess potential health risks caused by pathogens at recreational beaches. Microbe levels often vary based on collection time and sampling location. The primary goal of this study was to assess how spatial and temporal variations in sample collection, which are driven by environmental parameters, impact enterococci measurements and beach management decisions. A secondary goal was to assess whether enterococci levels can be predictive of the presence of Staphylococcus aureus, a skin pathogen. Over a ten-day period, hydrometeorologic data, hydrodynamic data, bather densities, enterococci levels, and S. aureus levels including methicillin-resistant S. aureus (MRSA) were measured in both water and sand. Samples were collected hourly for both water and sediment at knee-depth, and every 6 h for water at waist-depth, supratidal sand, intertidal sand, and waterline sand. Results showed that solar radiation, tides, and rainfall events were major environmental factors that impacted enterococci levels. S. aureus levels were associated with bathing load, but did not correlate with enterococci levels or any other measured parameters. The results imply that frequencies of advisories depend heavily upon sample collection policies due to spatial and temporal variation of enterococci levels in response to environmental parameters. Thus, sampling at different times of the day and at different depths can significantly impact beach management decisions. Additionally, the lack of correlation between S. aureus and enterococci suggests that use of fecal indicators may not accurately assess risk for some pathogens.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.