JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Analysis of Age and Disease Status as Predictors of Thyroid Cancer-Specific Mortality Using the Surveillance, Epidemiology, and End Results Database.
Thyroid
PUBLISHED: 11-05-2014
Show Abstract
Hide Abstract
Background: Age at diagnosis is incorporated into all relevant staging systems for differentiated thyroid carcinoma (DTC). There is growing evidence that a specific age cutoff may not be ideal for accurate risk stratification. We sought to evaluate the interplay between age and oncologic variables in patients with DTC using the largest cohort to date. Methods: The Surveillance, Epidemiology, and End Results (SEER) database was queried to identify patients with DTC as their only malignancy for the period 1973 to 2009. Multivariate analyses using a range of age cutoffs and age subgroupings were utilized in order to search for an optimal age that would provide the most significant risk stratification between young and old patients. The primary outcome was disease-specific survival (DSS) and covariates included: age, race, sex, tumor/nodal/metastasis (TNM) stage, decade of diagnosis, and radioactive iodine therapy. Results: A total of 85,740 patients were identified. Seventy-six percent of patients were American Joint Committee on Cancer (AJCC) stage I, 8% were stage II, 7% were stage III, and 8% were stage IV. Age over 45 years (hazard ratio [HR] 19.2, p<0.001) and metastatic disease (HR 13.1, p<0.001) were the strongest predictors of DSS. Other factors that significantly predicted DSS included: not receiving radioactive iodine (RAI; HR 1.3, p=0.002), T3 (HR 2.6, p<0.001), and T4 disease (HR 3.3, p<0.001), and nodal spread (HR 2.6 to 3.3, p<0.001). Female sex showed a significant protective effect (HR 0.7, p=0.001). Adjusting the age-group cutoff from 25 to 55 years showed consistently high HRs for advanced age, without a distinct change at any point. Comparing HRs for T, N, and M stage between young and old patient subgroups showed that advanced disease increased the risk for DSS regardless of age, and was oftentimes a worse prognosticator in young patient groups. Conclusions: The contribution of age at diagnosis to a patient's DSS is considerable, but there is no age cutoff that affords any unique risk-stratification in patients with DTC.
Related JoVE Video
A Hypusine-eIF5A-PEAK1 Switch Regulates the Pathogenesis of Pancreatic Cancer.
Cancer Res.
PUBLISHED: 09-26-2014
Show Abstract
Hide Abstract
Deregulation of protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression. eIF5A1 and its highly related isoform eIF5A2 are translation initiation factors that have been implicated in a range of human malignancies, but how they control cancer development and disease progression is still poorly understood. Here, we investigated how eIF5A proteins regulate pancreatic ductal adenocarcinoma (PDAC) pathogenesis. eIF5A proteins are the only known proteins regulated by a distinct posttranslational modification termed hypusination, which is catalyzed by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). The highly selective nature of the hypusine modification and its amenability to pharmacologic inhibition make eIF5A proteins attractive therapeutic targets. We found that the expression and hypusination of eIF5A proteins are upregulated in human PDAC tissues and in premalignant pancreatic intraepithelial neoplasia tissues isolated from Pdx-1-Cre: LSL-KRAS(G12D) mice. Knockdown of eIF5A proteins in PDAC cells inhibited their growth in vitro and orthotopic tumor growth in vivo, whereas amplification of eIF5A proteins increased PDAC cell growth and tumor formation in mice. Small-molecule inhibitors of DHPS and DOHH both suppressed eIF5A hypusination, preventing PDAC cell growth. Interestingly, we found that eIF5A proteins regulate PDAC cell growth by modulating the expression of PEAK1, a nonreceptor tyrosine kinase essential for PDAC cell growth and therapy resistance. Our findings suggest that eIF5A proteins utilize PEAK1 as a downstream effector to drive PDAC pathogenesis and that pharmacologic inhibition of the eIF5A-hypusine-PEAK1 axis may provide a novel therapeutic strategy to combat this deadly disease. Cancer Res; 74(22); 6671-81. ©2014 AACR.
Related JoVE Video
Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity.
Oncotarget
PUBLISHED: 09-20-2014
Show Abstract
Hide Abstract
A major impediment to the response of tumors to chemotherapy is that the large majority of cancer cells within a tumor are quiescent in G0/G1, where cancer cells are resistant to chemotherapy. To attempt to solve this problem of quiescent cells in a tumor, cancer cells were treated with recombinant methioninase (rMETase), which selectively traps cancer cells in S/G2. The cell cycle phase of the cancer cells was visualized with the fluorescence ubiquitination-based cell cycle indicator cell cycle indicator (FUCCI). At the time of rMETase-induced S/G2-phase blockage, identified by the cancer cells' green fluorescence by FUCCI imaging, the cancer cells were administered S/G2-dependent chemotherapy drugs, which interact with DNA or block DNA synthesis such as doxorubicin, cisplatin, or 5-fluorouracil. Treatment of cancer cells with drugs only, without rMETase-induced S/G2 phase blockage, led to the majority of the cancer-cell population being blocked in G0/G1 phase, identified by the cancer cells becoming red fluorescent in the FUCCI system. The G0/G1 blocked cells were resistant to the chemotherapy. In contrast, trapping of cancer cells in S/G2 phase by rMETase treatment followed by FUCCI-imaging-guided chemotherapy was highly effective in killing the cancer cells.
Related JoVE Video
Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models.
Oncotarget
PUBLISHED: 09-17-2014
Show Abstract
Hide Abstract
The aim of the present study was to examine the efficacy of tumor-targeting Salmonella typhimurium A1-R treatment following anti-vascular endothelial growth factor (VEGF) therapy on VEGF-positive human pancreatic cancer. A pancreatic cancer patient-derived orthotopic xenograft (PDOX) that was VEGF-positive and an orthotopic VEGF-positive human pancreatic cancer cell line (MiaPaCa-2-GFP) as well as a VEGF-negative cell line (Panc-1) were tested. Nude mice with these tumors were treated with gemcitabine (GEM), bevacizumab (BEV), and S. typhimurium A1-R. BEV/GEM followed by S. typhimurium A1-R significantly reduced tumor weight compared to BEV/GEM treatment alone in the PDOX and MiaPaCa-2 models. Neither treatment was as effective in the VEGF-negative model as in the VEGF-positive models. These results demonstrate that S. typhimurium A1-R following anti-angiogenic therapy is effective on pancreatic cancer including the PDOX model, suggesting its clinical potential.
Related JoVE Video
Tumor-targeting Salmonella typhimurium A1-R prevents experimental human breast cancer bone metastasis in nude mice.
Oncotarget
PUBLISHED: 09-13-2014
Show Abstract
Hide Abstract
Bone metastasis is a lethal and morbid late stage of breast cancer that is currently treatment resistant. More effective mouse models and treatment are necessary. High bone-metastatic variants of human breast cancer cells were selected in nude mice by cardiac injection. After cardiac injection of a high bone-metastatic variant of breast cancer, all untreated mice had bone metastases compared to only 20% with parental cells. Treatment with tumor-targeting Salmonella typhimurium A1-R completely prevented the appearance of bone metastasis of the high metastatic variant in nude mice (P < 0.001). After injection of the highly bone-metastatic breast cancer variant to the tibia of nude mice, S. typhimurium A1-R treatment significantly reduced tumor growth in the bone (P < 0.001). These data indicated that S. typhimurium A1-R is useful to prevent and inhibit breast cancer bone metastasis and should be of future clinical use for breast cancer in the adjuvant setting.
Related JoVE Video
Fluorescence-guided surgery improves outcome in an orthotopic osteosarcoma nude-mouse model.
J. Orthop. Res.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
In order to develop a model for fluorescence-guided surgery (FGS), 143B human osteosarcoma cells expressing red fluorescent protein (RFP) were injected into the intramedullary cavity of the tibia in nude mice. The fluorescent areas of residual tumors after bright-light surgery (BLS) and FGS were 10.2?±?2.4?mm(2) and 0.1?±?0.1?mm(2) , respectively (p?
Related JoVE Video
The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid.
PLoS ONE
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
We previously defined macrophages harvested from the peritoneal cavity of nude mice with subcutaneous human pancreatic tumors as "tumor-educated-macrophages" (Edu) and macrophages harvested from mice without tumors as "naïve-macrophages" (Naïve), and demonstrated that Edu-macrophages promoted tumor growth and metastasis. In this study, Edu- and Naïve-macrophages were compared for their ability to enhance pancreatic cancer malignancy at the cellular level in vitro and in vivo. The inhibitory efficacy of Zoledronic acid (ZA) on Edu-macrophage-enhanced metastasis was also determined. XPA1 human pancreatic cancer cells in Gelfoam co-cultured with Edu-macrophages proliferated to a greater extent compared to XPA1 cells cultured with Naïve-macrophages (P = 0.014). XPA1 cells exposed to conditioned medium harvested from Edu culture significantly increased proliferation (P = 0.016) and had more migration stimulation capability (P<0.001) compared to cultured cancer cells treated with the conditioned medium from Naïve. The mitotic index of the XPA1 cells, expressing GFP in the nucleus and RFP in the cytoplasm, significantly increased in vivo in the presence of Edu- compared to Naïve-macrophages (P = 0.001). Zoledronic acid (ZA) killed both Edu and Naïve in vitro. Edu promoted tumor growth and metastasis in an orthotopic mouse model of the XPA1 human pancreatic cancer cell line. ZA reduced primary tumor growth (P = 0.006) and prevented metastasis (P = 0.025) promoted by Edu-macrophages. These results indicate that ZA inhibits enhanced primary tumor growth and metastasis of human pancreatic cancer induced by Edu-macrophages.
Related JoVE Video
Ratiometric Activatable Cell-Penetrating Peptides Label Pancreatic Cancer, Enabling Fluorescence-Guided Surgery, Which Reduces Metastases and Recurrence in Orthotopic Mouse Models.
Ann. Surg. Oncol.
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
The aim of this study was to evaluate the efficacy of using matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9)-cleavable ratiometric activatable cell-penetrating peptides (RACPPs) conjugated to Cy5 and Cy7 fluorophores to accurately label pancreatic cancer for fluorescence-guided surgery (FGS) in an orthotopic mouse model.
Related JoVE Video
Selective efficacy of zoledronic acid on metastasis in a patient-derived orthotopic xenograph (PDOX) nude-mouse model of human pancreatic cancer.
J Surg Oncol
PUBLISHED: 07-13-2014
Show Abstract
Hide Abstract
Patient-derived orthotopic xenograft (PDOX) nude-mouse models replicate the behavior of clinical cancer, including metastasis. The objective of the study was to determine the efficacy of zoledronic acid (ZA) on metastasis of a patient-derived orthotopic xenograft (PDOX) nude-mouse model of pancreatic cancer.
Related JoVE Video
Efficacy of tumor-targeting Salmonella typhimurium A1-R on nude mouse models of metastatic and disseminated human ovarian cancer.
J. Cell. Biochem.
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
We report here the efficacy of tumor-targeting Salmonella typhimurium A1-R (A1-R) on mouse models of disseminated and metastatic ovarian cancer. The proliferation-inhibitory efficacy of A1-R on human ovarian cancer cell lines (SKOV-3-GFP, OVCAR-3-RFP) was initially demonstrated in vitro. Orthotopic and dissemination mouse models of ovarian cancer were made with the human ovarian cancer cell line SKOV-3-GFP. After tumor implantation, the mice were treated with A1-R (5?×?10(7) ?colony-forming units [CFU], i.v.), and there were no severe adverse events observed. In the orthotopic model, tumor volume after treatment was 276?±?60.8?mm(3), compared to 930?±?342?mm(3) in the untreated control group (P?=?0.022). There was also a significant difference in survival between treated mice and untreated mice in a peritoneal dissemination model (P?=?0.005). The results of this report demonstrate that A1-R is effective for highly aggressive human ovarian cancer in metastatic and dissemination mouse models and suggest its clinical potential for this highly treatment-resistant disease.
Related JoVE Video
Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness.
Cell Cycle
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We report here on the results of monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor intravitally using a fluorescence ubiquitination cell cycle indicator (FUCCI) before, during, and after chemotherapy. In nascent tumors in nude mice, approximately 30% of the cells in the center of the tumor are in G?/G? and 70% in S/G?/M. In contrast, approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G?/G? phase. Similarly, approximately 75% of cancer cells far from (> 100 µm) tumor blood vessels of an established tumor are in G?/G?. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after the cessation of chemotherapy. Our results suggest why most drugs currently in clinical use, which target cancer cells in S/G?/M, are mostly ineffective on solid tumors. The results also suggest that drugs that target quiescent cancer cells are urgently needed.
Related JoVE Video
Comparison of UVB and UVC effects on the DNA damage-response protein 53BP1 in human pancreatic cancer.
J. Cell. Biochem.
PUBLISHED: 04-23-2014
Show Abstract
Hide Abstract
We have previously demonstrated that ultraviolet (UV) light is effective against a variety of cancer cells expressing fluorescent proteins in vivo as well as in vitro. In the present report, we compared the DNA damage repair (DDR) response of pancreatic cancer cells after UVB or UVC irradiation. The UV-induced DNA damage repair was imaged with green fluorescent protein (GFP) fused to the DDR-related chromatin-binding protein 53BP1 in MiaPaCa-2 human pancreatic cancer cells growing in 3D Gelfoam® histoculture and in superficial tumors grown in nude mice. 53BP1-GFP forms foci during DNA damage repair. A clonogenic assay in 2D monolayer culture initially showed that UVC and UVB inhibited MiaPaCa-2 cell proliferation in a dose-dependent manner, with UVC having more efficacy. Three-dimensional Gelfoam® histocultures and confocal imaging enabled 53BP1-GFP foci to be observed within 1?h after UV irradiation, indicating the onset of DDR response. UVB-induced 53BP1-GFP focus formation was observed up to a depth of 120?µm in MiaPaCa-2 cells on Gelfoam® compared to 80?µm for UVC. UVB-induced 53BP1-GFP focus formation was observed up to a depth of 80?µm in MiaPaCa-2 cells, implanted within skin flaps in mice, at a significantly greater extent than UVC. MiaPaCa-2 cells irradiated by UVB or UVC in the skin-flap mouse model had a significant decrease in tumor growth compared to untreated controls with UVB having more efficacy than UVC. Our results demonstrate that UVB has greater tissue penetration than UVC because of its longer wavelength and has clinical potential for eradicating superficial cancer.
Related JoVE Video
Specific tumor labeling enhanced by polyethylene glycol linkage of near infrared dyes conjugated to a chimeric anti-carcinoembryonic antigen antibody in a nude mouse model of human pancreatic cancer.
J Biomed Opt
PUBLISHED: 03-16-2014
Show Abstract
Hide Abstract
Labeling of metastatic tumors can aid in their staging and resection of cancer. Near infrared (NIR) dyes have been used in the clinic for tumor labeling. However, there can be a nonspecific uptake of dye by the liver, lungs, and lymph nodes, which hinders detection of metastasis. In order to overcome these problems, we have used two NIR dyes (DyLight 650 and 750) conjugated to a chimeric anti-carcinoembryonic antigen antibody to evaluate how polyethylene glycol linkage (PEGylation) can improve specific tumor labeling in a nude mouse model of human pancreatic cancer. The conjugated PEGylated and non-PEGylated DyLight 650 and 750 dyes were injected intravenously into non-tumor-bearing nude mice. Serum samples were collected at various time points in order to determine serum concentrations and elimination kinetics. Conjugated PEGylated dyes had significantly higher serum dye concentrations than non-PEGylated dyes (p=0.005 for the 650 dyes and p<0.001 for the 750 dyes). Human pancreatic tumors subcutaneously implanted into nude mice were labeled with antibody-dye conjugates and serially imaged. Labeling with conjugated PEGylated dyes resulted in significantly brighter tumors compared to the non-PEGylated dyes (p<0.001 for the 650 dyes; p=0.01 for 750 dyes). PEGylation of the NIR dyes also decreased their accumulation in lymph nodes, liver, and lung. These results demonstrate enhanced selective tumor labeling by PEGylation of dyes conjugated to a tumor-specific antibody, suggesting their future clinical use in fluorescence-guided surgery.
Related JoVE Video
Advantages of fluorescence-guided laparoscopic surgery of pancreatic cancer labeled with fluorescent anti-carcinoembryonic antigen antibodies in an orthotopic mouse model.
J. Am. Coll. Surg.
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
Our laboratory has previously developed fluorescence-guided surgery of pancreatic and other cancers in orthotopic mouse models. Laparoscopic surgery is being used more extensively in surgical oncology. This report describes the efficacy of laparoscopic fluorescence-guided surgery of pancreatic cancer in an orthotopic mouse model.
Related JoVE Video
Osteosarcoma cells enhance angiogenesis visualized by color-coded imaging in the in vivo Gelfoam® assay.
J. Cell. Biochem.
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
We previously described a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In ND-GFP mice, nascent blood vessels are labeled with GFP. We report here that osteosarcoma cells promote angiogenesis in the Gelfoam® angiogenesis assay in ND-GFP mice. Gelfoam® was initially transplanted subcutaneously in the flank of transgenic ND-GFP nude mice. Seven days after transplantation of Gelfoam®, skin flaps were made and human 143B osteosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in cytoplasm were injected into the transplanted Gelfoam®. The control-group mice had only implanted Gelfoam®. Skin flaps were made at days 14, 21, and 28 after transplantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small animal imaging system and confocal fluorescence microscopy. ND-GFP expressing nascent blood vessels penetrated and spread into the Gelfoam® in a time-dependent manner in both control and osteosarcoma-implanted mice. ND-GFP expressing blood vessels in the Gelfoam® of the osteosarcoma-implanted mice were associated with the cancer cells and larger and longer than in the Gelfoam®-only implanted mice (P?
Related JoVE Video
Fluorescence-guided surgery of prostate cancer bone metastasis.
J. Surg. Res.
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
The aim of this study is to investigate the effectiveness of fluorescence-guided surgery (FGS) of prostate cancer experimental skeletal metastasis.
Related JoVE Video
Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer.
Ann. Surg. Oncol.
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
We have developed a method of distinguishing normal tissue from pancreatic cancer in vivo using fluorophore-conjugated antibody to carcinoembryonic antigen (CEA). The objective of this study was to evaluate whether fluorescence-guided surgery (FGS) with a fluorophore-conjugated antibody to CEA, to highlight the tumor, can improve surgical resection and increase disease-free survival (DFS) and overall survival (OS) in orthotopic mouse models of human pancreatic cancer.
Related JoVE Video
Successful fluorescence-guided surgery on human colon cancer patient-derived orthotopic xenograft mouse models using a fluorophore-conjugated anti-CEA antibody and a portable imaging system.
J Laparoendosc Adv Surg Tech A
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Fluorescence-guided surgery (FGS) can enable successful cancer surgery where bright-light surgery often cannot. There are three important issues for FGS going forward toward the clinic: (a) proper tumor labeling, (b) a simple portable imaging system for the operating room, and (c) patient-like mouse models in which to develop the technology. The present report addresses all three.
Related JoVE Video
3-dimensional tissue is formed from cancer cells in vitro on Gelfoam®, but not on Matrigel™.
J. Cell. Biochem.
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Cell and tissue culture can be performed on different substrates such as on plastic, in Matrigel™, and on Gelfoam(®), a sponge matrix. Each of these substrates consists of a very different surface, ranging from hard and inflexible, a gel, and a sponge-matrix, respectively. Folkman and Moscona found that cell shape was tightly coupled to DNA synthesis and cell growth. Therefore, the flexibility of a substrate is important for cells to maintain their optimal shape. Human osteosarcoma cells, stably expressing a fusion protein of ?(v) integrin and green fluorescent protein (GFP), grew as a simple monolayer without any structure formation on the surface of a plastic dish. When the osteosarcoma cells were cultured within Matrigel™, the cancer cells formed colonies but no other structures. When the cancer cells were seeded on Gelfoam(®), the cells formed three-dimensional tissue-like structures. The behavior of 143B osteosarcoma cells on Gelfoam(®) in culture is remarkably different from those of these cells in monolayer culture or in Matrigel™. Tissue-like structures were observed only in Gelfoam(®) culture. The data in this report suggest a flexible structural substrate such as Gelfoam(®) provides a more in vivo-like culture condition than monolayer culture or Matrigel(TM) and that Matrigel(TM) does not result in actual three-dimensional culture.
Related JoVE Video
Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging.
Cell Cycle
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Invasive cancer cells are a critical target in order to prevent metastasis. In the present report, we demonstrate real-time visualization of cell cycle kinetics of invading cancer cells in 3-dimensional (3D) Gelfoam® histoculture, which is in vivo-like. A fluorescence ubiquitination cell cycle indicator (FUCCI) whereby G0/G1 cells express a red fluorescent protein and S/G2/M cells express a green fluorescent protein was used to determine the cell cycle position of invading and non-invading cells. With FUCCI 3D confocal imaging, we observed that cancer cells in G0/G1 phase in Gelfoam® histoculture migrated more rapidly and further than cancer cells in S/G2/M phases. Cancer cells ceased migrating when they entered S/G2/M phases and restarted migrating after cell division when the cells re-entered G0/G1. Migrating cancer cells also were resistant to cytotoxic chemotherapy, since they were preponderantly in G0/G1, where cytotoxic chemotherapy is not effective. The results of the present report suggest that novel therapy targeting G0/G1 cancer cells should be developed to prevent metastasis.
Related JoVE Video
Efficacy of Salmonella typhimurium A1-R versus chemotherapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX).
J. Cell. Biochem.
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
The aim of this study is to determine the efficacy of tumor-targeting Salmonella typhimurium A1-R (A1-R) on pancreatic cancer patient-derived orthotopic xenografts (PDOX). The PDOX model was originally established from a pancreatic cancer patient in SCID-NOD mice. The pancreatic cancer PDOX was subsequently transplanted by surgical orthotopic implantation (SOI) in transgenic nude red fluorescent protein (RFP) mice in order that the PDOX stably acquired red fluorescent protein (RFP)-expressing stroma for the purpose of imaging the tumor after passage to non-transgenic nude mice in order to visualize tumor growth and drug efficacy. The nude mice with human pancreatic PDOX were treated with A1-R or standard chemotherapy, including gemcitabine (GEM), which is first-line therapy for pancreatic cancer, for comparison of efficacy. A1-R treatment significantly reduced tumor weight, as well as tumor fluorescence area, compared to untreated control (P?=?0.011), with comparable efficacy of GEM, CDDP, and 5-FU. Histopathological response to treatment was defined according to Evans's criteria and A1-R had increased efficacy compared to standard chemotherapy. The present report is the first to show that A1-R is effective against a very low-passage patient tumor, in this case, pancreatic cancer. The data of the present report suggest A1-1 will have clinical activity in pancreatic cancer, a highly lethal and treatment-resistant disease and may be most effectively used in combination with other agents.
Related JoVE Video
Improved perioperative outcomes with minimally invasive distal pancreatectomy: results from a population-based analysis.
JAMA Surg
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Interest in minimally invasive distal pancreatectomy (MIDP) has grown in recent years, but currently available data are limited. Greater insight into application patterns and outcomes may be gained from a national database inquiry.
Related JoVE Video
Outcomes of robotic-assisted transhiatal esophagectomy for esophageal cancer after neoadjuvant chemoradiation.
J Laparoendosc Adv Surg Tech A
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
We previously reported our experience performing robotic-assisted transhiatal esophagectomy (RATE) in patients with early-stage esophageal cancer who had had no preoperative treatment. The purpose of this report was to determine if RATE could be performed safely with good outcomes for esophageal cancer in a more recent series of patients, the majority of whom were treated with neoadjuvant chemoradiation.
Related JoVE Video
Risk factors for hematoma after thyroidectomy: results from the nationwide inpatient sample.
Surgery
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
Hematoma after thyroidectomy is a potentially lethal complication. We sought to evaluate risk factors for hematoma formation using the Nationwide Inpatient Sample. We hypothesized that certain risk factors could be identified and that this information would be useful to surgeons.
Related JoVE Video
Fluorescence-guided surgery in combination with UVC irradiation cures metastatic human pancreatic cancer in orthotopic mouse models.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The aim of this study is to determine if ultraviolet light (UVC) irradiation in combination with fluorescence-guided surgery (FGS) can eradicate metastatic human pancreatic cancer in orthotopic nude-mouse models. Two weeks after orthotopic implantation of human MiaPaCa-2 pancreatic cancer cells, expressing green fluorescent protein (GFP), in nude mice, bright-light surgery (BLS) was performed on all tumor-bearing mice (n?=?24). After BLS, mice were randomized into 3 treatment groups; BLS-only (n?=?8) or FGS (n?=?8) or FGS-UVC (n?=?8). The residual tumors were resected using a hand-held portable imaging system under fluorescence navigation in mice treated with FGS and FGS-UVC. The surgical resection bed was irradiated with 2700 J/m2 UVC (254 nm) in the mice treated with FGS-UVC. The average residual tumor area after FGS (n?=?16) was significantly smaller than after BLS only (n?=?24) (0.135±0.137 mm2 and 3.338±2.929 mm2, respectively; p?=?0.007). The BLS treated mice had significantly reduced survival compared to FGS- and FGS-UVC-treated mice for both relapse-free survival (RFS) (p<0.001 and p<0.001, respectively) and overall survival (OS) (p<0.001 and p<0.001, respectively). FGS-UVC-treated mice had increased RFS and OS compared to FGS-only treated mice (p?=?0.008 and p?=?0.025, respectively); with RFS lasting at least 150 days indicating the animals were cured. The results of the present study suggest that UVC irradiation in combination with FGS has clinical potential to increase survival.
Related JoVE Video
Polyethylene glycol (PEG) linked to near infrared (NIR) dyes conjugated to chimeric anti-carcinoembryonic antigen (CEA) antibody enhances imaging of liver metastases in a nude-mouse model of human colon cancer.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p?=?0.03 for the 650 dyes; p?=?0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases.
Related JoVE Video
Imaging nuclear - cytoplasm dynamics of cancer cells in the intravascular niche of live mice.
Anticancer Res.
PUBLISHED: 10-15-2013
Show Abstract
Hide Abstract
We have previously shown that cancer cells can form an intravascular niche where they can proliferate and undergo apoptosis as well as traffic and extravasate. In the present study, green fluorescent protein (GFP) was expressed in the cytoplasm of HT-1080 human fibrosarcoma cells, and red fluorescent protein (mCherry), linked to histone H2B, was expressed in the nucleus to further investigate intravascular cancer cell nuclear-cytoplasmic dynamics. Nuclear mCherry expression enabled visualization of nuclear dynamics, whereas simultaneous cytoplasmic GFP expression enabled visualization of nuclear-cytoplasmic ratios as well as simultaneous cell and nuclear deformation. Cancer cells were injected in the epigastric cranialis vein in an abdominal flap of nude mice to enable subcellular in vivo imaging. The cell cycle position of individual living cells was readily-visualized by the nuclear-cytoplasmic ratio and nuclear morphology. Real-time induction of apoptosis was observed by nuclear size changes and progressive nuclear fragmentation. Intra- and extra-vascular mitotic cells were visualized by imaging. One hour after cell injection, round and elongated cancer cells were observed in the vessels. Three hours after injection, invadopodia-like structures of the cancer cells were observed. Five hours after injection, dual-color cancer cells began to divide within the vessel. By 10 h, some intravascular cancer cells underwent apoptosis. Deformed new blood vessels in the tumor were observed 10 days later. Extravascular cancer cells were imaged dividing in the tumor at day 14 after injection. The subcellular in vivo imaging approach described in the present report provides new visual targets for trafficking and proliferating intravascular cancer cells as well as extravasating and invading cancer cells.
Related JoVE Video
Hand-held high-resolution fluorescence imaging system for fluorescence-guided surgery of patient and cell-line pancreatic tumors growing orthotopically in nude mice.
J. Surg. Res.
PUBLISHED: 09-15-2013
Show Abstract
Hide Abstract
In this study, we investigated the advantages of fluorescence-guided surgery (FGS) in mice of a portable hand-sized imaging system compared with a large fluorescence imaging system or a long-working-distance fluorescence microscope.
Related JoVE Video
High lung-metastatic variant of human osteosarcoma cells, selected by passage of lung metastasis in nude mice, is associated with increased expression of ?(v)?(3) integrin.
Anticancer Res.
PUBLISHED: 09-12-2013
Show Abstract
Hide Abstract
Altered expression of ?v?3 integrin is associated with tumor progression and metastasis in several types of cancer, including metastatic osteosarcoma. In this study, we demonstrate that in vivo passaging of lung metastasis in nude mice can generate an aggressive variant of human osteosarcoma cells. Experimental metastases were established by injecting 143B human osteosarcoma cells, expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm, in the tail vein of nude mice. Lung metastases were harvested under fluorescence microscopy from nude mice to establish cell lines which were then injected via the tail vein of additional nude mice. This procedure was repeated for four passages in order to isolate highly metastatic variant sublines. When the parental and metastatic variants were transplanted orthotopically into the tibia of nude mice, the 143B-LM4 variant had the highest metastatic rate, approximately 18-fold higher than the parent (p<0.01). ?v?3 integrin expression was increased approximately 5.6-fold in 143B-LM4 compared to parental cells (p<0.05). Thus, serial passage of lung metastases created a highly metastatic variant of human osteosarcoma cells which had increased expression of ?v?3 integrin, suggesting that ?v?3 integrin plays an essential role in osteosarcoma metastasis. With this highly metastatic variant overexpressing ?v?3 integrin, it will now be possible to further investigate the mechanism by which ?v?3 integrin facilitates metastasis.
Related JoVE Video
Comparison of a chimeric anti-carcinoembryonic antigen antibody conjugated with visible or near-infrared fluorescent dyes for imaging pancreatic cancer in orthotopic nude mouse models.
J Biomed Opt
PUBLISHED: 08-20-2013
Show Abstract
Hide Abstract
ABSTRACT. The aim of this study was to evaluate a set of visible and near-infrared dyes conjugated to a tumor-specific chimeric antibody for high-resolution tumor imaging in orthotopic models of pancreatic cancer. BxPC-3 human pancreatic cancer was orthotopically implanted into pancreata of nude mice. Mice received a single intravenous injection of a chimeric anti-carcinoembryonic antigen antibody conjugated to one of the following fluorophores: 488-nm group (Alexa Fluor 488 or DyLight 488); 550-nm group (Alexa Fluor 555 or DyLight 550); 650-nm group (Alexa Fluor 660 or DyLight 650), or the 750-nm group (Alexa Fluor 750 or DyLight 755). After 24 h, the Olympus OV100 small-animal imaging system was used for noninvasive and intravital fluorescence imaging of mice. Dyes were compared with respect to depth of imaging, resolution, tumor-to-background ratio (TBR), photobleaching, and hemoglobin quenching. The longer wavelength dyes had increased depth of penetration and ability to detect the smallest tumor deposits and provided the highest TBRs, resistance to hemoglobin quenching, and specificity. The shorter wavelength dyes were more photostable. This study showed unique advantages of each dye for specific cancer imaging in a clinically relevant orthotopic model.
Related JoVE Video
Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells.
Cell Cycle
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
The XPA1 human pancreatic cancer cell line is dimorphic, with spindle stem-like cells and round non-stem cells. We report here the in vitro IC 50 values of stem-like and non-stem XPA1 human pancreatic cells cells for: (1) 5-fluorouracil (5-FU), (2) cisplatinum (CDDP), (3) gemcitabine (GEM), and (4) tumor-targeting Salmonella typhimurium A1-R (A1-R). IC 50 values of stem-like XPA1 cells were significantly higher than those of non-stem XPA1 cells for 5-FU (P = 0.007) and CDDP (P = 0.012). In contrast, there was no difference between the efficacy of A1-R on stem-like and non-stem XPA1 cells. In vivo, 5-FU and A1-R significantly reduced the tumor weight of non-stem XPA1 cells (5-FU; P = 0.028; A1-R; P = 0.011). In contrast, only A1-R significantly reduced tumor weight of stem-like XPA1 cells (P = 0.012). The combination A1-R with 5-FU improved the antitumor efficacy compared with 5-FU monotherapy on the stem-like cells (P = 0.004). The results of the present report indicate A1-R is a promising therapy for chemo-resistant pancreatic cancer stem-like cells.
Related JoVE Video
Color-coded imaging of spontaneous vessel anastomosis in vivo.
Anticancer Res.
PUBLISHED: 07-31-2013
Show Abstract
Hide Abstract
Vessel anastomosis is important in tumor angiogenesis as well as for vascularization therapy for ischemia and other diseases. We report here the development of a color-coded imaging model that can visualize the anastomosis between blood vessels of red fluorescent protein (RFP)-expressing vessels in vascularized Gelfoam® previously transplanted into RFP transgenic mice and then re-transplanted into nestin-driven green fluorescent protein (ND-GFP) mice where nascent blood vessels express GFP. Gelfoam® was initially transplanted subcutaneously in the flank of transgenic RFP nude mice. Skin flaps were made at 14 days after transplantation of Gelfoam® to allow observation of vascularization of the Gelfoam® using confocal fluorescence imaging. The implanted Gelfoam® became highly vascularized with RFP vessels. Fourteen days after transplantation into RFP transgenic nude mice, the Gelfoam® was removed and re-transplanted into the subcutis on the flank of ND-GFP transgenic nude mice in which nascent blood vessels express GFP. Skin flaps were made and anastomosis between the GFP-expressing nascent blood vessels of ND-GFP transgenic nude mice and RFP blood vessels in the Gelfoam® was imaged 14 and 21 days after re-transplantation. The results presented in this report indicate a possible mechanism for tumor angiogenesis and suggest a new paradigm of therapeutic revascularization of ischemic organs requiring new blood vessels and in other diseases.
Related JoVE Video
Real-time imaging of ?v integrin molecular dynamics in osteosarcoma cells in vitro and in vivo.
Anticancer Res.
PUBLISHED: 07-31-2013
Show Abstract
Hide Abstract
?v Integrin is involved in various steps of cancer metastasis. In this report, we describe real-time imaging of ?v integrin molecular dynamics in human 143B osteosarcoma cells in vitro and in vivo. We first generated osteosarcoma cells expressing ?v integrin green fluorescent protein (GFP) by transfection of an ?v integrin GFP fusion vector (pCMV6-AC-ITGAV-GFP) into 143B cells. Confocal laser-scanning microscopy demonstrated that ?v integrin immunofluorescence staining co-localized with ?v integrin-GFP fluorescence in 143B cells. When ?v integrin-GFP-expressing 143B osteosarcoma cells were seeded on a dish coated with fibronectin, which is bound by ?v integrin, punctate ?v integrin-GFP was observed by confocal laser-scanning microscopy. When the 143B ?v integrin-GFP cells were seeded onto uncoated plastic, ?v integrin-GFP was diffuse within the cells. When ?v integrin-GFP 143B osteosarcoma cells (1×10(6)) were orthotopically transplanted into the tibia of nude mice, the cells aligned along the collagen fibers within the tumor and had punctuate expression of ?v integrin-GFP. In the orthotopic model, the invading osteosarcoma cells had punctate ?v integrin-GFP in the muscle tissue at the primary tumor margin. These results show that ?v integrin-GFP enables the imaging of the molecular dynamics of ?v integrin in osteosarcoma cells in vitro and in vivo.
Related JoVE Video
Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model.
J Surg Oncol
PUBLISHED: 07-06-2013
Show Abstract
Hide Abstract
The aim of this study was to evaluate a new fluorescently labeled chimeric anti-CEA antibody for improved detection and resection of colon cancer.
Related JoVE Video
Imaging the efficacy of UVC irradiation on superficial brain tumors and metastasis in live mice at the subcellular level.
J. Cell. Biochem.
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
The effect of UVC irradiation was investigated on a model of brain cancer and a model of experimental brain metastasis. For the brain cancer model, brain cancer cells were injected stereotactically into the brain. For the brain metastasis model, lung cancer cells were injected intra-carotidally or stereotactically. The U87 human glioma cell line was used for the brain cancer model, and the Lewis lung carcinoma (LLC) was used for the experimental brain metastasis model. Both cancer cell types were labeled with GFP in the nucleus and RFP in the cytoplasm. A craniotomy open window was used to image single cancer cells in the brain. This double labeling of the cancer cells with GFP and RFP enabled apoptosis of single cells to be imaged at the subcellular level through the craniotomy open window. UVC irradiation, beamed through the craniotomy open window, induced apoptosis in the cancer cells. UVC irradiation was effective on LLC and significantly extended survival of the mice with experimental brain metastasis. In contrast, the U87 glioma was relatively resistant to UVC irradiation. The results of this study suggest the use of UVC for treatment of superficial brain cancer or metastasis.
Related JoVE Video
Enhanced resection of orthotopic red-fluorescent-protein-expressing human glioma by fluorescence-guided surgery in nude mice.
Anticancer Res.
PUBLISHED: 06-01-2013
Show Abstract
Hide Abstract
Malignant glioma is the most common type of primary central nervous system cancer. Gliomas are very difficult to completely resect due to their invasiveness. In the present study, we compared fluorescence-guided and standard bright-light resection of a human glioma orthotopically implanted in nude mice. U87 human glioma cells, expressing red fluorescent protein (RFP), were injected stereotactically into the nude mouse brain through a craniotomy open window. Two weeks after cancer-cell implantation, gliomas were resected under fluorescence guidance or under bright light. U87-RFP tumors were clearly visualized with a long-working distance fluorescence microscope. Almost all cancer cells were removed using fluorescence-guided navigation without damage to the brain tissue. In contrast, brain tumors were difficult to visualize under bright light and many residual cancer cells remained in the brain after bright-light surgery. Fluorescence-guided surgery significantly extended the survival of the mice compared to those who underwent bright-light surgery. These results suggest that fluorescence-guided surgery has significant potential for brain cancer treatment.
Related JoVE Video
Subcellular real-time imaging of the efficacy of temozolomide on cancer cells in the brain of live mice.
Anticancer Res.
PUBLISHED: 06-01-2013
Show Abstract
Hide Abstract
Novel subcellular imaging technology has been developed in order to visualize drug efficacy on single cancer cells in the brain of mice in real time. The efficacy of temozolomide on cancer cells in the brain was determined by observation of subcellular cancer-cell dynamics over time through a craniotomy open window. Dual-color U87 human glioma and Lewis lung carcinoma (LLC) cells, expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm, were imaged through the craniotomy open window 10 days after treatment with temozolomide (100 mg/kg i.p. for five consecutive days). After treatment, dual-color cancer cells with fragmented nuclei were visualized, indicating apoptosis. GFP-expressing apoptotic bodies and the destruction of RFP-expressing cytoplasm were also visualized. In addition, the terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay was used to confirm apoptosis visualized by imaging of the behavior of GFP-labeled cancer-cell nuclei. Tumor volume in the treated group was significantly smaller than in the control group (at day 19, p<0.001). The present study demonstrates technology capable of subcellular real-time imaging in the brain that reports induction of cancer-cell apoptosis by therapeutic treatment. More effective drugs for brain cancer and brain metastasis can be screened and can be identified with this technology.
Related JoVE Video
Primer dosing of S. typhimurium A1-R potentiates tumor-targeting and efficacy in immunocompetent mice.
Anticancer Res.
PUBLISHED: 06-01-2013
Show Abstract
Hide Abstract
We developed the tumor-targeting strain Salmonella typhimuium A1-R (A1-R) and have shown it to be active against a number of tumor types in nude mice. However, in immunocompetent mice, dosing of A1-R has to be adjusted to avoid toxicity. In the present study, we developed a strategy to maximize efficacy and minimize toxicity for A1-R tumor-targeting in immunocompetent mice implanted with the Lewis lung carcinoma. A small primer dose of A1-R was first administered (1×10(6) colony forming unit [cfu] i.v.) followed by a high dose (1×10(7) cfu i.v.) four hours later. The primer-dose strategy resulted in smaller tumors and no observable side-effects compared to treatment with high-dose-alone. The serum level of tumor necrosis factor (TNF-?) was elevated in the mice treated with primer dose compared to mice only given the high dose. Tumor vessel destruction was enhanced by primer dosing of A1-R in immuno-competent transgenic mice expressing the nestin-driven green fluorescent protein, which is selectively expressed in nascent blood vessels. The primer-dose may activate TNF-? and other cytokines in the mouse, necessary for invasion of the tumor by the bacteria, as well as enhance tumor vessel destruction, thereby allowing a subsequent therapeutic dose to be effective and safe. The results of the present study suggest effective future clinical strategies of bacterial treatment of cancer.
Related JoVE Video
A dual-color genetically engineered mouse model for multispectral imaging of the pancreatic microenvironment.
Pancreas
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
To develop a mouse model for multispectral fluorescence imaging of the pancreas and pancreatic microenvironment.
Related JoVE Video
Multiphoton tomography visualizes collagen fibers in the tumor microenvironment that maintain cancer-cell anchorage and shape.
J. Cell. Biochem.
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi-photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate.
Related JoVE Video
Single cell time-lapse imaging of focus formation by the DNA damage-response protein 53BP1 after UVC irradiation of human pancreatic cancer cells.
Anticancer Res.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
We have previously demonstrated that ultraviolet (UV) light treatment is effective against various types of cancer cells expressing fluorescent proteins. In order to further understand the efficacy of UV treatment of cancer cells, we determined the kinetics of focus formation by imaging of a DNA damage-response (DDR) protein after UVC irradiation of human pancreatic cancer cells. A fusion protein consisting of the DDR protein 53BP1 and green fluorescent protein (GFP) (GFP-53BP1) was used as a live-cell imaging marker for cellular response after UVC irradiation. GFP-53BP1 foci were observed after UVC irradiation of MiaPaCa-2 human pancreatic cancer cells. During live-cell imaging, GFP-53BP1 foci were observed in the cells within 15 min after UVC irradiation, and some of the foci remained stable for at least three hours. GFP-53BP1 focus formation was observed in the pancreatic-cancer cells irradiated by 25-200 J/m(2) UVC. Our results indicate that an early response to DNA damage caused by UVC irradiation can be visualized by increased GFP-53BP1 focus formation by pancreatic cancer cells.
Related JoVE Video
Dynamic subcellular imaging of cancer cell mitosis in the brain of live mice.
Anticancer Res.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
The ability to visualize cancer cell mitosis and apoptosis in the brain in real time would be of great utility in testing novel therapies. In order to achieve this goal, the cancer cells were labeled with green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm, such that mitosis and apoptosis could be clearly imaged. A craniotomy open window was made in athymic nude mice for real-time fluorescence imaging of implanted cancer cells growing in the brain. The craniotomy window was reversibly closed with a skin flap. Mitosis of the individual cancer cells were imaged dynamically in real time through the craniotomy-open window. This model can be used to evaluate brain metastasis and brain cancer at the subcellular level.
Related JoVE Video
A color-coded imaging model of the interaction of ?v integrin-GFP expressed in osteosarcoma cells and RFP expressing blood vessels in Gelfoam® vascularized in vivo.
Anticancer Res.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
The integrin family of proteins has been shown to be involved in the malignant behavior of cells. We report here development of a color-coded imaging model that can visualize the interaction between ?v integrin linked to green fluorescent protein (GFP) in osteosarcoma cells and blood vessels in Gelfoam® vascularized after implantation in red fluorescent protein (RFP) transgenic nude mice. Human 143B osteosarcoma cells expressing ?v integrin-GFP were generated by transfection with an ?v integrin-GFP vector. Gelfoam® (5×5 mm) was transplanted subcutaneously in transgenic RFP nude mice. The implanted Gelfoam® became highly vascularized with RFP vessels within 14 days. Skin flaps were made at days 7, 14, 21, 28 after transplantation of Gelfoam® for observing vascularization of the Gelfoam® using fluorescence imaging. Gelfoam® is a useful tool to observe angiogenesis in vivo. 143B cells (5 × 10(5)) expressing ?v integrin-GFP were injected into the Gelfoam® seven days after transplantation of Gelfoam®. Seven days after cancer-cell injection, cancer cells and blood vessels were observed in the Gelfoam® by color-coded confocal microscopy via the skin flap. The 143B cells expressing ?v integrin-GFP proliferated into the Gelfoam®, which contained RFP-expressing blood vessels. Strong expression of ?v integrin-GFP in 143B cells was observed near RFP vessels in the Gelfoam®. The observation of the behavior of ?v integrin-GFP and blood vessels will allow further understanding of the role of ?v integrin in cancer cells.
Related JoVE Video
Management of abdominal malignancies: updates from the International Association of Surgeons, Gastroenterologists and Oncologists.
Expert Rev Anticancer Ther
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
The 22nd World Congress of the International Association of Surgeons, Gastroenterologists and Oncologists was held from 5-8 December 2012 in Bangkok, Thailand. Themed Challenges and Controversies in the Management of Abdominal Diseases: Current Possibility and Future Expectation, the congress featured ten main topics including: upper GI tract surgery, lower GI tract surgery, hepatic surgery, biliary tract surgery, pancreatic surgery, interventional chemo-immuno-radiotherapy, laparoscopic endoscopic surgery, multidisciplinary approaches, innovation and advanced technology and robotic surgery. Approximately 200 guest speakers were invited to share their experiences and expertise, while 600 abstracts were submitted for oral and poster presentations. In this article, the authors highlight and summarize some of the presentations from this conference.
Related JoVE Video
In Vivo Fluorescence Imaging of Gastrointestinal Stromal Tumors Using Fluorophore-Conjugated Anti-KIT Antibody.
Ann. Surg. Oncol.
PUBLISHED: 03-08-2013
Show Abstract
Hide Abstract
Gastrointestinal stromal tumors (GISTs) are frequently characterized by KIT overexpression. Tumor-free margins and complete cytoreduction of disease are mainstays of treatment. We hypothesized that fluorescently labeled anti-KIT antibodies can label GIST in vivo.
Related JoVE Video
Fluorescence-guided surgery and fluorescence laparoscopy for gastrointestinal cancers in clinically-relevant mouse models.
Gastroenterol Res Pract
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
There are many challenges that face surgeons when attempting curative resection for gastrointestinal cancers. The ability to properly delineate tumor margins for complete resection is of utmost importance in achieving cure and giving the patient the best chance of prolonged survival. Targeted tumor imaging techniques have gained significant interest in recent years to enable better identification of tumor lesions to improve diagnosis and treatment of cancer from preoperative staging modalities to optimizing the surgeons ability to visualize tumor margins at the initial operation. Using unique characteristics of the tumor to fluorescently label the tissue can delineate tumor margins from normal surrounding tissue, allowing improved precision of surgical resection. In this paper, different methods of fluorescently labeling native tumor are discussed as well as the development of fluorescence laparoscopy and the potential role for fluorescence-guided surgery in the treatment of gastrointestinal cancers.
Related JoVE Video
Efficacy comparison of traditional Chinese medicine LQ versus gemcitabine in a mouse model of pancreatic cancer.
J. Cell. Biochem.
PUBLISHED: 02-14-2013
Show Abstract
Hide Abstract
Pancreatic cancer is highly treatment-resistant and has one of the highest fatality rates of all cancers and is the fourth highest cancer killer worldwide. Novel, more effective strategies are needed to treat this disease. We report here on the use of patient-like orthotopic nude-mouse models of human metastatic pancreatic cancer to compare the traditional Chinese medicine (TCM) herbal mixture LQ to gemcitabine, which is first-line therapy for this disease, for anti-metastatic and anti-tumor activity as well as safety. The human pancreatic cancer cell line, MiaPaCa-2, labeled with red fluorescent protein (RFP), was used for the orthotopic model. LQ (gavage, 600?mg/kg/day) significantly inhibited pancreatic cancer tumor growth and metastasis, as measured by imaging, with no overt toxicity. Survival of tumor-bearing mice was also prolonged by LQ. The therapeutic efficacy of LQ is comparable with gemcitabine but with less toxicity, as indicated by a lack of body-weight loss with LQ, but not gemcitabine. The results indicate that TCM can have non-toxic efficacy against metastatic pancreatic cancer comparable to gemcitabine in a clinically-relevant orthotopic mouse model.
Related JoVE Video
In vivo serial selection of human pancreatic cancer cells in orthotopic mouse models produces high metastatic variants irrespective of Kras status.
J. Surg. Res.
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Kras mutations have been thought to play an important role in pancreatic cancer progression. In this study, we evaluated how serially passaging primary pancreatic tumors with and without Kras mutations, in nude mice, can generate more aggressive variants of human pancreatic cancer.
Related JoVE Video
Development of a clinically-precise mouse model of rectal cancer.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Currently-used rodent tumor models, including transgenic tumor models, or subcutaneously growing tumors in mice, do not sufficiently represent clinical cancer. We report here development of methods to obtain a highly clinically-accurate rectal cancer model. This model was established by intrarectal transplantation of mouse rectal cancer cells, stably expressing green fluorescent protein (GFP), followed by disrupting the epithelial cell layer of the rectal mucosa by instilling an acetic acid solution. Early-stage tumor was detected in the rectal mucosa by 6 days after transplantation. The tumor then became invasive into the submucosal tissue. The tumor incidence was 100% and mean volume (±SD) was 1232.4 ± 994.7 mm(3) at 4 weeks after transplantation detected by fluorescence imaging. Spontaneous lymph node metastasis and lung metastasis were also found approximately 4 weeks after transplantation in over 90% of mice. This rectal tumor model precisely mimics the natural history of rectal cancer and can be used to study early tumor development, metastasis, and discovery and evaluation of novel therapeutics for this treatment-resistant disease.
Related JoVE Video
Glowing tumors make for better detection and resection.
Sci Transl Med
PUBLISHED: 11-26-2011
Show Abstract
Hide Abstract
Tumor-specific fluorescent probes that can be administered topically make tumors glow selectively and thus have great potential for improving cancer detection and removal.
Related JoVE Video
Comparison of cancer-cell seeding, viability and deformation in the lung, muscle and liver, visualized by subcellular real-time imaging in the live mouse.
Anticancer Res.
PUBLISHED: 11-24-2011
Show Abstract
Hide Abstract
The comparison of cancer cell seeding, deformation and viability in the lung, muscle and liver of nude mice in real-time is reported here. The mice were intubated to support ventilation with positive end-respiratory pressure (PEEP) for imaging on the lung. Human fibrosarcoma cells with green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm (dual-color HT-1080 cells) were injected into the tail vein for lung imaging, the portal vein for liver imaging or the abdominal aorta for muscle imaging which was performed with an Olympus OV100 Small Animal Imaging System. The length of the cytoplasm and nuclei in 20 seeded cancer cells were measured. A large number of cells initially arrested in the lung capillaries and many cells formed aggregates. The cell number decreased rapidly at 6 and 24 h. There was no significant difference in cancer cell survival when immunocompetent C57BL/6 mice were used in place of the nude mice, suggesting that T cell reaction is not very important in the first 24 h after seeding of cancer cells in the lung. In the lung and liver, little cancer cell deformation occurred. In contrast in the muscle, the cytoplasm and nuclei of the seeded cells were highly deformed and many fragmented cells were observed. The rate of cancer cell death was highest in the lung and lowest in the muscle. In each organ, single disseminated cells tended to die earlier than aggregated cells. The results of this study suggest that the early steps of metastasis are different in the lung, liver and muscle.
Related JoVE Video
A rapid imageable in vivo metastasis assay for circulating tumor cells.
Anticancer Res.
PUBLISHED: 10-04-2011
Show Abstract
Hide Abstract
Circulating tumor cells (CTCs) are of great importance for cancer diagnosis, prognosis and treatment. It is necessary to improve the ability to image and analyze them for their biological properties which determine their behavior in the patient. In the present study, using immunomagnetic beads, CTCs were rapidly isolated from the circulation of mice orthotopically implanted with human PC-3 prostate cancer cells stably expressing green fluorescent protein (GFP). The PC-3-GFP CTCs were then expanded in culture in parallel with the parental PC-3-GFP cell line. Both cell types were then inoculated onto the chorioallentoic membrane (CAM) of chick embryos. Eight days later, embryos were harvested and the brains were processed for frozen sections. The IV-100 intravital laser scanning microscope enabled rapid identification of fluorescent metastatic foci within the chick embryonic brain. Inoculation of embryos with PC-3-GFP CTCs resulted in a 3 to 10-fold increase in brain metastasis when compared to those with the parental PC-3-GFP cells (p<0.05 in all animals). Thus, PC-3-GFP CTCs have increased metastatic potential compared to their parental counterparts. Furthermore, the chick embryo represents a rapid, sensitive, imageable assay of metastatic potential for CTCs. The chick embryo assay has future clinical application for individualizing patient therapy based on the metastatic profile of their CTCs.
Related JoVE Video
Tumor-selective, adenoviral-mediated GFP genetic labeling of human cancer in the live mouse reports future recurrence after resection.
Cell Cycle
PUBLISHED: 08-15-2011
Show Abstract
Hide Abstract
We have previously developed a telomerase-specific replicating adenovirus expressing GFP (OBP-401), which can selectively label tumors in vivo with GFP. Intraperitoneal (i.p.) injection of OBP-401 specifically labeled peritoneal tumors with GFP, enabling fluorescence visualization of the disseminated disease and real-time fluorescence surgical navigation. However, the technical problems with removing all cancer cells still remain, even with fluorescence-guided surgery. In this study, we report imaging of tumor recurrence after fluorescence-guided surgery of tumors labeled in vivo with the telomerase-dependent, GFP-containing adenovirus OBP-401.. Recurrent tumor nodules brightly expressed GFP, indicating that initial OBP-401-GFP labeling of peritoneal disease was genetically stable, such that proliferating residual cancer cells still express GFP. In situ tumor labeling with a genetic reporter has important advantages over antibody and other non-genetic labeling of tumors, since residual disease remains labeled during recurrence and can be further resected under fluorescence guidance.
Related JoVE Video
Stem-like and non-stem human pancreatic cancer cells distinguished by morphology and metastatic behavior.
J. Cell. Biochem.
PUBLISHED: 07-23-2011
Show Abstract
Hide Abstract
We report here that XPA1 human pancreatic cancer cells are dimorphic. After injection in the spleen, XPA1 cells isolated from the primary tumor in the spleen were predominantly round; while cells isolated from the resulting liver metastasis and ascites were comprised of both round- and spindle-shaped cell types. Cancer cells previously grown in the spleen and re-implanted in the spleen developed large primary tumors in the spleen only. Cancer cells isolated from liver metastasis and re-transplanted to the spleen resulted in a primary tumor in the spleen and liver metastasis. Cancer cells derived from ascites and re-transplanted to the spleen developed primary tumors in the spleen and distant metastasis in the liver, lung, and diaphragm in addition to ascites formation. Spindle and round cells were differentially labeled with fluorescent proteins of different colors. After co-injection of the two cell types in the spleen, cells were isolated from the primary tumors, liver metastasis, and ascites and analyzed by color-coded fluorescence microscopy and fluorescence-activated cell sorting (FACS). No significant differences between the percentages of spindle-shaped and round cancer cells in the primary tumor and the liver metastasis were observed. However, spindle-shaped cancer cells were enriched in the ascites. One hundred percent of the spindle-shaped and round cancer cells expressed CD44, suggesting that morphology and metastatic behavior rather than CD44 expression can distinguish the stem-like cells of the XPA1 pancreatic cancer cell line. The spindle-shaped cancer cells had the greater capability for distant metastasis and ascites formation, suggesting they are stem-like cells, which can be readily targeted for therapy.
Related JoVE Video
Submillimeter-resolution fluorescence laparoscopy of pancreatic cancer in a carcinomatosis mouse model visualizes metastases not seen with standard laparoscopy.
J Laparoendosc Adv Surg Tech A
PUBLISHED: 06-23-2011
Show Abstract
Hide Abstract
Staging laparoscopy can visualize peritoneal and liver metastases in pancreatic cancer otherwise undetectable by preoperative imaging. However, false-negative rates may be as high as 18%-26%. The aim of the present study was to improve detection of metastatic pancreatic cancer with the use of fluorescence laparoscopy (FL) in a nude-mouse model with the tumors expressing green fluorescent protein (GFP).
Related JoVE Video
Imaging of the interaction of cancer cells and the lymphatic system.
Adv. Drug Deliv. Rev.
PUBLISHED: 05-09-2011
Show Abstract
Hide Abstract
A thorough understanding of the lymphatic system and its interaction with cancer cells is crucial to our ability to fight cancer metastasis. Efforts to study the lymphatic system had previously been limited by the inability to visualize the lymphatic system in vivo in real time. Fluorescence imaging can address these limitations and allow for visualization of lymphatic delivery and trafficking of cancer cells and potentially therapeutic agents as well. Here, we review recent articles in which antibody-fluorophore conjugates are used to label the lymphatic network and fluorescent proteins to label cancer cells in the evaluation of lymphatic delivery and imaging.
Related JoVE Video
Knockdown of the ?(1) integrin subunit reduces primary tumor growth and inhibits pancreatic cancer metastasis.
Int. J. Cancer
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
To address the role of ?(1) integrins in pancreatic cancer progression, we stably knocked down ?(1) integrin subunit expression in human FG-RFP pancreatic cancer cells using lentiviral-based RNA interference. We then examined the effects of ?(1) integrin subunit knockdown on pancreatic cancer cell adhesion, migration and proliferation on tumor microenvironment-specific extracellular matrix proteins in vitro and on tumor progression in vivo using a clinically relevant fluorescent orthotopic mouse model of pancreatic cancer. Knockdown of the ?(1) integrin subunit inhibited cell adhesion, migration and proliferation on types I and IV collagen, fibronectin and laminin in vitro. In vivo, knockdown of the ?(1) integrin subunit reduced primary tumor growth by 50% and completely inhibited spontaneously occurring metastasis. These observations indicate a critical role for the ?(1) integrin subunit in pancreatic cancer progression and metastasis in particular. Our results suggest the ?(1) integrin subunit as a therapeutic target for the treatment of pancreatic cancer, especially in the adjuvant setting to prevent metastasis of this highly aggressive cancer.
Related JoVE Video
Imaging the recruitment of cancer-associated fibroblasts by liver-metastatic colon cancer.
J. Cell. Biochem.
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
The tumor microenvironment (TME) is critical for tumor growth and progression. However, the formation of the TME is largely unknown. This report demonstrates a color-coded imaging model in which the development of the TME can be visualized. In order to image the TME, a green fluorescent protein (GFP)-expressing mouse was used as the host which expresses GFP in all organs but not the parenchymal cells of the liver. Non-colored HCT-116 human colon cancer cells were injected in the spleen of GFP nude mice which led to the formation of experimental liver metastasis. TME formation resulting from the liver metastasis was observed using the Olympus OV100 small animal fluorescence imaging system. HCT-116 cells formed tumor colonies in the liver 28 days after cell transplantation to the spleen. GFP-expressing host cells were recruited by the metastatic tumors as visualized by fluorescence imaging. A desmin positive area increased around and within the liver metastasis over time, suggesting cancer-associated fibroblasts (CAFs) were recruited by the liver metastasis which have a role in tumor progression. The color-coded model of the TME enables its formation to be visualized at the cellular level in vivo, in real-time. This imaging model of the TME should lead to new visual targets in the TME.
Related JoVE Video
Real-time imaging of tumor progression in a fluorescent orthotopic mouse model of thyroid cancer.
Anticancer Res.
PUBLISHED: 12-01-2010
Show Abstract
Hide Abstract
There is a need for a clinically relevant mouse model of thyroid cancer that enables real-time, non-invasive monitoring of tumor growth, progression, and drug response over time. Human thyroid cancer cell lines NPA (papillary) and KAK-1 (anaplastic) were stably transfected to express either red or green fluorescent protein. Cancer cells were injected into the thyroid glands of 8-week-old athymic mice. The animals were imaged with whole-body fluorescence imaging weekly and sacrificed when premorbid. At necropsy, the primary tumor was resected en bloc with the respiratory system for processing and analysis. Histology was performed on fixed tissue specimens for review of morphologic findings. Both anaplastic and papillary thyroid cancer cell lines led to robust development of orthotopic fluorescent tumors in nude mice. Injection of 5×10(5) cancer cells was sufficient for tumor development. Tumors were visualized for both cell lines via non-invasive imaging as early as 3 weeks post-implantation and were monitored over time. Time to premorbid condition varied between mice and was associated with a primary tumor growth pattern (early local compression of the esophagus vs. late metastatic disease) rather than tumor size. At necropsy, tumor fluorescence demonstrated metastases in the lungs, lymph nodes and vessels that were not visible under white light. Thus an orthotopic mouse model of thyroid cancer has been developed that replicates the major clinical features of thyroid cancer and enables real-time, non-invasive monitoring of tumor progression. This model should permit preclinical evaluation of novel thyroid cancer therapeutics.
Related JoVE Video
Orthotopic fluorescent peritoneal carcinomatosis model of esophageal cancer.
Anticancer Res.
PUBLISHED: 11-02-2010
Show Abstract
Hide Abstract
Aim: Orthotopic models utilizing orthotopic implantation have been used for developing cancer models of multiple tumor entities. The aim of this study was to evaluate the role of orthotopic injection in establishing a model of esophageal cancer using a human green fluorescent protein (GFP) cell line of human esophageal carcinoma.
Related JoVE Video
Enhancing magnetic resonance imaging tumor detection with fluorescence intensity and lifetime imaging.
J Biomed Opt
PUBLISHED: 08-09-2010
Show Abstract
Hide Abstract
Early detection is important for many solid cancers but the images provided by ultrasound, magnetic resonance imaging (MRI), and computed tomography applied alone or together, are often not sufficient for decisive early screening ? diagnosis. We demonstrate that MRI augmented with fluorescence intensity (FI) substantially improves detection. Early stage murine pancreatic tumors that could not be identified by blinded, skilled observers using MRI alone, were easily identified with MRI along with FI images acquired with photomultiplier tube detection and offset laser scanning. Moreover, we show that fluorescence lifetime (FLT) imaging enables positive identification of the labeling fluorophore and discriminates it from surrounding tissue autofluorescence. Our data suggest combined-modality imaging with MRI, FI, and FLT can be used to screen and diagnose early tumors.
Related JoVE Video
Simultaneous color-coded imaging to distinguish cancer "stem-like" and non-stem cells in the same tumor.
J. Cell. Biochem.
PUBLISHED: 07-31-2010
Show Abstract
Hide Abstract
In this study, we demonstrate that the differential behavior, including malignancy and chemosensitivity, of cancer stem-like and non-stem cells can be simultaneously distinguished in the same tumor in real time by color-coded imaging. CD133(+) Huh-7 human hepatocellular carcinoma (HCC) cells were considered as cancer stem-like cells (CSCs), and CD133(-) Huh-7 cells were considered as non-stem cancer cells (NSCCs). CD133(+) cells were isolated by magnetic bead sorting after Huh-7 cells were genetically labeled with green fluorescent protein (GFP) or red fluorescent protein (RFP). In this scheme, CD133(+) cells were labeled with GFP and CD133(-) cells were labeled with RFP. CSCs had higher proliferative potential compared to NSCCs in vitro. The same number of GFP CSCs and the RFP NSCCs were mixed and injected subcutaneously or in the spleen of nude mice. CSCs were highly tumorigenic and metastatic as well as highly resistant to chemotherapy in vivo compared to NSCCs. The ability to specifically distinguish stem-like cancer cells in vivo in real time provides a visual target for prevention of metastasis and drug resistance.
Related JoVE Video
Metronomic gemcitabine in combination with sunitinib inhibits multisite metastasis and increases survival in an orthotopic model of pancreatic cancer.
Mol. Cancer Ther.
PUBLISHED: 07-06-2010
Show Abstract
Hide Abstract
Metronomic chemotherapy suppresses growth of primary tumors and established metastases. However, its effect on metastatic progression is essentially unknown. We report the treatment of a metastatically competent model of pancreatic cancer with metronomic gemcitabine and sunitinib. Mice with orthotopic, red fluorescent protein-expressing, pancreatic cancer tumorgrafts were treated with gemcitabine on a metronomic (1 mg/kg daily, METG) or maximum tolerated dose (150 mg/kg twice weekly, MTDG) schedule with or without sunitinib (SU). Rates of primary tumor growth, metastasis, ascites, and survival were calculated. Gemcitabine at a daily dose of 2 mg or greater led to toxicity within 1 month in mice without tumors but METG at 1 mg/kg/d was well tolerated. Mice with pancreatic cancer tumorgrafts died with metastatic disease at a median of 25 days. METG/SU significantly prolonged median overall survival (44 days) compared with control or either regimen alone (P < 0.05). Primary tumor growth was inhibited by METG/SU (P = 0.03) but neither METG nor sunitinib alone. In contrast, treatment with METG suppressed metastasis at multiple sites, an effect enhanced by sunitinib. MTDG with or without sunitinib had the most favorable effect on primary tumor growth and survival, but its antimetastatic efficacy was similar to that of METG/SU. von Willebrand factor expression was inhibited by METG. Antimetastatic activity approaching that of MTDG is achieved with a total dose reduced 42 times using METG and is further enhanced by sunitinib. Our results suggest the potential of this therapeutic paradigm against pancreatic cancer in the adjuvant and maintenance settings.
Related JoVE Video
Pseudopodium-enriched atypical kinase 1 regulates the cytoskeleton and cancer progression [corrected].
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
Regulation of the actin-myosin cytoskeleton plays a central role in cell migration and cancer progression. Here, we report the discovery of a cytoskeleton-associated kinase, pseudopodium-enriched atypical kinase 1 (PEAK1). PEAK1 is a 190-kDa nonreceptor tyrosine kinase that localizes to actin filaments and focal adhesions. PEAK1 undergoes Src-induced tyrosine phosphorylation, regulates the p130Cas-Crk-paxillin and Erk signaling pathways, and operates downstream of integrin and epidermal growth factor receptors (EGFR) to control cell spreading, migration, and proliferation. Perturbation of PEAK1 levels in cancer cells alters anchorage-independent growth and tumor progression in mice. Notably, primary and metastatic samples from colon cancer patients display amplified PEAK1 levels in 81% of the cases. Our findings indicate that PEAK1 is an important cytoskeletal regulatory kinase and possible target for anticancer therapy.
Related JoVE Video
UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo.
J. Cell. Biochem.
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
We investigated the cell-killing efficacy of UV light on cancer cells expressing GFP in the nucleus and RFP in the cytoplasm (dual-color cells). After exposure to various doses of UVA, UVB, or UVC, apoptotic and viable cells were quantitated under fluorescence microscopy using dual-color 143B human osteosarcoma cells, HT-1080 human fibrosarcoma cells, Lewis lung carcinoma (LLC), and XPA-1 human pancreatic cancer cells in vitro. UV-induced cancer cell death was wave-length and dose dependent, as well as cell-line dependent. After UVA exposure, most cells were viable even when the UV dose was increased up to 200 J/m(2). With UVB irradiation, cell death was observed with irradiation at 50 J/m(2). For UVC, as little as 25 J/m(2) UVC irradiation killed approximately 70% of the 143B dual-color cells. This dose of UVB or UVA had almost no effect on the cancer cells. UV-induced cancer cell death varied among the cell lines. Cell death began about 4 h after irradiation and continued until 10 h after irradiation. UVC exposure also suppressed cancer cell growth in nude mice in a model of minimal residual cancer (MRC). No apparent side effects of UVC exposure were observed. This study opens up the possibility of UVC treatment for MRC after surgical resection.
Related JoVE Video
Writing a successful NIH Mentored Career Development Grant (K award): hints for the junior faculty surgeon.
Ann. Surg.
PUBLISHED: 05-21-2010
Show Abstract
Hide Abstract
Surgery is a labor-intensive, time-consuming profession. Young faculty members in surgery are saddled with many clinical time constraints that often allow precious few moments for academic pursuits. Consequently, K award submissions from surgeons trail nonsurgeons. The National Institutes of Health (NIH), however, is actively trying to encourage participation of surgeons in basic science research, translational research, clinical outcomes research, and even in prevention/control research. But, at the same time, the NIH has newly implemented a policy that has made the grant review process more restrictive by only allowing 2 submissions of any grant application. It is imperative, therefore, for junior faculty surgeons to learn "grantsmanship" and have the ability to construct succinct, competitive K award grants. Although most of this information is public knowledge and made available by the NIH itself, many of the practical points presented here are tailored to the special needs of clinically active surgical researchers. Often, these "hints" are buried on expansive websites that require considerable time to read and navigate. The authors have a long combined experience on a study section dedicated to adjudicating K awards. The goal of this review is to present concise, useful information about common errors, research plan dos and donts, template examples of superior mentored letters, and many other suggestions that may assist any first-time candidate for these awards.
Related JoVE Video
Amphicrine carcinoma of the liver.
Ann Diagn Pathol
PUBLISHED: 04-30-2010
Show Abstract
Hide Abstract
Amphicrine tumors are defined by evidence of both glandular and neuroendocrine differentiation in the same cell. These are extremely rare tumors, with only scattered case reports in the pancreas and stomach. We here report a case of amphicrine carcinoma occurring in apparent isolation in the liver. The tumor was characterized by signet ring cell morphology, mucicarmine, and periodic acid Schiff with diastase (PASD) positivity, and expression of chromogranin, synaptophysin, villin, and CDX2. No other tumor was identified by radiological or endoscopic examination of the gastrointestinal tract. The patient is disease-free 22 months after the resection. We speculate that this represents the first reported occurrence of primary amphicrine carcinoma of the liver.
Related JoVE Video
Marker expression in circulating cancer cells of pancreatic cancer patients.
J. Surg. Res.
PUBLISHED: 04-30-2010
Show Abstract
Hide Abstract
By the time patients are diagnosed with pancreatic cancer, circulating cancer cells probably exist. Therefore, the detection of pancreatic cancer cells in the peripheral circulation could be used to diagnose early pancreatic cancer, which would otherwise not be detected by current imaging methods.
Related JoVE Video
High antimetastatic efficacy of MEN4901/T-0128, a novel camptothecin carboxymethyldextran conjugate.
J. Surg. Res.
PUBLISHED: 04-17-2010
Show Abstract
Hide Abstract
The antimetastatic activity of a novel camptothecan conjugate, MEN4901/T-0128, in which 7-ethyl-10-aminopropyloxy-camptothecin (T-2513) is bound to a biodegradable carboxymethyldextran via a Gly-Gly-Gly linker, was observed in this study. High antimetastatic activity of MEN4901/T-0128 was demonstrated in a clinically-relevant orthotopic mouse model of human colon cancer. MEN4901/T-0128 and irinotecan were compared for anti-metastatic activity as well as efficacy against the primary tumor. An imageable, metastatic model was made by surgical orthotopic implantation (SOI) of the green fluorescent protein (GFP)-expressing HT-29 tumor in nude mice. MEN4901/T-0128 and irinotecan were administered intravenously at various doses and schedules. MEN4901/T-0128, with treatment beginning on d 49 after SOI, was highly effective on lymph node metastasis as well as against the primary tumor. Both GFP imaging and histology demonstrated a markedly lower metastatic incidence of lymph nodes in all MEN4901/T-0128 treated mice compared with irinotecan-treated and untreated mice. At the most efficacious dose of MEN4901/T-0128, only 1 of 12 animals had lymph node metastasis compared with 19 of 20 in the control group. The present study demonstrates the principle that when a camptothecan is conjugated to an appropriate polymer, the drug can become extremely effective with important clinical potential for antimetastatic therapy, a most urgent need.
Related JoVE Video
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.