JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Measuring genetic interactions in human cells by RNAi and imaging.
Nat Protoc
PUBLISHED: 09-11-2014
Show Abstract
Hide Abstract
Observation of how genetic interactions modulate phenotypes is a powerful method for dissecting their underlying molecular and functional networks. Whereas in model organisms genetic interaction studies are well established, systematic analysis of genetic interactions in human cells has remained challenging. Here we provide a detailed protocol for large-scale mapping of genetic interactions in human cells using a high-throughput phenotyping approach. Pairwise gene product depletion is induced by siRNA-mediated knockdown, and the resulting phenotypes are quantified by automated imaging and computational analysis to provide the basis for detecting genetic interactions between all pairs of genes tested. The whole workflow, depending on the size of the experiment, takes 3 or more weeks to complete.
Related JoVE Video
Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis.
Development
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
Multiple cell types involved in the regulation of angiogenesis express Wnt ligands. Although ?-catenin dependent and independent Wnt signaling pathways have been shown to control angiogenesis, the contribution of individual cell types to activate these downstream pathways in endothelial cells (ECs) during blood vessel formation is still elusive. To investigate the role of ECs in contributing Wnt ligands for regulation of blood vessel formation, we conditionally deleted the Wnt secretion factor Evi in mouse ECs (Evi-ECKO). Evi-ECKO mice showed decreased microvessel density during physiological and pathological angiogenesis in the postnatal retina and in tumors, respectively. The reduced microvessel density resulted from increased vessel regression accompanied by decreased EC survival and proliferation. Concomitantly, survival-related genes were downregulated and cell cycle arrest- and apoptosis-inducing genes were upregulated. EVI silencing in cultured HUVECs showed similar target gene regulation, supporting a mechanism of EC-derived Wnt ligands in controlling EC function. ECs preferentially expressed non-canonical Wnt ligands and canonical target gene expression was unaffected in Evi-ECKO mice. Furthermore, the reduced vascularization of Matrigel plugs in Evi-ECKO mice could be rescued by introduction of non-canonical Wnt5a. Treatment of mouse pups with the non-canonical Wnt inhibitor TNP470 resulted in increased vessel regression accompanied by decreased EC proliferation, thus mimicking the proliferation-dependent Evi-ECKO remodeling phenotype. Taken together, this study identified EC-derived non-canonical Wnt ligands as regulators of EC survival, proliferation and subsequent vascular pruning during developmental and pathological angiogenesis.
Related JoVE Video
Molecular dissection of Wnt3a-Frizzled8 interaction reveals essential and modulatory determinants of Wnt signaling activity.
BMC Biol.
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
Wnt proteins are a family of secreted signaling molecules that regulate key developmental processes in metazoans. The molecular basis of Wnt binding to Frizzled and LRP5/6 co-receptors has long been unknown due to the lack of structural data on Wnt ligands. Only recently, the crystal structure of the Wnt8-Frizzled8-cysteine-rich-domain (CRD) complex was solved, but the significance of interaction sites that influence Wnt signaling has not been assessed.
Related JoVE Video
A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis.
EMBO J.
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death-inducing signaling complex (DISC). Activation of procaspase-8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase-8 preventing the association of caspase-8 with the DISC. We identified FAT1 in a genome-wide siRNA screen for synthetic lethal interactions with death receptor-mediated apoptosis. Knockdown of FAT1 sensitized established and patient-derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase-8 recruitment to the DISC and increased formation of caspase-8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9-mediated genome engineering were more susceptible for death receptor-mediated apoptosis. Our findings provide evidence for a mechanism to control caspase-8-dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions.
Related JoVE Video
Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling.
Blood
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the "iron-regulated" bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19?599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6-triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism.
Related JoVE Video
Functional analysis of the Drosophila embryonic germ cell transcriptome by RNA interference.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general.
Related JoVE Video
Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines.
Nucleic Acids Res.
PUBLISHED: 09-17-2013
Show Abstract
Hide Abstract
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.
Related JoVE Video
E-TALEN: a web tool to design TALENs for genome engineering.
Nucleic Acids Res.
PUBLISHED: 09-03-2013
Show Abstract
Hide Abstract
Use of transcription activator-like effector nucleases (TALENs) is a promising new technique in the field of targeted genome engineering, editing and reverse genetics. Its applications span from introducing knockout mutations to endogenous tagging of proteins and targeted excision repair. Owing to this wide range of possible applications, there is a need for fast and user-friendly TALEN design tools. We developed E-TALEN (http://www.e-talen.org), a web-based tool to design TALENs for experiments of varying scale. E-TALEN enables the design of TALENs against a single target or a large number of target genes. We significantly extended previously published design concepts to consider genomic context and different applications. E-TALEN guides the user through an end-to-end design process of de novo TALEN pairs, which are specific to a certain sequence or genomic locus. Furthermore, E-TALEN offers a functionality to predict targeting and specificity for existing TALENs. Owing to the computational complexity of many of the steps in the design of TALENs, particular emphasis has been put on the implementation of fast yet accurate algorithms. We implemented a user-friendly interface, from the input parameters to the presentation of results. An additional feature of E-TALEN is the in-built sequence and annotation database available for many organisms, including human, mouse, zebrafish, Drosophila and Arabidopsis, which can be extended in the future.
Related JoVE Video
Loss of epidermal Evi/Wls results in a phenotype resembling psoriasiform dermatitis.
J. Exp. Med.
PUBLISHED: 08-05-2013
Show Abstract
Hide Abstract
Cells of the epidermis renew constantly from germinal layer stem cells. Although epithelial cell differentiation has been studied in great detail and the role of Wnt signaling in this process is well described, the contribution of epidermal Wnt secretion in epithelial cell homeostasis remains poorly understood. To analyze the role of Wnt proteins in this process, we created a conditional knockout allele of the Wnt cargo receptor Evi/Gpr177/Wntless and studied mice that lacked Evi expression in the epidermis. We found that K14-Cre, Evi-LOF mice lost their hair during the first hair cycle, showing a reddish skin with impaired skin barrier function. Expression profiling of mutant and wild-type skin revealed up-regulation of inflammation-associated genes. Furthermore, we found that Evi expression in psoriatic skin biopsies is down-regulated, suggesting that Evi-deficient mice developed skin lesions that resemble human psoriasis. Immune cell infiltration was detected in Evi-LOF skin. Interestingly, an age-dependent depletion of dendritic epidermal T cells (DETCs) and an infiltration of ??(low) T cells in Evi mutant epidermis was observed. Collectively, the described inflammatory skin phenotype in Evi-deficient mice revealed an essential role of Wnt secretion in maintaining normal skin homeostasis by enabling a balanced epidermal-dermal cross talk, which affects immune cell recruitment and DETC survival.
Related JoVE Video
Landscape of protein-protein interactions in Drosophila immune deficiency signaling during bacterial challenge.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-07-2013
Show Abstract
Hide Abstract
The Drosophila defense against pathogens largely relies on the activation of two signaling pathways: immune deficiency (IMD) and Toll. The IMD pathway is triggered mainly by Gram-negative bacteria, whereas the Toll pathway responds predominantly to Gram-positive bacteria and fungi. The activation of these pathways leads to the rapid induction of numerous NF-?B-induced immune response genes, including antimicrobial peptide genes. The IMD pathway shows significant similarities with the TNF receptor pathway. Recent evidence indicates that the IMD pathway is also activated in response to various noninfectious stimuli (i.e., inflammatory-like reactions). To gain a better understanding of the molecular machinery underlying the pleiotropic functions of this pathway, we first performed a comprehensive proteomics analysis to identify the proteins interacting with the 11 canonical members of the pathway initially identified by genetic studies. We identified 369 interacting proteins (corresponding to 291 genes) in heat-killed Escherichia coli-stimulated Drosophila S2 cells, 92% of which have human orthologs. A comparative analysis of gene ontology from fly or human gene annotation databases points to four significant common categories: (i) the NuA4, nucleosome acetyltransferase of H4, histone acetyltransferase complex, (ii) the switching defective/sucrose nonfermenting-type chromatin remodeling complex, (iii) transcription coactivator activity, and (iv) translation factor activity. Here we demonstrate that sumoylation of the I?B kinase homolog immune response-deficient 5 plays an important role in the induction of antimicrobial peptide genes through a highly conserved sumoylation consensus site during bacterial challenge. Taken together, the proteomics data presented here provide a unique avenue for a comparative functional analysis of proteins involved in innate immune reactions in flies and mammals.
Related JoVE Video
Wnk kinases are positive regulators of canonical Wnt/?-catenin signalling.
EMBO Rep.
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
Wnt/?-catenin signalling is central to development and its regulation is essential in preventing cancer. Using phosphorylation of Dishevelled as readout of pathway activation, we identified Drosophila Wnk kinase as a new regulator of canonical Wnt/?-catenin signalling. WNK kinases are known for regulating ion co-transporters associated with hypertension disorders. We demonstrate that wnk loss-of-function phenotypes resemble canonical Wnt pathway mutants, while Wnk overexpression causes gain-of-function canonical Wnt-signalling phenotypes. Importantly, knockdown of human WNK1 and WNK2 also results in decreased Wnt signalling in mammalian cell culture, suggesting that Wnk kinases have a conserved function in ensuring peak levels of canonical Wnt signalling.
Related JoVE Video
Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells.
Nat Commun
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Aberrant regulation of the Wnt/?-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or ?-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or ?-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind ?-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or ?-catenin depend on Wnt ligands and their secretion for a sufficient level of ?-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls.
Related JoVE Video
Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping.
Nat. Methods
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Genetic interactions influence many phenotypes and can be used as a powerful experimental tool to discover functional relationships between genes. Here we describe a robust and scalable method to systematically map genetic interactions in human cancer cells using combinatorial RNAi and high-throughput imaging. Through automated, single-cell phenotyping, we measured genetic interactions across a broad spectrum of phenotypes, including cell count, cell eccentricity and nuclear area. We mapped genetic interactions of epigenetic regulators in colon cancer cells, recovering known protein complexes. Our study also revealed the prospects and challenges of studying genetic interactions in human cells using multiparametric phenotyping.
Related JoVE Video
RAB8B is required for activity and caveolar endocytosis of LRP6.
Cell Rep
PUBLISHED: 03-10-2013
Show Abstract
Hide Abstract
Wnt/?-catenin signaling plays an important role in embryonic development and adult tissue homeostasis. When Wnt ligands bind to the receptor complex, LRP5/6 coreceptors are activated by phosphorylation and concomitantly endocytosed. In vertebrates, Wnt ligands induce caveolin-dependent endocytosis of LRP6 to relay signal downstream, whereas antagonists such as Dickkopf promote clathrin-dependent endocytosis, leading to inhibition. However, little is known about how LRP6 is directed to different internalization mechanisms, and how caveolin-dependent endocytosis is mediated. In an RNAi screen, we identified the Rab GTPase RAB8B as being required for Wnt/?-catenin signaling. RAB8B depletion reduces LRP6 activity, ?-catenin accumulation, and induction of Wnt target genes, whereas RAB8B overexpression promotes LRP6 activity and internalization and rescues inhibition of caveolar endocytosis. In Xenopus laevis and Danio rerio, RAB8B morphants show lower Wnt activity during embryonic development. Our results implicate RAB8B as an essential evolutionary conserved component of Wnt/?-catenin signaling through regulation of LRP6 activity and endocytosis.
Related JoVE Video
Design of RNAi reagents for invertebrate model organisms and human disease vectors.
Methods Mol. Biol.
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
RNAi has become a very versatile tool to silence gene expression in a variety of organisms, in particular when classical genetic methods are missing. However, the application of this method in functional studies has raised new challenges in order to design RNAi reagents that minimize false positives and false negatives. Because the performance of reagents cannot be validated on a genome-wide scale, improved computational methods are required that consider experimentally derived quality measures. In this chapter, we describe computational methods for the design of RNAi reagents for invertebrate model organisms and human disease vectors, such as Anopheles. We describe procedures for designing short and long double-stranded RNAs for single genes, and evaluate their predicted specificity and efficiency. Using a bioinformatics pipeline we also describe how to design a genome-wide RNAi library for Anopheles gambiae.
Related JoVE Video
The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis.
J. Cell Biol.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
Despite the critical contributions of cilia to embryonic development and human health, key regulators of cilia formation await identification. In this paper, a functional RNA interference-based screen linked 30 novel protein kinases with ciliogenesis. Of them, we have studied the role of the microtubule (MT)-associated protein/MT affinity regulating kinase 4 (MARK4) in depth. MARK4 associated with the basal body and ciliary axoneme in human and murine cell lines. Ultrastructural and functional analyses established that MARK4 kinase activity was required for initiation of axoneme extension. We identified the mother centriolar protein ODF2 as an interaction partner of MARK4 and showed that ODF2 localization to the centriole partially depended on MARK4. Our data indicated that, upon MARK4 or ODF2 knockdown, the ciliary program arrested before the complete removal of the CP110-Cep97 inhibitory complex from the mother centriole, suggesting that these proteins act at this level of axonemal extension. We propose that MARK4 is a critical positive regulator of early steps in ciliogenesis.
Related JoVE Video
A novel phenotypic dissimilarity method for image-based high-throughput screens.
BMC Bioinformatics
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
Discovering functional relationships of genes through cell-based phenotyping has become an important approach in functional genomics. High-throughput imaging offers the ability to quantitatively assess complex phenotypes after perturbation by RNA interference (RNAi). Such image-based high-throughput RNAi screening studies have facilitated the discovery of novel components of gene networks and their interactions. Images generated by automated microscopy are typically analyzed by extracting quantitative features of individual cells, resulting in large multidimensional data sets. Robust and sensitive methods to interpret these data sets and to derive biologically relevant information in a high-throughput and unbiased manner remain to be developed.
Related JoVE Video
Secretion and extracellular space travel of Wnt proteins.
Curr. Opin. Genet. Dev.
PUBLISHED: 02-02-2013
Show Abstract
Hide Abstract
Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion.
Related JoVE Video
Wnt signaling signaling at and above the receptor level.
Curr. Top. Dev. Biol.
PUBLISHED: 11-15-2011
Show Abstract
Hide Abstract
Wnt signaling is one of the most important developmental signaling pathways that controls cell fate decisions and tissue patterning during early embryonic and later development. It is activated by highly conserved Wnt proteins that are secreted as palmitoylated glycoproteins and act as morphogens to form a concentration gradient across a developing tissue. Wnt proteins regulate transcriptional and posttranscriptional processes depending on the distance of their origin and activate distinct intracellular cascades, commonly referred to as canonical (?-catenin-dependent) and noncanonical (?-catenin-independent) pathways. Therefore, the secretion and the diffusion of Wnt proteins needs to be tightly regulated to induce short- and long-range downstream signaling. Even though the Wnt signaling cascade has been studied intensively, key aspects and principle mechanisms, such as transport of Wnt growth factors or regulation of signaling specificity between different Wnt pathways, remain unresolved. Here, we introduce basic principles of Wnt/Wg signal transduction and highlight recent discoveries, such as the involvement of vacuolar ATPases and vesicular acidification in Wnt signaling. We also discuss recent findings regarding posttranslational modifications of Wnts, trafficking through the secretory pathway and developmental consequences of impaired Wnt secretion. Understanding the detailed mechanism and regulation of Wnt protein secretion will provide valuable insights into many human diseases based on overactivated Wnt signaling.
Related JoVE Video
A novel multiplex cell viability assay for high-throughput RNAi screening.
PLoS ONE
PUBLISHED: 10-13-2011
Show Abstract
Hide Abstract
Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%-58.7±14.4% when two indicators were combined and 40-48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost.
Related JoVE Video
p24 proteins are required for secretion of Wnt ligands.
EMBO Rep.
PUBLISHED: 07-20-2011
Show Abstract
Hide Abstract
During development and disease, the exocytosis of signalling molecules, such as Wnt ligands, is essential to orchestrate cellular programs in multicellular organisms. However, it remains a largely unresolved question whether signalling molecules follow specialized transport routes through the exocytic pathway. Here we identify several Drosophila p24 proteins that are required for Wnt signalling. We demonstrate that one of these p24 proteins, namely Opossum, shuttles in the early secretory pathway, and that the Drosophila Wnt proteins are retained in the absence of p24 proteins. Our results indicate that Wnt secretion relies on a specialized anterograde secretion route with p24 proteins functioning as conserved cargo receptors.
Related JoVE Video
LGR4 and LGR5 are R-spondin receptors mediating Wnt/?-catenin and Wnt/PCP signalling.
EMBO Rep.
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/?-catenin and Wnt/PCP signalling. R-spondin-triggered ?-catenin signalling requires Clathrin, while Wnt3a-mediated ?-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.
Related JoVE Video
ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association.
EMBO J.
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
RNAi screening for kinases regulating the functional organization of the early secretory pathway in Drosophila S2 cells has identified the atypical Mitotic-Associated Protein Kinase (MAPK) Extracellularly regulated kinase 7 (ERK7) as a new modulator. We found that ERK7 negatively regulates secretion in response to serum and amino-acid starvation, in both Drosophila and human cells. Under these conditions, ERK7 turnover through the proteasome is inhibited, and the resulting higher levels of this kinase lead to a modification in a site within the C-terminus of Sec16, a key ER exit site component. This post-translational modification elicits the cytoplasmic dispersion of Sec16 and the consequent disassembly of the ER exit sites, which in turn results in protein secretion inhibition. We found that ER exit site disassembly upon starvation is TOR complex 1 (TORC1) independent, showing that under nutrient stress conditions, cell growth is not only inhibited at the transcriptional and translational levels, but also independently at the level of secretion by inhibiting the membrane flow through the early secretory pathway. These results reveal the existence of new signalling circuits participating in the complex regulation of cell growth.
Related JoVE Video
The Wnt secretion protein Evi/Gpr177 promotes glioma tumourigenesis.
EMBO Mol Med
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
Malignant astrocytomas are highly aggressive brain tumours with poor prognosis. While a number of structural genomic changes and dysregulation of signalling pathways in gliomas have been described, the identification of biomarkers and druggable targets remains an important task for novel diagnostic and therapeutic approaches. Here, we show that the Wnt-specific secretory protein Evi (also known as GPR177/Wntless/Sprinter) is overexpressed in astrocytic gliomas. Evi/Wls is a core Wnt signalling component and a specific regulator of pan-Wnt protein secretion, affecting both canonical and non-canonical signalling. We demonstrate that its depletion in glioma and glioma-derived stem-like cells led to decreased cell proliferation and apoptosis. Furthermore, Evi/Wls silencing in glioma cells reduced cell migration and the capacity to form tumours in vivo. We further show that Evi/Wls overexpression is sufficient to promote downstream Wnt signalling. Taken together, our study identifies Evi/Wls as an essential regulator of glioma tumourigenesis, identifying a pathway-specific protein trafficking factor as an oncogene and offering novel therapeutic options to interfere with the aberrant regulation of growth factors at the site of production.
Related JoVE Video
Transmembrane protein 198 promotes LRP6 phosphorylation and Wnt signaling activation.
Mol. Cell. Biol.
PUBLISHED: 05-02-2011
Show Abstract
Hide Abstract
Wnt/?-catenin signaling is fundamental in embryogenesis and tissue homeostasis in metazoans. Upon Wnt stimulation, cognate coreceptors LRP5 and LRP6 ([LRP5/6] low-density lipoprotein receptor-related proteins 5 and 6) are activated via phosphorylation at key residues. Although several kinases have been implicated, the LRP5/6 activation mechanism remains unclear. Here, we report that transmembrane protein 198 (TMEM198), a previously uncharacterized seven-transmembrane protein, is able to specifically activate LRP6 in transducing Wnt signaling. TMEM198 associates with LRP6 and recruits casein kinase family proteins, via the cytoplasmic domain, to phosphorylate key residues important for LRP6 activation. In mammalian cells, TMEM198 is required for Wnt signaling and casein kinase 1-induced LRP6 phosphorylation. During Xenopus embryogenesis, maternal and zygotic tmem198 mRNAs are widely distributed in the ectoderm and mesoderm. TMEM198 is required for Wnt-mediated neural crest formation, antero-posterior patterning, and particularly engrailed-2 expression in Xenopus embryos. Thus, our results identified TMEM198 as a membrane scaffold protein that promotes LRP6 phosphorylation and Wnt signaling activation.
Related JoVE Video
An RNAi screen identifies USP2 as a factor required for TNF-?-induced NF-?B signaling.
Int. J. Cancer
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Tumor necrosis factor ? (TNF-?) signaling pathways play important roles during tumorigenesis and inflammation. Ubiquitin-dependent processes are central to the regulation of TNF-? and nuclear factor ?B (NF-?B) signaling. We performed a targeted siRNA screen for ubiquitin-specific proteases (USPs) and identified USP2 as a modulator of TNF-?-induced NF-?B signaling. We showed that USP2 is required for the phosphorylation of I?B, nuclear translocation of NF-?B and expression of NF-?B-dependent target genes and IL-8 secretion. Our study also provides evidence for isoform-specific functions of USP2. The immunohistochemical analysis of breast carcinomas revealed that USP2 expression is frequently downregulated. Together, our results implicate USP2 as a novel positive regulator of TNF-?-induced NF-?B signaling and show that its expression is altered in tumor cells.
Related JoVE Video
Extracting quantitative genetic interaction phenotypes from matrix combinatorial RNAi.
BMC Bioinformatics
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
Systematic measurement of genetic interactions by combinatorial RNAi (co-RNAi) is a powerful tool for mapping functional modules and discovering components. It also provides insights into the role of epistasis on the way from genotype to phenotype. The interpretation of co-RNAi data requires computational and statistical analysis in order to detect interactions reliably and sensitively.
Related JoVE Video
The head-regeneration transcriptome of the planarian Schmidtea mediterranea.
Genome Biol.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown.
Related JoVE Video
Mapping of signaling networks through synthetic genetic interaction analysis by RNAi.
Nat. Methods
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
The analysis of synthetic genetic interaction networks can reveal how biological systems achieve a high level of complexity with a limited repertoire of components. Studies in yeast and bacteria have taken advantage of collections of deletion strains to construct matrices of quantitative interaction profiles and infer gene function. Yet comparable approaches in higher organisms have been difficult to implement in a robust manner. Here we report a method to identify genetic interactions in tissue culture cells through RNAi. By performing more than 70,000 pairwise perturbations of signaling factors, we identified >600 interactions affecting different quantitative phenotypes of Drosophila melanogaster cells. Computational analysis of this interaction matrix allowed us to reconstruct signaling pathways and identify a conserved regulator of Ras-MAPK signaling. Large-scale genetic interaction mapping by RNAi is a versatile, scalable approach for revealing gene function and the connectivity of cellular networks.
Related JoVE Video
Drosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells.
EMBO J.
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
Immune signalling pathways need to be tightly regulated as overactivation of these pathways can result in chronic inflammatory diseases and cancer. NF-?B signalling and associated innate immune pathways are crucial in the first line of defense against infection in all animals. In a genome-wide RNAi screen for modulators of Drosophila immune deficiency (IMD)/NF-?B signalling, we identified components of the Ras/MAPK pathway as essential for suppression of IMD pathway activity, even in the absence of an immune challenge. Downregulation of Ras/MAPK activity mimics the induction of innate immune responses by microbial patterns. Conversely, ectopic Ras/MAPK pathway activation results in the suppression of Drosophila IMD/NF-?B signalling. Mechanistically, we show that the Ras/MAPK pathway acts by inducing transcription of the IMD pathway inhibitor Pirk/Rudra/PIMS. Finally, in vivo experiments demonstrate a requirement for Ras/MAPK signalling in restricting innate immune responses in haemocytes, fat body and adult intestinal stem cells. Our observations provide an example of a pathway that promotes cell proliferation and has simultaneously been utilized to limit the immune response.
Related JoVE Video
Identification of ER proteins involved in the functional organisation of the early secretory pathway in Drosophila cells by a targeted RNAi screen.
PLoS ONE
PUBLISHED: 01-23-2011
Show Abstract
Hide Abstract
In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation.
Related JoVE Video
Polymorphisms in CTNNBL1 in relation to colorectal cancer with evolutionary implications.
Int J Mol Epidemiol Genet
PUBLISHED: 11-08-2010
Show Abstract
Hide Abstract
Colorectal cancer (CRC) is a complex disease related to environmental and genetic risk factors. Several studies have shown that susceptibility to complex diseases can be mediated by ancestral alleles. Using RNAi screening, CTNNBL1 was identified as a putative regulator of the Wnt signaling pathway, which plays a key role in colorectal carcinogenesis. Recently, single nucleotide polymorphisms (SNPs) in CTNNBL1 have been associated with obesity, a known risk factor for CRC. We investigated whether genetic variation in CTNNBL1 affects susceptibility to CRC and tested for signals of recent selection. We applied a tagging SNP approach that cover all known common variation in CTNNBL1 (allele frequency >5%; r(2)>0.8). A case-control study was carried out using two well-characterized study populations: a hospital-based Czech population composed of 751 sporadic cases and 755 controls and a family/early onset-based German population (697 cases and 644 controls). Genotyping was performed using allele specific PCR based TaqMan® assays (Applied Biosystems, Weiterstadt, Germany). In the Czech cohort, containing sporadic cases, the ancestral alleles of three SNPs showed evidence of association with CRC: rs2344481 (OR 1.44, 95%CI 1.06-1.95, dominant model), rs2281148 (OR 0.59, 95%CI 0.36-0.96, dominant model) and rs2235460 (OR 1.38, 95%CI 1.01-1.89, AA vs. GG). The associations were less prominent in the family/early onset-based German cohort. Data derived from several databases and statistical tests consistently pointed to a likely shaping of CTNNBL1 by positive selection. Further studies are needed to identify the actual function of CTNNBL1 and to validate the association results in other populations.
Related JoVE Video
Celebrating 100 years of Drosophila research.
EMBO Rep.
PUBLISHED: 09-17-2010
Show Abstract
Hide Abstract
The seventeenth EMBO Conference on the Molecular and Developmental Biology of Drosophila took place in Kolymbari, Crete, between 20 and 26 June 2010. The conference covered a broad range of topics and much progress was made by combining two or more fields of study. Such combinations included quantitative approaches to cell and developmental biology, dissecting interrelations of physiology and development and integrated genomic analysis.
Related JoVE Video
Trafficking, acidification, and growth factor signaling.
Sci Signal
PUBLISHED: 08-03-2010
Show Abstract
Hide Abstract
Wnt and Notch signaling pathways play key roles in development and disease. Despite great progress, the mechanism of signal transduction of their receptor-ligand complexes still holds surprises. For example, in both pathways, endocytosis is required for downstream signaling, but the mechanism by which endocytosis permits signaling is still unknown. New evidence indicates that endocytosis is required for the receptor-ligand complex to reach an acidified vesicular compartment. In turn, enzymes responsible for acidification are essential for Notch and Wnt signaling and also directly interact with the receptors. These findings raise new questions concerning the mechanism by which low pH promotes signal transduction and may open new possibilities for therapeutic intervention through the targeting of acidifying enzymes.
Related JoVE Video
Proteins required for centrosome clustering in cancer cells.
Sci Transl Med
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
Current cancer chemotherapies are limited by the lack of tumor-specific targets, which would allow for selective eradication of malignant cells without affecting healthy tissues. In contrast to normal cells, most tumor cells contain multiple centrosomes, which tend to cause the formation of multipolar mitotic spindles, chromosome segregation defects, and cell death. Nevertheless, many cancer cells divide successfully because they can cluster multiple centrosomes into two spindle poles. Inhibition of this centrosomal clustering, with consequent induction of multipolar spindles and subsequent cell death, would specifically target cancer cells and overcome one limitation of current cancer treatments. We have performed a genome-wide RNA interference screen to identify proteins involved in the prevention of spindle multipolarity in human cancer cells with supernumerary centrosomes. The chromosomal passenger complex, Ndc80 microtubule-kinetochore attachment complex, sister chromatid cohesion, and microtubule formation via the augmin complex were identified as necessary for centrosomal clustering. We show that spindle tension is required to cluster multiple centrosomes into a bipolar spindle array in tumor cells with extra centrosomes. These findings may explain the specificity of drugs that interfere with spindle tension for cancer cells and provide entry points for the development of therapeutics.
Related JoVE Video
Wnt/Frizzled signaling requires dPRR, the Drosophila homolog of the prorenin receptor.
Curr. Biol.
PUBLISHED: 05-05-2010
Show Abstract
Hide Abstract
Wnt/Wg signaling pathways are of key importance during development and disease. Canonical and noncanonical Wnt/Frizzled (Fz) pathways share a limited number of signaling components that are part of the membrane proximal signaling complex. In Drosophila, Fz and Dishevelled (Dsh) are the only two components known to be involved in both Wnt/beta-catenin and planar cell polarity (PCP) signaling. PCP signaling is required for the planar polarization of epithelial cells, which occurs, for instance, during hair orientation and gastrulation in vertebrates. Both pathways have been studied intensively in the past years. However, it still remains unresolved whether additional components are required at the receptor complex. Here we identify the Drosophila homolog of the mammalian prorenin receptor (dPRR) as a conserved modulator of canonical Wnt/beta-cat and Fz/PCP signaling. We show that dPRR depletion affects Wg target genes in cultured cells and in vivo. PRR is required for epithelial planar polarity in Drosophila and for convergent extension movements in Xenopus gastrulae. Furthermore, dPRR binds to Fz and Fz2 receptors. In summary, our data suggest that dPRR has an evolutionarily conserved role at the receptor level for activation of canonical and noncanonical Wnt/Fz signaling pathways.
Related JoVE Video
E-RNAi: a web application for the multi-species design of RNAi reagents--2010 update.
Nucleic Acids Res.
PUBLISHED: 05-05-2010
Show Abstract
Hide Abstract
The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at http://www.e-rnai.org/, provides a computational resource for the optimized design and evaluation of RNAi reagents. The 2010 update of E-RNAi now covers 12 genomes, including Drosophila, Caenorhabditis elegans, human, emerging model organisms such as Schmidtea mediterranea and Acyrthosiphon pisum, as well as the medically relevant vectors Anopheles gambiae and Aedes aegypti. The web service calculates RNAi reagents based on the input of target sequences, sequence identifiers or by visual selection of target regions through a genome browser interface. It identifies optimized RNAi target-sites by ranking sequences according to their predicted specificity, efficiency and complexity. E-RNAi also facilitates the design of secondary RNAi reagents for validation experiments, evaluation of pooled siRNA reagents and batch design. Results are presented online, as a downloadable HTML report and as tab-delimited files.
Related JoVE Video
Design and evaluation of genome-wide libraries for RNA interference screens.
Genome Biol.
PUBLISHED: 04-27-2010
Show Abstract
Hide Abstract
RNA interference (RNAi) screens have enabled the systematic analysis of many biological processes in cultured cells and whole organisms. The success of such screens and the interpretation of the data depend on the stringent design of RNAi libraries. We describe and validate NEXT-RNAi, a software for the automated design and evaluation of RNAi sequences on a genome-wide scale. NEXT-RNAi is implemented as open-source software and is accessible at http://www.nextrnai.org/.
Related JoVE Video
Clustering phenotype populations by genome-wide RNAi and multiparametric imaging.
Mol. Syst. Biol.
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
Genetic screens for phenotypic similarity have made key contributions to associating genes with biological processes. With RNA interference (RNAi), highly parallel phenotyping of loss-of-function effects in cells has become feasible. One of the current challenges however is the computational categorization of visual phenotypes and the prediction of biological function and processes. In this study, we describe a combined computational and experimental approach to discover novel gene functions and explore functional relationships. We performed a genome-wide RNAi screen in human cells and used quantitative descriptors derived from high-throughput imaging to generate multiparametric phenotypic profiles. We show that profiles predicted functions of genes by phenotypic similarity. Specifically, we examined several candidates including the largely uncharacterized gene DONSON, which shared phenotype similarity with known factors of DNA damage response (DDR) and genomic integrity. Experimental evidence supports that DONSON is a novel centrosomal protein required for DDR signalling and genomic integrity. Multiparametric phenotyping by automated imaging and computational annotation is a powerful method for functional discovery and mapping the landscape of phenotypic responses to cellular perturbations.
Related JoVE Video
web cellHTS2: a web-application for the analysis of high-throughput screening data.
BMC Bioinformatics
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2.
Related JoVE Video
A genome-wide RNA interference screen identifies a differential role of the mediator CDK8 module subunits for GATA/ RUNX-activated transcription in Drosophila.
Mol. Cell. Biol.
PUBLISHED: 04-05-2010
Show Abstract
Hide Abstract
Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory "CDK8 module," composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.
Related JoVE Video
High-throughput RNAi screening to dissect cellular pathways: a how-to guide.
Biotechnol J
PUBLISHED: 03-30-2010
Show Abstract
Hide Abstract
RNA interference (RNAi) has become a powerful tool to dissect cellular pathways and characterize gene functions. The availability of genome-wide RNAi libraries for various model organisms and mammalian cells has enabled high-throughput RNAi screenings. These RNAi screens successfully identified key components that had previously been missed in classical forward genetic screening approaches and allowed the assessment of combined loss-of-function phenotypes. Crucially, the quality of RNAi screening results depends on quantitative assays and the choice of the right biological context. In this review, we provide an overview on the design and application of high-throughput RNAi screens as well as data analysis and candidate validation strategies.
Related JoVE Video
EBImage--an R package for image processing with applications to cellular phenotypes.
Bioinformatics
PUBLISHED: 03-27-2010
Show Abstract
Hide Abstract
EBImage provides general purpose functionality for reading, writing, processing and analysis of images. Furthermore, in the context of microscopy-based cellular assays, EBImage offers tools to segment cells and extract quantitative cellular descriptors. This allows the automation of such tasks using the R programming language and use of existing tools in the R environment for signal processing, statistical modeling, machine learning and data visualization.
Related JoVE Video
A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive notch interaction network.
Dev. Cell
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
Notch signaling plays a fundamental role in cellular differentiation and has been linked to human diseases, including cancer. We report the use of comprehensive RNAi analyses to dissect Notch regulation and its connections to cellular pathways. A cell-based RNAi screen identified 900 candidate Notch regulators on a genome-wide scale. The subsequent use of a library of transgenic Drosophila expressing RNAi constructs enabled large-scale in vivo validation and confirmed 333 of 501 tested genes as Notch regulators. Mapping the phenotypic attributes of our data on an interaction network identified another 68 relevant genes and revealed several modules of unexpected Notch regulatory activity. In particular, we note an intriguing relationship to pyruvate metabolism, which may be relevant to cancer. Our study reveals a hitherto unappreciated diversity of tissue-specific modulators impinging on Notch and opens new avenues for studying Notch regulation and function in development and disease.
Related JoVE Video
Proteomic and functional analysis of the mitotic Drosophila centrosome.
EMBO J.
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well-established non-centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin- and RNA-binding proteins. In total, we assigned novel centrosome-related functions to 24 proteins and confirmed 13 of these in human cells.
Related JoVE Video
Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling.
Science
PUBLISHED: 01-23-2010
Show Abstract
Hide Abstract
Wnt/beta-catenin signaling is important in stem cell biology, embryonic development, and disease, including cancer. However, the mechanism of Wnt signal transmission, notably how the receptors are activated, remains incompletely understood. We found that the prorenin receptor (PRR) is a component of the Wnt receptor complex. PRR functions in a renin-independent manner as an adaptor between Wnt receptors and the vacuolar H+-adenosine triphosphatase (V-ATPase) complex. Moreover, PRR and V-ATPase were required to mediate Wnt signaling during antero-posterior patterning of Xenopus early central nervous system development. The results reveal an unsuspected role for the prorenin receptor, V-ATPase activity, and acidification during Wnt/beta-catenin signaling.
Related JoVE Video
SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression.
Blood
PUBLISHED: 12-29-2009
Show Abstract
Hide Abstract
Hepcidin is the master regulatory hormone of systemic iron metabolism. Hepcidin deficiency causes common iron overload syndromes whereas its overexpression is responsible for microcytic anemias. Hepcidin transcription is activated by the bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways, whereas comparatively little is known about how hepcidin expression is inhibited. By using high-throughput siRNA screening we identified SMAD7 as a potent hepcidin suppressor. SMAD7 is an inhibitory SMAD protein that mediates a negative feedback loop to both transforming growth factor-beta and BMP signaling and that recently was shown to be coregulated with hepcidin via SMAD4 in response to altered iron availability in vivo. We show that SMAD7 is coregulated with hepcidin by BMPs in primary murine hepatocytes and that SMAD7 overexpression completely abolishes hepcidin activation by BMPs and transforming growth factor-beta. We identify a distinct SMAD regulatory motif (GTCAAGAC) within the hepcidin promoter involved in SMAD7-dependent hepcidin suppression, demonstrating that SMAD7 does not simply antagonize the previously reported hemojuvelin/BMP-responsive elements. This work identifies a potent inhibitory factor for hepcidin expression and uncovers a negative feedback pathway for hepcidin regulation, providing insight into a mechanism how hepcidin expression may be limited to avoid iron deficiency.
Related JoVE Video
GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update.
Nucleic Acids Res.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
The GenomeRNAi database (http://www.genomernai.org/) contains phenotypes from published cell-based RNA interference (RNAi) screens in Drosophila and Homo sapiens. The database connects observed phenotypes with annotations of targeted genes and information about the RNAi reagent used for the perturbation experiment. The availability of phenotypes from Drosophila and human screens also allows for phenotype searches across species. Besides reporting quantitative data from genome-scale screens, the new release of GenomeRNAi also enables reporting of data from microscopy experiments and curated phenotypes from published screens. In addition, the database provides an updated resource of RNAi reagents and their predicted quality that are available for the Drosophila and the human genome. The new version also facilitates the integration with other genomic data sets and contains expression profiling (RNA-Seq) data for several cell lines commonly used in RNAi experiments.
Related JoVE Video
Cell cycle control of wnt receptor activation.
Dev. Cell
PUBLISHED: 08-20-2009
Show Abstract
Hide Abstract
Low-density lipoprotein receptor related proteins 5 and 6 (LRP5/6) are transmembrane receptors that initiate Wnt/beta-catenin signaling. Phosphorylation of PPPSP motifs in the LRP6 cytoplasmic domain is crucial for signal transduction. Using a kinome-wide RNAi screen, we show that PPPSP phosphorylation requires the Drosophila Cyclin-dependent kinase (CDK) L63. L63 and its vertebrate homolog PFTK are regulated by the membrane tethered G2/M Cyclin, Cyclin Y, which mediates binding to and phosphorylation of LRP6. As a consequence, LRP6 phosphorylation and Wnt/beta-catenin signaling are under cell cycle control and peak at G2/M phase; knockdown of the mitotic regulator CDC25/string, which results in G2/M arrest, enhances Wnt signaling in a Cyclin Y-dependent manner. In Xenopus embryos, Cyclin Y is required in vivo for LRP6 phosphorylation, maternal Wnt signaling, and Wnt-dependent anteroposterior embryonic patterning. G2/M priming of LRP6 by a Cyclin/CDK complex introduces an unexpected new layer of regulation of Wnt signaling.
Related JoVE Video
A large-scale RNAi screen identifies Deaf1 as a regulator of innate immune responses in Drosophila.
J Innate Immun
PUBLISHED: 05-08-2009
Show Abstract
Hide Abstract
Innate immune signalling pathways are evolutionarily conserved between invertebrates and vertebrates. The analysis of NF-kappaB signalling in Drosophila has contributed important insights into how organisms respond to infection. Nevertheless, significant gaps remain in our understanding of how the activation of intracellular signalling elicits specific transcriptional programs. Here we report a genome-wide RNA interference survey for transcription factors that are required for Toll-dependent immune responses. In addition to the NF-kappaB homologs Dif, Dorsal and factors of the general transcription machinery, we identified Deformed Epidermal Autoregulatory Factor 1 (Deaf1) to be required for the expression of the Toll target gene Drosomycin in cultured cells and in Drosophila in vivo. We show that Deaf1 is required for the survival of flies after fungal, but not E. coli, infection. We determine that Deaf1 acts downstream of the NF-kappaB factors Dorsal and Dif. These results indicate that Deaf1 is an important contributor to innate immune responses in vivo.
Related JoVE Video
Genomic mapping of binding regions for the Ecdysone receptor protein complex.
Genome Res.
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
We determined the physical locations of the heterodimeric Ecdysone receptor/Ultraspiracle (ECR/USP) nuclear hormone receptor complex throughout the entire nonrepetitive genome of Drosophila melanogaster using a cell line (Kc167) that differentiates in response to 20-hydroxyecdysone (20-HE). 20-HE, the natural ligand of this complex, controls major aspects of insect development, including molting, metamorphosis, and reproduction. Direct gene targets of 20-HE signaling were identified by combining this physical binding-site profiling with gene expression profiling after treatment with 20-HE. We found 502 significant regions of ECR/USP binding throughout the genome. Only 42% of these regions are nearby genes that are 20-HE responsive in these cells. However, at least three quarters of the remaining ECR/USP regions are near 20-HE-regulated genes in other tissue and cell types during metamorphosis, suggesting that binding at many regulatory elements in the genome is largely noncell-type specific. The majority (21/26) of the early targets of 20-HE encode transcriptional regulatory factors. To determine whether any of these targets are required for the morphological differentiation of these cells, we used RNAi to reduce the expression of each of the 26 early genes. Accordingly, we found that three direct targets of ECR/USP--hairy, vrille, and Hr4--are required for cellular differentiation in response to the hormone. Initial mutational analysis of vrille in vivo reveals that it is required for metamorphosis.
Related JoVE Video
Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization.
Nat. Cell Biol.
PUBLISHED: 02-22-2009
Show Abstract
Hide Abstract
Dishevelled (Dsh) is a cytoplasmic multidomain protein that is required for all known branches of the Wnt signalling pathway. The Frizzled/planar cell polarity (Fz/PCP) signalling branch requires an asymmetric cortical localization of Dsh, but this process remains poorly understood. Using a genome-wide RNA interference (RNAi) screen in Drosophila melanogaster cells, we show that Dsh membrane localization is dependent on the Na(+)/H(+) exchange activity of the plasma membrane exchanger Nhe2. Manipulating Nhe2 expression levels in the eye causes PCP defects, and Nhe2 interacts genetically with Fz. Our data show that the binding and surface recruitment of Dsh by Fz is pH- and charge-dependent. We identify a polybasic stretch within the Dsh DEP domain that binds to negatively charged phospholipids and appears to be mechanistically important. Dsh recruitment by Fz can be abolished by converting these basic amino-acid residues into acidic ones, as in the mutant, DshKR/E. In vivo, the DshKR/E(2x) mutant with two substituted residues fails to associate with the membrane during active PCP signalling but rescues canonical Wnt signalling defects in a dsh-background. These results suggest that direct interaction between Fz and Dsh is stabilized by a pH and charge-dependent interaction of the DEP domain with phospholipids. This stabilization is particularly important for the PCP signalling branch and, thus, promotes specific pathway selection in Wnt signalling.
Related JoVE Video
Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration.
Development
PUBLISHED: 02-11-2009
Show Abstract
Hide Abstract
Planarians can regenerate a whole animal from only a small piece of their body, and have become an important model for stem cell biology. To identify regenerative processes dependent on Wnt growth factors in the planarian Schmidtea mediterranea (Smed), we analyzed RNAi phenotypes of Evi, a transmembrane protein specifically required for the secretion of Wnt ligands. We show that, during regeneration, Smed-evi loss-of-function prevents posterior identity, leading to two-headed planarians that resemble Smed-beta-catenin1 RNAi animals. In addition, we observe regeneration defects of the nervous system that are not found after Smed-beta-catenin1 RNAi. By systematic knockdown of all putative Smed Wnts in regenerating planarians, we identify Smed-WntP-1 and Smed-Wnt11-2 as the putative posterior organizers, and demonstrate that Smed-Wnt5 is a regulator of neuronal organization and growth. Thus, our study provides evidence that planarian Wnts are major regulators of regeneration, and that they signal through beta-catenin-dependent and -independent pathways.
Related JoVE Video
Loss of PAFAH1B2 reduces amyloid-? generation by promoting the degradation of amyloid precursor protein C-terminal fragments.
J. Neurosci.
Show Abstract
Hide Abstract
Amyloid-? peptide (A?) is believed to play a central role in the pathogenesis of Alzheimers disease. In view of the side effects associated with inhibiting the secretases that produce A?, new molecular targets are required to provide alternative therapeutic options. We used RNA interference (RNAi) to systematically screen the Drosophila genome to identify genes that modulate A? production upon knockdown. RNAi of 41 genes in Drosophila cells significantly lowered A? without affecting general secretion or viability. After the ?-secretase complex components, the most potent effect was observed for platelet activating factor acetylhydrolase ? (Paf-AH?), and, in mammalian cells, the effect was replicated for its ortholog PAFAH1B2. Knockdown of PAFAH1B2 strongly reduced A? secretion from human cells, and this effect was confirmed in primary cells derived from PAFAH1B2 knock-out mice. Reduced A? production was not attributable to altered ?-amyloid precursor protein (APP) ectodomain shedding but was a result of an enhanced degradation of APP C-terminal fragments (CTFs) in the absence of PAFAH1B2 but not its close homolog PAFAH1B3. Enhanced degradation of APP CTFs was selective because no such effects were obtained for Notch or E-/N-cadherin. Thus, we have identified an important protein that can selectively modify A? generation via a novel mechanism, namely enhanced degradation of its immediate precursor. In view of the absence of a neurological phenotype in PAFAH1B2 knock-out mice, targeted downregulation of PAFAH1B2 may be a promising new strategy for lowering A?.
Related JoVE Video
GenomeRNAi: a database for cell-based and in vivo RNAi phenotypes, 2013 update.
Nucleic Acids Res.
Show Abstract
Hide Abstract
RNA interference (RNAi) represents a powerful method to systematically study loss-of-function phenotypes on a large scale with a wide variety of biological assays, constituting a rich source for the assignment of gene function. The GenomeRNAi database (http://www.genomernai.org) makes available RNAi phenotype data extracted from the literature for human and Drosophila. It also provides RNAi reagent information, along with an assessment as to their efficiency and specificity. This manuscript describes an update of the database previously featured in the NAR Database Issue. The new version has undergone a complete re-design of the user interface, providing an intuitive, flexible framework for additional functionalities. Screen information and gene-reagent-phenotype associations are now available for download. The integration with other resources has been improved by allowing in-links via GenomeRNAi screen IDs, or external gene or reagent identifiers. A distributed annotation system (DAS) server enables the visualization of the phenotypes and reagents in the context of a genome browser. We have added a page listing frequent hitters, i.e. genes that show a phenotype in many screens, which might guide on-going RNAi studies. Structured annotation guidelines have been established to facilitate consistent curation, and a submission template for direct submission by data producers is available for download.
Related JoVE Video
A PP4 holoenzyme balances physiological and oncogenic nuclear factor-kappa B signaling in T lymphocytes.
Immunity
Show Abstract
Hide Abstract
Signal transduction to nuclear factor-kappa B (NF-?B) involves multiple kinases and phosphorylated target proteins, but little is known about signal termination by dephosphorylation. By RNAi screening, we have identified protein phosphatase 4 regulatory subunit 1 (PP4R1) as a negative regulator of NF-?B activity in T lymphocytes. PP4R1 formed part of a distinct PP4 holoenzyme and bridged the inhibitor of NF-?B kinase (IKK) complex and the phosphatase PP4c, thereby directing PP4c activity to dephosphorylate and inactivate the IKK complex. PP4R1 expression was triggered upon activation and proliferation of primary human T lymphocytes and deficiency for PP4R1 caused sustained and increased IKK activity, T cell hyperactivation, and aberrant NF-?B signaling in NF-?B-addicted T cell lymphomas. Collectively, our results unravel PP4R1 as a previously unknown activation-associated negative regulator of IKK activity in lymphocytes whose downregulation promotes oncogenic NF-?B signaling in a subgroup of T cell lymphomas.
Related JoVE Video
Active Wnt proteins are secreted on exosomes.
Nat. Cell Biol.
Show Abstract
Hide Abstract
Wnt signalling has important roles during development and in many diseases. As morphogens, hydrophobic Wnt proteins exert their function over a distance to induce patterning and cell differentiation decisions. Recent studies have identified several factors that are required for the secretion of Wnt proteins; however, how Wnts travel in the extracellular space remains a largely unresolved question. Here we show that Wnts are secreted on exosomes both during Drosophila development and in human cells. We demonstrate that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells. Together with the cargo receptor Evi/WIs, Wnts are transported through endosomal compartments onto exosomes, a process that requires the R-SNARE Ykt6. Our study demonstrates an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins.
Related JoVE Video
Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20.
Mol. Cell
Show Abstract
Hide Abstract
Regulation of genes that initiate and amplify inflammatory programs of gene expression is achieved by signal-dependent exchange of coregulator complexes that function to read, write, and erase specific histone modifications linked to transcriptional activation or repression. Here, we provide evidence for the role of trimethylated histone H4 lysine 20 (H4K20me3) as a repression checkpoint that restricts expression of toll-like receptor 4 (TLR4) target genes in macrophages. H4K20me3 is deposited at the promoters of a subset of these genes by the SMYD5 histone methyltransferase through its association with NCoR corepressor complexes. Signal-dependent erasure of H4K20me3 is required for effective gene activation and is achieved by NF-?B-dependent delivery of the histone demethylase PHF2. Liver X receptors antagonize TLR4-dependent gene activation by maintaining NCoR/SMYD5-mediated repression. These findings reveal a histone H4K20 trimethylation/demethylation strategy that integrates positive and negative signaling inputs that control immunity and homeostasis.
Related JoVE Video
Identification of human proteins that modify misfolding and proteotoxicity of pathogenic ataxin-1.
PLoS Genet.
Show Abstract
Hide Abstract
Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1-interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15?CC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.
Related JoVE Video
Cell perturbation screens for target identification by RNAi.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Over the last decade, cell-based screening has become a powerful method in target identification and plays an important role both in basic research and drug discovery. The availability of whole genome sequences and improvements in cell-based screening techniques opened new avenues for high-throughput experiments. Large libraries of RNA interference reagents available for many organisms allow the dissection of broad spectrum of cellular processes. Here, we describe the current state of the large-scale phenotype screening with a focus on cell-based screens. We underline the importance and provide details of screen design, scalability, performance, data analysis, and hit prioritization. Similar to classical high-throughput in vitro screens with defined-target approaches in the past, cell-based screens depend on a successful establishment of robust phenotypic assays, the ability to quantitatively measure phenotypic changes and bioinformatics methods for data analysis, integration, and interpretation.
Related JoVE Video
The Sin3a repressor complex is a master regulator of STAT transcriptional activity.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Tyrosine phosphorylation is a hallmark for activation of STAT proteins, but their transcriptional activity also depends on other secondary modifications. Type I IFNs can activate both the ISGF3 (STAT1:STAT2:IRF9) complex and STAT3, but with cell-specific, selective triggering of only the ISGF3 transcriptional program. Following a genome-wide RNAi screen, we identified the SIN3 transcription regulator homolog A (Sin3a) as an important mediator of this STAT3-targeted transcriptional repression. Sin3a directly interacts with STAT3 and promotes its deacetylation. SIN3A silencing results in a prolonged nuclear retention of activated STAT3 and enhances its recruitment to the SOCS3 promoter, concomitant with histone hyperacetylation and enhanced STAT3-dependent transcription. Conversely, Sin3a is required for ISGF3-dependent gene transcription and for an efficient IFN-mediated antiviral protection against influenza A and hepatitis C viruses. The Sin3a complex therefore acts as a context-dependent ISGF3/STAT3 transcriptional switch.
Related JoVE Video
A genome-wide RNA interference screen identifies caspase 4 as a factor required for tumor necrosis factor alpha signaling.
Mol. Cell. Biol.
Show Abstract
Hide Abstract
Tumor necrosis factor alpha (TNF-?) is a potent inflammatory cytokine secreted upon cellular stress as well as immunological stimuli and is implicated in the pathology of inflammatory diseases and cancer. The therapeutic potential of modifying TNF-? pathway activity has been realized in several diseases, and antagonists of TNF-? have reached clinical applications. While much progress in the understanding of signaling downstream of the TNF-? receptor complex has been made, the compendium of factors required for signal transduction is still not complete. In order to find novel regulators of proinflammatory signaling induced by TNF-?, we conducted a genome-wide small interfering RNA screen in human cells. We identified several new candidate modulators of TNF-? signaling, which were confirmed in independent experiments. Specifically, we show that caspase 4 is required for the induction of NF-?B activity, while it appears to be dispensable for the activation of the Jun N-terminal protein kinase signaling branch. Taken together, our experiments identify caspase 4 as a novel regulator of TNF-?-induced NF-?B signaling that is required for the activation of I?B kinase. We further provide the genome-wide RNA interference data set as a compendium in a format compliant with minimum information about an interfering RNA experiment (MAIRE).
Related JoVE Video
Systematic approaches to dissect biological processes in stem cells by image-based screening.
Biotechnol J
Show Abstract
Hide Abstract
High-throughput RNAi or small molecule screens have proven to be powerful methodologies for the systematic dissection of cellular processes. In model organisms and cell lines, large-scale screens have identified key components of many cellular pathways and helped to identify novel targets in disease-relevant pathways. Image-based high-content screening has become an increasingly important tool in high-throughput screening, enabling changes in phenotype characteristics, such as cell morphology and cell differentiation, to be monitored. In this review, we discuss the use of image-based screening approaches to explore the behavior of adult, embryonic, and induced pluripotent stem cells. First, we review how current pluripotency and differentiation assays can be adapted to high-throughput formats. We then describe general aspects of image-based screening of cells and present an outlook on challenges for screening stem cells.
Related JoVE Video
Innate immunity: regulation of caspases by IAP-dependent ubiquitylation.
EMBO J.
Show Abstract
Hide Abstract
Caspases are widely known as initiators and executioners of cell death. Full activation of caspases leading to cleavage of many cellular substrates was long considered to be a point-of-no-return in the apoptosis pathway. However, it also has been known that activated caspases do not always have the ability to kill, but instead initiate non-apoptotic processes such as cell differentiation or activation of innate immune responses. In this issue of The EMBO Journal, Meinander et al (2012) explore the contribution of polyubiquitination of Dredd, a known initiator caspase, to the activation of innate immunity. The authors show that infection with gram-negative bacteria leads to DIAP2-dependent ubiquitylation of Dredd which in turn is required for processing of Relish (Rel) and expression of antimicrobial peptide (AMP) genes that are indispensable for fighting the infection.
Related JoVE Video
Screens, maps & networks: from genome sequences to personalized medicine.
Curr. Opin. Genet. Dev.
Show Abstract
Hide Abstract
Genome sequencing of tumors provides a wealth of information on mutations and structural variations, instilling hope that this data can be used to predict individual tumor progression and response to treatment. Yet currently, our ability to predict the functional consequences of these aberrations remains poor. How do cancer-associated mutations give rise to the hallmark phenotypes of cancer? Recently, information about the genetic makeup of cancer cells has been combined with novel functional genomics approaches to identify novel targets, exploit synthetic lethality and explore the rewiring of cellular pathways. Here, we highlight recent developments revealing the hidden landscape of genetic interactions in model organisms and cancer cells, a key step toward personalized cancer diagnostics and therapy.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.