JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Downregulated miR-329 and miR-410 promote the proliferation and invasion of oral squamous cell carcinoma by targeting Wnt-7b.
Cancer Res.
PUBLISHED: 10-30-2014
Show Abstract
Hide Abstract
MicroRNA (miRNA) dysregulation contributes widely to human cancer but has not been fully assessed in oral cancers. In this study, we conducted a global microarray analysis of miRNA expression in 40 pairs of betel quid-associated oral squamous cell carcinoma (OSCC) specimens and their matched non-tumorous epithelial counterparts. Eighty-four miRNAs were differentially expressed in the OSCC specimens compared to the matched tissue. Among these downregulated miRNAs, 19 miRNAs were found and mapped to the chromosome 14q32.2 miRNA cluster region, which resides within a parentally imprinted region designated Dlk-Dio3 and known to be important in development and growth. Bioinformatic analysis predicted two miRNAs from the cluster region, miR-329 and miR-410, which could potentially target Wnt-7b, an activator of the Wnt/?-catenin pathway, thereby attenuating the Wnt/?-catenin signaling pathway in OSCC. Stable ectopic expression of Wnt-7b in OSCC cells overexpressing miR-329 or miR-410 restored proliferation and invasion capabilities abolished by these miRNA. Combining a demethylation agent and a histone deacetylase inhibitor was sufficient to re-express miR-329, miR-410 and Meg3 consistent with epigenetic regulation of these miRNA in human OSCC. Specifically, arecoline, a major betel nut alkaloid, reduced miR-329, miR-410 and Meg3 gene expression. Overall, our results provide novel molecular insights into how betel quid contribute to oral carcinogenesis through epigenetic silencing of tumor suppressor miRNA which target Wnt/?-catenin signaling.
Related JoVE Video
miR326 Maturation Is Crucial for VEGF-C-Driven Cortactin Expression and Esophageal Cancer Progression.
Cancer Res.
PUBLISHED: 09-09-2014
Show Abstract
Hide Abstract
Esophageal cancer is an aggressive human malignancy with increasing incidence in the developed world. VEGF-C makes crucial contributions to esophageal cancer progression that are not well understood. Here, we report the discovery of regulatory relationship in esophageal cancers between the expression of VEGF-C and cortactin (CTTN), a regulator of the cortical actin cytoskeleton. Upregulation of CTTN expression by VEGF-C enhanced the invasive properties of esophageal squamous cell carcinoma in vitro and tumor metastasis in vivo. Mechanistic investigations showed that VEGF-C increased CTTN expression by downregulating Dicer-mediated maturation of miR326, thereby relieving the suppressive effect of miR326 on CTTN expression. Clinically, expression of Dicer and miR326 correlated with poor prognosis in patients with esophageal cancer. Our findings offer insights into how VEGF-C enhances the robust invasive and metastatic properties of esophageal cancer, which has potential implications for the development of new biomarkers or therapies in this setting. Cancer Res; 74(21); 6280-90. ©2014 AACR.
Related JoVE Video
Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 08-26-2014
Show Abstract
Hide Abstract
Metabolic alterations contribute to cancer development and progression. However, the molecular mechanisms relating metabolism to cancer metastasis remain largely unknown.
Related JoVE Video
Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft.
Arch. Toxicol.
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
Quercetin is a plant-derived bioflavonoid that was recently shown to have multiple anticancer activities in various solid tumors. Here, novel molecular mechanisms through which quercetin exerts its anticancer effects in acute myeloid leukemia (AML) cells were investigated. Results from Western blot and flow cytometric assays revealed that quercetin significantly induced caspase-8, caspase-9, and caspase-3 activation, poly ADP-ribose polymerase (PARP) cleavage, and mitochondrial membrane depolarization in HL-60 AML cells. The induction of PARP cleavage by quercetin was also observed in other AML cell lines: THP-1, MV4-11, and U937. Moreover, treatment of HL-60 cells with quercetin induced sustained activation of extracellular signal-regulated kinase (ERK), and inhibition of ERK by an ERK inhibitor significantly abolished quercetin-induced cell apoptosis. MitoSOX red and 2',7'-dichlorofluorescin fluorescence, respectively, showed that mitochondrial superoxide and intracellular peroxide levels were higher in quercetin-treated HL-60 cells compared with the control group. Moreover, both N-acetylcysteine and the superoxide dismutase mimetic, MnTBAP, reversed quercetin-induced intracellular reactive oxygen species production, ERK activation, and subsequent cell death. The in vivo xenograft mice experiments revealed that quercetin significantly reduced tumor growth through inducing intratumoral oxidative stress while activating the ERK pathway and subsequent cell apoptosis in mice with HL-60 tumor xenografts. In conclusions, our results indicated that quercetin induced cell death of HL-60 cells in vitro and in vivo through induction of intracellular oxidative stress following activation of an ERK-mediated apoptosis pathway.
Related JoVE Video
The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis.
Mol. Cancer
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
Ovarian cancer (OCa) peritoneal metastasis is the leading cause of cancer-related deaths in women with limited therapeutic options available for treating it and poor prognosis, as the underlying mechanism is not fully understood.
Related JoVE Video
Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells.
Autophagy
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported. In this study, CSCs were isolated from colorectal cancer cells using PROM1/CD133 (prominin 1) expression, which is a surface marker commonly found on stem cells of various tissues. We demonstrated that PpIX-mediated PDT induced the formation of autophagosomes in PROM1/CD133(+) cells, accompanied by the upregulation of autophagy-related proteins ATG3, ATG5, ATG7, and ATG12. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of the ATG5 gene substantially triggered apoptosis of PROM1/CD133(+) cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. In conclusion, our results revealed a protective role played by autophagy against PDT in CSCs and indicated that targeting autophagy could be used to elevate the PDT sensitivity of CSCs. These findings would aid in the development of novel therapeutic approaches for CSC treatment.
Related JoVE Video
Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma.
Mol. Cancer
PUBLISHED: 04-25-2014
Show Abstract
Hide Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common cancer worldwide. Emerging evidence indicates that alteration of epigenetics might be a key event in HNSCC progression. Abnormal expression of histone methyltransferase G9a, which contributes to transcriptional repression of tumor suppressors, has been implicated in promoting cancerous malignancies. However, its role in HNSCC has not been previously characterized. In this study, we elucidate the function of G9a and its downstream mechanism in HNSCC.
Related JoVE Video
E1A-Mediated Inhibition of HSPA5 Suppresses Cell Migration and Invasion in Triple-Negative Breast Cancer.
Ann. Surg. Oncol.
PUBLISHED: 03-26-2014
Show Abstract
Hide Abstract
Triple-negative breast cancer (TNBC) is defined by reduced expression of the estrogen receptor, progesterone receptor, and HER2. TNBC is an especially aggressive group of breast cancers with poor prognosis. There are currently no validated molecular targets to effectively treat this disease. Thus, it is necessary to identify effective molecular targets and therapeutic strategies for TNBC patients.
Related JoVE Video
Different impacts of ?- and ?-blockers in neurogenic hypertension produced by brainstem lesions in rat.
Anesthesiology
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Bilateral lesions of nucleus tractus solitarii in rat result in acute hypertension, pulmonary edema, and death within hours. The hypertension results from excessive catecholamine release. Catecholamine can activate connexin43 to regulate cell death. There is no study investigating the cardiopulmonary impacts of different adrenergic blockers and apoptosis mechanism in rat model.
Related JoVE Video
MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1.
Biochim. Biophys. Acta
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
Upregulation of Pin1 was shown to advance the functioning of several oncogenic pathways. It was recently shown that Pin1 is potentially an excellent prognostic marker and can also serve as a novel therapeutic target for prostate cancer. However, the molecular mechanism of Pin1 overexpression in prostate cancer is still unclear. In the present study, we showed that the mRNA expression levels of Pin1 were not correlated with Pin1 protein levels in prostate cell lines which indicated that Pin1 may be regulated at the post-transcriptional level. A key player in post-transcriptional regulation is represented by microRNAs (miRNAs) that negatively regulate expressions of protein-coding genes at the post-transcriptional level. A bioinformatics analysis revealed that miR-296-5p has a conserved binding site in the Pin1 3'-untranslated region (UTR). A luciferase reporter assay demonstrated that the seed region of miR-296-5p directly interacts with the 3'-UTR of Pin1 mRNA. Moreover, miR-296-5p expression was found to be inversely correlated with Pin1 expression in prostate cancer cell lines and prostate cancer tissues. Furthermore, restoration of miR-296-5p or the knockdown of Pin1 had the same effect on the inhibition of the ability of cell proliferation and anchorage-independent growth of prostate cancer cell lines. Our results support miR-296-5p playing a tumor-suppressive role by targeting Pin1 and implicate potential effects of miR-296-5p on the prognosis and clinical application to prostate cancer therapy.
Related JoVE Video
Arsenic Trioxide Inhibits CXCR4-Mediated Metastasis by Interfering miR-520h/PP2A/NF-?B Signaling in Cervical Cancer.
Ann. Surg. Oncol.
PUBLISHED: 03-05-2014
Show Abstract
Hide Abstract
Arsenic apparently affects numerous intracellular signal transduction pathways and causes many alterations leading to apoptosis and differentiation in malignant cells. We and others have demonstrated that arsenic inhibits the metastatic capacity of cancer cells. Here we present additional mechanistic studies to elucidate the potential of arsenic as a promising therapeutic inhibitor of metastasis.
Related JoVE Video
Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism.
Br. J. Pharmacol.
PUBLISHED: 02-20-2014
Show Abstract
Hide Abstract
Oxidative stress is an important pathogenic factor in the development of hypertension. Resveratrol, the main antioxidant in red wine, improves NO bioavailability and prevents cardiovascular disease. The aim of this study was to examine whether resveratrol decreases the generation of reactive oxygen species (ROS), thereby reducing BP in rats with fructose-induced hypertension.
Related JoVE Video
Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM), the grade IV astrocytoma, is the most common and aggressive brain tumor in adults. Despite advances in medical management, the survival rate of GBM patients remains poor, suggesting that identification of GBM-specific targets for therapeutic development is urgently needed. Analysis of several glycan antigens on GBM cell lines revealed that eight of 11 GBM cell lines are positive for stage-specific embryonic antigen-4 (SSEA-4), and immunohistochemical staining confirmed that 38/55 (69%) of human GBM specimens, but not normal brain tissue, were SSEA-4(+) and correlated with high-grade astrocytoma. In addition, an SSEA-4-specific mAb was found to induce complement-dependent cytotoxicity against SSEA-4(hi) GBM cell lines in vitro and suppressed GBM tumor growth in mice. Because SSEA-4 is expressed on GBM and many other types of cancers, but not on normal cells, it could be a target for development of therapeutic antibodies and vaccines.
Related JoVE Video
Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency.
Genome Res.
PUBLISHED: 10-16-2013
Show Abstract
Hide Abstract
Trans-splicing is a post-transcriptional event that joins exons from separate pre-mRNAs. Detection of trans-splicing is usually severely hampered by experimental artifacts and genetic rearrangements. Here, we develop a new computational pipeline, TSscan, which integrates different types of high-throughput long-/short-read transcriptome sequencing of different human embryonic stem cell (hESC) lines to effectively minimize false positives while detecting trans-splicing. Combining TSscan screening with multiple experimental validation steps revealed that most chimeric RNA products were platform-dependent experimental artifacts of RNA sequencing. We successfully identified and confirmed four trans-spliced RNAs, including the first reported trans-spliced large intergenic noncoding RNA ("tsRMST"). We showed that these trans-spliced RNAs were all highly expressed in human pluripotent stem cells and differentially expressed during hESC differentiation. Our results further indicated that tsRMST can contribute to pluripotency maintenance of hESCs by suppressing lineage-specific gene expression through the recruitment of NANOG and the PRC2 complex factor, SUZ12. Taken together, our findings provide important insights into the role of trans-splicing in pluripotency maintenance of hESCs and help to facilitate future studies into trans-splicing, opening up this important but understudied class of post-transcriptional events for comprehensive characterization.
Related JoVE Video
Hispolon induces apoptosis through JNK1/2-mediated activation of a caspase-8, -9, and -3-dependent pathway in acute myeloid leukemia (AML) cells and inhibits AML xenograft tumor growth in vivo.
J. Agric. Food Chem.
PUBLISHED: 10-15-2013
Show Abstract
Hide Abstract
Hispolon is an active phenolic compound of Phellinus igniarius, a mushroom that was recently shown to have antioxidant and anticancer activities in various solid tumors. Here, the molecular mechanisms by which hispolon exerts anticancer effects in acute myeloid leukemia (AML) cells was investigated. The results showed that hispolon suppressed cell proliferation in the various AML cell lines. Furthermore, hispolon effectively induced apoptosis of HL-60 AML cells through caspases-8, -9, and -3 activations and PARP cleavage. Moreover, treatment of HL-60 cells with hispolon induced sustained activation of JNK1/2, and inhibition of JNK by JNK1/2 inhibitor or JNK1/2-specific siRNA significantly abolished the hispolon-induced activation of the caspase-8/-9/-3. In vivo, hispolon significantly reduced tumor growth in mice with HL-60 tumor xenografts. In hispolon-treated tumors, activation of caspase-3 and a decrease in Ki67-positive cells were observed. Our results indicated that hispolon may have the potential to serve as a therapeutic tool to treat AML.
Related JoVE Video
Gfi-1 is the transcriptional repressor of SOCS1 in acute myeloid leukemia cells.
J. Leukoc. Biol.
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
Silencing of SOCS1, a TSG, has been detected in various malignancies, including AML. However, the underlying mechanism of SOCS1 inactivation remains elusive. In this study, we explored the role of histone methylation in SOCS1 expression in AML cells. By ChIP assay, we demonstrated that G9a and SUV39H1, two enzymes catalyzing H3K9 methylation, were physically associated with the SOCS1 promoter, and treatment with chaetocin, a histone methyltransferase inhibitor, suppressed H3K9 methylation on the SOCS1 promoter and enhanced SOCS1 expression. Furthermore, knockdown of G9a and SUV39H1 by siRNA could also induce SOCS1 expression. On the other hand, SOCS1 knockdown by shRNA eliminated chaetocin-induced cell apoptosis. To investigate further whether any transcription factor was involved in H3K9 methylation-related SOCS1 repression, we scanned the sequences of the SOCS1 gene promoter and found two binding sites for Gfi-1, a transcription repressor. By DNA pull-down and ChIP assays, we showed that Gfi-1 directly bound the SOCS1 promoter, and ectopic Gfi-1 expression suppressed STAT5-induced SOCS1 promoter activation. In contrast, Gfi-1 knockdown by shRNA enhanced SOCS1 expression and inhibited STAT5 expression. Moreover, the knockdown of G9a completely rescued the repressive effect of Gfi-1 on STAT5A-induced SOCS1 promoter activation. Collectively, our study indicates that the expression of Gfi-1 contributes to SOCS1 silencing in AML cells through epigenetic modification, and suppression of histone methyltransferase can provide new insight in AML therapy.
Related JoVE Video
Pin1 acts as a negative regulator of the G2/M transition by interacting with the Aurora-A-Bora complex.
J. Cell. Sci.
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
Pin1 was the first prolyl isomerase identified that is involved in cell division. The mechanism by which Pin1 acts as a negative regulator of mitotic activity in G2 phase remains unclear. Here, we found that Aurora A can interact with and phosphorylate Pin1 at Ser16, which suppresses the G2/M function of Pin1 by disrupting its binding ability and mitotic entry. Our results also show that phosphorylation of Bora at Ser274 and Ser278 is crucial for binding of Pin1. Through the interaction, Pin1 can alter the cytoplasmic translocation of Bora and promote premature degradation by ?-TrCP, which results in a delay in mitotic entry. Together with the results that Pin1 protein levels do not significantly fluctuate during cell-cycle progression and Aurora A suppresses Pin1 G2/M function, our data demonstrate that a gain of Pin1 function can override the Aurora-A-mediated functional suppression of Pin1. Collectively, these results highlight the physiological significance of Aurora-A-mediated Pin1 Ser16 phosphorylation for mitotic entry and the suppression of Pin1 is functionally linked to the regulation of mitotic entry through the Aurora-A-Bora complex.
Related JoVE Video
Carboxyl-terminal modulator protein positively regulates Akt phosphorylation and acts as an oncogenic driver in breast cancer.
Cancer Res.
PUBLISHED: 08-13-2013
Show Abstract
Hide Abstract
Akt activation has been implicated broadly in tumorigenesis, but the basis for its dysregulation in cancer cells is incompletely understood. In this study, we sought to clarify a regulatory role for the Akt-binding carboxy-terminal modulator protein (CTMP), which has been controversial. In evaluating CTMP expression in paired normal-tumor specimens of 198 patients with breast cancer, we found that CTMP was upregulated in breast tumors, where it was associated with poor patient survival. Notably, CTMP expression also correlated positively with Akt phosphorylation in breast cancer clinical specimens and cell lines. Furthermore, ectopic expression of CTMP promoted cell proliferation and enhanced the tumorigenic properties of estrogen-dependent breast cancer cells. This effect was correlated with increased sensitivity to insulin-induced Akt phosphorylation, which is mediated primarily by the phosphoinositide 3-kinase-Akt pathway. In contrast, short hairpin RNA-mediated silencing of endogenous CTMP decreased the proliferation of estrogen-dependent or estrogen-independent breast cancer cells. Mechanistic investigations defined the N-terminal domain of CTMP at amino acids 1 to 64 as responsible for Akt binding. Taken together, our results firmly corroborate the concept that CTMP promotes Akt phosphorylation and functions as an oncogenic molecule in breast cancer.
Related JoVE Video
A sesquiterpene lactone antrocin from Antrodia camphorata negatively modulates JAK2/STAT3 signaling via microRNA let-7c and induces apoptosis in lung cancer cells.
Carcinogenesis
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
Lung cancer is the leading cause of cancer deaths worldwide and current therapies fail to treat this disease in majority of cases. Antrodia camphorata is a medicinal mushroom being widely used as food dietary supplement for cancer prevention. The sesquiterpene lactone antrocin is the most potent among >100 secondary metabolites isolated from A. camphorata. However, the molecular mechanisms of antrocin-mediated anticancer effects remain unclear. In this study, we found that antrocin inhibited cell proliferation in two non-small-cell lung cancer cells, namely H441 (wild-type epidermal growth factor receptor, IC50 = 0.75 ?M) and H1975 (gefitnib-resistant mutant T790M, IC50 = 0.83 ?M). Antrocin dose dependently suppressed colony formation and induced apoptosis as evidenced by activated caspase-3 and increased Bax/Bcl2 ratio. Gene profiling studies indicated that antrocin downregulated Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. We further demonstrated that antrocin suppressed both constitutively activated and interleukin 6-induced STAT3 phosphorylation and its subsequent nuclear translocation. Such inhibition is found to be achieved through the suppression of JAK2 and interaction between STAT3 and extracellular signal-regulated kinase. Additionally, antrocin increased microRNA let-7c expression and suppressed STAT signaling. The combination of antrocin and JAK2/STAT3 gene silencing significantly increased apoptosis in H441 cells. Such dual interruption of JAK2 and STAT3 pathways also induced downregulation of antiapoptotic protein mcl-1 and increased caspase-3 expression. In vivo intraperitoneal administration of antrocin significantly suppressed the growth of lung cancer tumor xenografts. Our results indicate that antrocin may be a potential therapeutic agent for human lung cancer cells through constitutive inhibition of JAK2/STAT3 pathway.
Related JoVE Video
Targeting the XIAP/caspase-7 complex selectively kills caspase-3-deficient malignancies.
J. Clin. Invest.
PUBLISHED: 06-21-2013
Show Abstract
Hide Abstract
Caspase-3 downregulation (CASP3/DR) in tumors frequently confers resistance to cancer therapy and is significantly correlated with a poor prognosis in cancer patients. Because CASP3/DR cancer cells rely heavily on the activity of caspase-7 (CASP7) to initiate apoptosis, inhibition of activated CASP7 (p19/p12-CASP7) by X-linked inhibitor of apoptosis protein (XIAP) is a potential mechanism by which apoptosis is prevented in those cancer cells. Here, we identify the pocket surrounding the Cys246 residue of p19/p12-CASP7 as a target for the development of a protein-protein interaction (PPI) inhibitor of the XIAP:p19/p12-CASP7 complex. Interrupting this PPI directly triggered CASP7-dependent apoptotic signaling that bypassed the activation of the apical caspases and selectively killed CASP3/DR malignancies in vitro and in vivo without adverse side effects in nontumor cells. Importantly, CASP3/DR combined with p19/p12-CASP7 accumulation correlated with the aggressive evolution of clinical malignancies and a poor prognosis in cancer patients. Moreover, targeting of this PPI effectively killed cancer cells with multidrug resistance due to microRNA let-7a-1-mediated CASP3/DR and resensitized cancer cells to chemotherapy-induced apoptosis. These findings not only provide an opportunity to treat CASP3/DR malignancies by targeting the XIAP:p19/p12-CASP7 complex, but also elucidate the molecular mechanism underlying CASP3/DR in cancers.
Related JoVE Video
Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer.
Carcinogenesis
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
Loss of RUNX3 expression is frequently observed in gastric cancer and is highly associated with lymph node metastasis and poor prognosis. However, the underlying molecular mechanisms of gastric cancer remain unknown. In this study, we found that the protein levels of RUNX3 and osteopontin (OPN) are inversely correlated in gastric cancer clinical specimens and cell lines. Furthermore, similar inverse trends between RUNX3 and OPN messenger RNA (mRNA) expression were demonstrated in six out of seven normal-tumor-paired gastric cancer clinical specimens. In addition, low RUNX3 and high OPN expression were associated with poor prognosis in gastric cancer patients. Ectopic expression of green fluorescent protein-RUNX3 reduced OPN protein and mRNA expression in the AGS and SCM-1 gastric cancer cell lines. In contrast, knockdown of RUNX3 in GES-1, a normal gastric epithelial cell line, increased OPN expression. Although three RUNX3-binding sequences have been identified in the OPN promoter region, direct binding of RUNX3 to the specific binding site, -142 to -137bp, was demonstrated by chromatin immunoprecipitation assay. The binding of RUNX3 to the OPN promoter significantly decreased OPN promoter activity. The knockdown of OPN or overexpression of RUNX3 inhibited cell migration in AGS and SCM-1 cells; however, the coexpression of RUNX3 and OPN reversed the RUNX3-reduced migration ability in AGS and SCM-1 cells. In contrast, the knockdown of both RUNX3 and OPN inhibited RUNX3-knockdown-induced migration of GES-1 cells. Together, our data demonstrated that RUNX3 is a transcriptional repressor of OPN and that loss of RUNX3 upregulates OPN, which promotes migration in gastric cancer cells.
Related JoVE Video
Vascular endothelial growth factor-C modulates proliferation and chemoresistance in acute myeloid leukemic cells through an endothelin-1-dependent induction of cyclooxygenase-2.
Biochim. Biophys. Acta
PUBLISHED: 05-31-2013
Show Abstract
Hide Abstract
High-level expression of vascular endothelial growth factor (VEGF)-C is associated with chemoresistance and adverse prognosis in acute myeloid leukemia (AML). Our previous study has found that VEGF-C induces cyclooxygenase-2 (COX-2) expression in AML cell lines and significant correlation of VEGF-C and COX-2 in bone marrow specimens. COX-2 has been reported to mediate the proliferation and drug resistance in several solid tumors. Herein, we demonstrated that the VEGF-C-induced proliferation of AML cells is effectively abolished by the depletion or inhibition of COX-2. The expression of endothelin-1 (ET-1) rapidly increased following treatment with VEGF-C. We found that ET-1 was also involved in the VEGF-C-mediated proliferation of AML cells, and that recombinant ET-1 induced COX-2 mRNA and protein expressions in AML cells. Treatment with the endothelin receptor A (ETRA) antagonist, BQ 123, or ET-1 shRNAs inhibited VEGF-C-induced COX-2 expression. Flow cytometry and immunoblotting revealed that VEGF-C induces S phase accumulation through the inhibition of p27 and the upregulation of cyclin E and cyclin-dependent kinase-2 expressions. The cell-cycle-related effects of VEGF-C were reversed by the depletion of COX-2 or ET-1. The depletion of COX-2 or ET-1 also suppressed VEGF-C-induced increases in the bcl-2/bax ratio and chemoresistance against etoposide and cytosine arabinoside in AML cells. We also demonstrated VEGF-C/ET-1/COX-2 axis-mediated chemoresistance in an AML xenograft mouse model. Our findings suggest that VEGF-C induces COX-2-mediated resistance to chemotherapy through the induction of ET-1 expression. Acting as a key regulator in the VEGF-C/COX-2 axis, ET-1 represents a potential target for ameliorating resistance to chemotherapy in AML patients.
Related JoVE Video
Simvastatin inhibits cysteine-rich protein 61 expression in rheumatoid arthritis synovial fibroblasts through the regulation of sirtuin-1/FoxO3a signaling.
Arthritis Rheum.
PUBLISHED: 04-25-2013
Show Abstract
Hide Abstract
To examine the role of sirtuin-1 (SIRT-1)/FoxO3a in the expression of cysteine-rich protein 61 (CYR-61) in rheumatoid arthritis synovial fibroblasts (RASFs) and the influence of simvastatin on this pathway, and to determine the relationship between disease progression and FoxO3a/CYR-61 signaling in synovial fibroblasts in vivo using a rat model of collagen-induced arthritis (CIA).
Related JoVE Video
Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells.
Nanoscale
PUBLISHED: 03-27-2013
Show Abstract
Hide Abstract
This work demonstrates a simple route for synthesizing multi-functional fluorescent nanodiamond-gold/silver nanoparticles. The fluorescent nanodiamond is formed by the surface passivation of poly(ethylene glycol) bis(3-aminopropyl) terminated. Urchin-like gold/silver nanoparticles can be obtained via one-pot synthesis, and combined with each other via further thiolation of nanodiamond. The morphology of the nanodiamond-gold/silver nanoparticles thus formed was identified herein by high-resolution transmission electron microscopy, and clarified using diffraction patterns. Fourier transform infrared spectroscopy clearly revealed the surface functionalization of the nanoparticles. The fluorescence of the materials with high photo stability was examined by high power laser irradiation and long-term storage at room temperature. To develop the bio-recognition of fluorescent nanodiamond-gold/silver nanoparticles, pre-modified transferrin was conjugated with the gold/silver nanoparticles, and the specificity and activity were confirmed in vitro using human hepatoma cell line (J5). The cellular uptake analysis that was conducted using flow cytometry and inductively coupled plasma mass spectrometry exhibited that twice as many transferrin-modified nanoparticles as bare nanoparticles were engulfed, revealing the targeting and ease of internalization of the human hepatoma cell. Additionally, the in situ monitoring of photothermal therapeutic behavior reveals that the nanodiamond-gold/silver nanoparticles conjugated with transferrin was more therapeutic than the bare nanodiamond-gold/silver materials, even when exposed to a less energetic laser source. Ultimately, this multi-functional material has great potential for application in simple synthesis. It is non-cytotoxic, supports long-term tracing and can be used in highly efficient photothermal therapy against cancer cells.
Related JoVE Video
Inhibition of Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting VEGFRs and FGFRs.
Evid Based Complement Alternat Med
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
Angiogenesis and lymphangiogenesis are considered to play key roles in tumor metastasis. Targeting receptor tyrosine kinases essentially involved in the angiogenesis and lymphangiogenesis would theoretically prevent cancer metastasis. However, the optimal multikinase inhibitor for metastasis suppression has yet to be developed. In this study, we evaluated the effect of NSTPBP 0100194-A (194-A), a multikinase inhibitor of vascular endothelial growth factor receptors (VEGFRs)/fibroblast growth factor receptors (FGFRs), on lymphangiogenesis and angiogenesis in a mammary fat pad xenograft model of the highly invasive breast cancer cell line 4T1-Luc(+). We investigated the biologic effect of 194-A on various invasive breast cancer cell lines as well as endothelial and lymphatic endothelial cells. Intriguingly, we found that 194-A drastically reduced the formation of lung, liver, and lymph node metastasis of 4T1-Luc(+) and decreased primary tumor growth. This was associated with significant reductions in intratumoral lymphatic vessel length (LVL) and microvessel density (MVD). 194-A blocked VEGFRs mediated signaling on both endothelial and lymphatic endothelial cells. Moreover, 194-A significantly inhibited the invasive capacity induced by VEGF-C or FGF-2 in vitro in both 4T1 and MDA-MB231 cells. In conclusion, these experimental results demonstrate that simultaneous inhibition of VEGFRs/FGFRs kinases may be a promising strategy to prevent breast cancer metastasis.
Related JoVE Video
A preclinical evaluation of antimycin a as a potential antilung cancer stem cell agent.
Evid Based Complement Alternat Med
PUBLISHED: 03-10-2013
Show Abstract
Hide Abstract
Drug resistance and tumor recurrence are major obstacles in treating lung cancer patients. Accumulating evidence considers lung cancer stem cells (CSCs) as the major contributor to these clinical challenges. Agents that can target lung CSCs could potentially provide a more effective treatment than traditional chemotherapy. Here, we utilized the side-population (SP) method to isolate lung CSCs from A549 and PC-9 cell lines. Subsequently, a high throughput platform, connectivity maps (CMAPs), was used to identify potential anti-CSC agents. An antibiotic, antimycin A (AMA), was identified as a top candidate. SP A549 cells exhibited an elevated stemness profile, including Nanog, ? -catenin, Sox2, and CD133, and increased self-renewal ability. AMA treatment was found to suppress ? -catenin signaling components and tumor sphere formation. Furthermore, AMA treatment decreased the proliferation of gefitinib-resistant PC-9/GR cells and percentage of SP population. AMA demonstrated synergistic suppression of PC-9/GR cell viability when combined with gefitinib. Finally, AMA treatment suppressed tumorigenesis in mice inoculated with A549 SP cells. Collectively, we have identified AMA using CMAP as a novel antilung CSC agent, which acts to downregulate ? -catenin signaling. The combination of AMA and targeted therapeutic agents could be considered for overcoming drug resistance and relapse in lung cancer patients.
Related JoVE Video
BlueBerry Isolate, Pterostilbene, Functions as a Potential Anticancer Stem Cell Agent in Suppressing Irradiation-Mediated Enrichment of Hepatoma Stem Cells.
Evid Based Complement Alternat Med
PUBLISHED: 03-09-2013
Show Abstract
Hide Abstract
For many malignancies, radiation therapy remains the second option only to surgery in terms of its curative potential. However, radiation-induced tumor cell death is limited by a number of factors, including the adverse response of the tumor microenvironment to the treatment and either intrinsic or acquired mechanisms of evasive resistance, and the existence of cancer stem cells (CSCs). In this study, we demonstrated that using different doses of irradiation led to the enrichment of CD133(+) Mahlavu cells using flow cytometric method. Subsequently, CD133(+) Mahlavu cells enriched by irradiation were characterized for their stemness gene expression, self-renewal, migration/invasion abilities, and radiation resistance. Having established irradiation-enriched CD133(+) Mahlavu cells with CSC properties, we evaluated a phytochemical, pterostilbene (PT), found abundantly in blueberries, against irradiation-enriched CSCs. It was shown that PT treatment dose-dependently reduced the enrichment of CD133(+) Mahlavu cells upon irradiation; PT treatment also prevented tumor sphere formation, reduced stemness gene expression, and suppressed invasion and migration abilities as well as increasing apoptosis of CD133(+) Mahlavu CSCs. Based on our experimental data, pterostilbene could be used to prevent the enrichment of CD133(+) hepatoma CSCs and should be considered for future clinical testing as a combined agent for HCC patients.
Related JoVE Video
Glycogen synthase kinase 3 ? activity is required for hBora/Aurora A-mediated mitotic entry.
Cell Cycle
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
The synthesis and degradation of hBora is important for the regulation of mitotic entry and exist. In G 2 phase, hBora can complex with Aurora A to activate Plk1 and control mitotic entry. However, whether the post-translational modification of hBora is relevant to the mitotic entry still unclear. Here, we used the LC-MS/MS phosphopeptide mapping assay to identify 13 in vivo hBora phosphorylation sites and characterized that GSK3? can interact with hBora and phosphorylate hBora at Ser274 and Ser278. Pharmacological inhibitors of GSK3? reduced the retarded migrating band of hBora in cells and diminished the phosphorylation of hBora by in vitro kinase assay. Moreover, as well as in GSK3? activity-inhibited cells, specific knockdown of GSK3? by shRNA and S274A/S278 hBora mutant-expressing cells also exhibited the reduced Plk1 activation and a delay in mitotic entry. It suggests that GSK3? activity is required for hBora-mediated mitotic entry through Ser274 and Ser278 phosphorylation.
Related JoVE Video
Angiopoietin-like protein 1 suppresses SLUG to inhibit cancer cell motility.
J. Clin. Invest.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
Angiopoietin-like protein 1 (ANGPTL1) is a potent regulator of angiogenesis. Growing evidence suggests that ANGPTL family proteins not only target endothelial cells but also affect tumor cell behavior. In a screen of 102 patients with lung cancer, we found that ANGPTL1 expression was inversely correlated with invasion, lymph node metastasis, and poor clinical outcomes. ANGPTL1 suppressed the migratory, invasive, and metastatic capabilities of lung and breast cancer cell lines in vitro and reduced metastasis in mice injected with cancer cell lines overexpressing ANGPTL1. Ectopic expression of ANGPTL1 suppressed the epithelial-to-mesenchymal transition (EMT) by reducing the expression of the zinc-finger protein SLUG. A microRNA screen revealed that ANGPTL1 suppressed SLUG by inducing expression of miR-630 in an integrin ?(1)?(1)/FAK/ERK/SP1 pathway-dependent manner. These results demonstrate that ANGPTL1 represses lung cancer cell motility by abrogating the expression of the EMT mediator SLUG.
Related JoVE Video
Simvastatin induces a central hypotensive effect via Ras-mediated signalling to cause eNOS up-regulation.
Br. J. Pharmacol.
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Clinical studies indicate that statins have a BP-lowering effect in hypercholesterolemic individuals with hypertension. Specifically, statins modulate BP through the up-regulation of endothelial NOS (eNOS) activation in the brain. However, the signalling mechanisms through which statins enhance eNOS activation remain unclear. Therefore, we examined the possible signalling pathways involved in statin-mediated BP regulation in the nucleus tractus solitarii (NTS).
Related JoVE Video
Analysis of protein-protein interactions in cross-talk pathways reveals CRKL protein as a novel prognostic marker in hepatocellular carcinoma.
Mol. Cell Proteomics
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Deciphering the network of signaling pathways in cancer via protein-protein interactions (PPIs) at the cellular level is a promising approach but remains incomplete. We used an in situ proximity ligation assay to identify and quantify 67 endogenous PPIs among 21 interlinked pathways in two hepatocellular carcinoma (HCC) cells, Huh7 (minimally migratory cells) and Mahlavu (highly migratory cells). We then applied a differential network biology analysis and determined that the novel interaction, CRKL-FLT1, has a high centrality ranking, and the expression of this interaction is strongly correlated with the migratory ability of HCC and other cancer cell lines. Knockdown of CRKL and FLT1 in HCC cells leads to a decrease in cell migration via ERK signaling and the epithelial-mesenchymal transition process. Our immunohistochemical analysis shows high expression levels of the CRKL and CRKL-FLT1 pair that strongly correlate with reduced disease-free and overall survival in HCC patient samples, and a multivariate analysis further established CRKL and the CRKL-FLT1 as novel prognosis markers. This study demonstrated that functional exploration of a disease network with interlinked pathways via PPIs can be used to discover novel biomarkers.
Related JoVE Video
Hexamethonium reverses the lethal cardiopulmonary damages in a rat model of brainstem lesions mimicking fatal enterovirus 71 encephalitis.
Crit. Care Med.
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Among enterovirus 71 infections, brainstem encephalitis progressing abruptly to cardiac dysfunction and pulmonary edema causes rapid death within several hours. However, no currently known early indicators and treatments can monitor or prevent the unexpectedly fulminant course. We investigate the possible mechanisms and treatment of fatal enterovirus 71 infections to prevent the abrupt progression to cardiac dysfunction and pulmonary edema by using an animal model.
Related JoVE Video
Expression of GOLM1 Correlates with Prognosis in Human Hepatocellular Carcinoma.
Ann. Surg. Oncol.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Serum Golgi membrane protein 1 (GOLM1) is a novel biomarker for hepatocellular carcinoma (HCC). However, few studies have investigated the relationship between GOLM1 protein expression and clinicopathologic features in HCC patients. The aim of this study was to investigate the expression of GOLM1 in human HCC and its correlation with clinicopathologic parameters.
Related JoVE Video
Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis.
J. Clin. Invest.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
Despite a general repression of translation under hypoxia, cells selectively upregulate a set of hypoxia-inducible genes. Results from deep sequencing revealed that Let-7 and miR-103/107 are hypoxia-responsive microRNAs (HRMs) that are strongly induced in vascular endothelial cells. In silico bioinformatics and in vitro validation showed that these HRMs are induced by HIF1? and target argonaute 1 (AGO1), which anchors the microRNA-induced silencing complex (miRISC). HRM targeting of AGO1 resulted in the translational desuppression of VEGF mRNA. Inhibition of HRM or overexpression of AGO1 without the 3 untranslated region decreased hypoxia-induced angiogenesis. Conversely, AGO1 knockdown increased angiogenesis under normoxia in vivo. In addition, data from tumor xenografts and human cancer specimens indicate that AGO1-mediated translational desuppression of VEGF may be associated with tumor angiogenesis and poor prognosis. These findings provide evidence for an angiogenic pathway involving HRMs that target AGO1 and suggest that this pathway may be a suitable target for anti- or proangiogenesis strategies.
Related JoVE Video
Central nicotinic acetylcholine receptor involved in Ca(2+) -calmodulin-endothelial nitric oxide synthase pathway modulated hypotensive effects.
Br. J. Pharmacol.
PUBLISHED: 11-16-2011
Show Abstract
Hide Abstract
Recent evidence has suggested that nicotine decreases blood pressure (BP) and heart rate (HR) in the nucleus tractus solitarii (NTS), indicating that nicotinic acetylcholine receptors (nAChRs) play an important role in BP control in the NTS. However, the signalling mechanisms involved in nAChR-mediated depressor effects in the NTS are unclear. Hence, the aim of this study was to investigate these signalling mechanisms.
Related JoVE Video
FOXO3a-Dependent Mechanism of E1A-Induced Chemosensitization.
Cancer Res.
PUBLISHED: 09-12-2011
Show Abstract
Hide Abstract
Gene therapy trials in human breast, ovarian, and head and neck tumors indicate that adenovirus E1A can sensitize cancer cells to the cytotoxic effects of paclitaxel in vitro and in vivo. Resistance to paclitaxel has been reported to occur in cells expressing low levels of the Forkhead transcription factor FOXO3a. In this article, we report that FOXO3a is critical for E1A-mediated chemosensitization to paclitaxel. RNA interference-mediated knockdown of FOXO3a abolished E1A-induced sensitivity to paclitaxel. Mechanistic investigations indicated that E1A indirectly stabilized FOXO3a by acting at an intermediate step to inhibit a ubiquitin-dependent proteolysis pathway involving the E3 ligase ?TrCP and the FOXO3a inhibitory kinase IKK?. E1A derepressed this inhibitory pathway by stimulating expression of the protein phosphatase 2A (PP2A)/C protein phosphatases, which by binding to the TGF-?-activated kinase TAK1, inhibited its ability to activate IKK? and, thereby, to suppress ?TrCP-mediated degradation of FOXO3a. Thus, by stimulating PP2A/C expression, E1A triggers a signaling cascade that stabilizes FOXO3a and mediates chemosensitization. Our findings provide a leap forward in understanding paclitaxel chemosensitization by E1A, and offer a mechanistic rational to apply E1A gene therapy as an adjuvant for improving therapeutic outcomes in patients receiving paclitaxel treatment.
Related JoVE Video
Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake.
Nanotechnology
PUBLISHED: 09-06-2011
Show Abstract
Hide Abstract
The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.
Related JoVE Video
Vascular endothelial growth factor C as a predictor of early recurrence and poor prognosis of resected stage I non-small cell lung cancer.
Ann. Acad. Med. Singap.
PUBLISHED: 08-27-2011
Show Abstract
Hide Abstract
Stage I non-small cell lung cancer (NSCLC) is potentially curable after completely resection, but early recurrence may infl uence prognosis. This study hypothesises that vascular endothelial growth factor C (VEGF-C) plays a key role in predicting early recurrence and poor survival of patients with stage I NSCLC.
Related JoVE Video
miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans.
J. Clin. Invest.
PUBLISHED: 06-15-2011
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) influence many biological processes, including cancer. They do so by posttranscriptionally repressing target mRNAs to which they have sequence complementarity. Although it has been postulated that miRNAs can regulate other miRNAs, this has never been shown experimentally to our knowledge. Here, we demonstrate that miR-107 negatively regulates the tumor suppressor miRNA let-7 via a direct interaction. miR-107 was found to be highly expressed in malignant tissue from patients with advanced breast cancer, and its expression was inversely correlated with let-7 expression in tumors and in cancer cell lines. Ectopic expression of miR-107 in human cancer cell lines led to destabilization of mature let-7, increased expression of let-7 targets, and increased malignant phenotypes. In contrast, depletion of endogenous miR-107 dramatically increased the stability of mature let-7 and led to downregulation of let-7 targets. Accordingly, miR-107 expression increased the tumorigenic and metastatic potential of a human breast cancer cell line in mice via inhibition of let-7 and upregulation of let-7 targets. By mutating individual sites within miR-107 and let-7, we found that miR-107 directly interacts with let-7 and that the internal loop of the let-7/miR-107 duplex is critical for repression of let-7 expression. Altogether, we have identified an oncogenic role for miR-107 and provide evidence of a transregulational interaction among miRNAs in human cancer development.
Related JoVE Video
IL-10 promoter genetic polymorphisms and risk of Kawasaki disease in Taiwan.
Dis. Markers
PUBLISHED: 04-22-2011
Show Abstract
Hide Abstract
Kawasaki disease (KD) is the most common cause of pediatric acquired heart disease. KD patients have spontaneously high plasma/serum levels of IL-10 during the acute phase. Therefore, two independent studies were carried out to investigate the association between genetic variants in IL-10 promoter (-1082, -819, and -592) and risk of KD. A total of 134 trios were included for the family-based association study. A significantly preferential transmission of the C allele at loci -819 T > C and -592 A > C for KD cases was observed (P permutation = 0.029 and P permutation = 0.034, respectively). There was a significant increase in the transmission of haplotype CC (p = 0.016) at the above two loci (OR, 1.632; 95% CI, 1.090-2.443; P permutation = 0.019). We also carried out a follow-up case-control study that included 146 KD cases and 315 unrelated healthy children. The haplotype CC (-819, -592) showed an increased risk of KD (but statistically non-significant; OR, 1.332; 95% CI, 0.987-1.797; p = 0.061). In diplotype analysis, a trend was found between number of CC haplotype and risk of KD (but non-significant, p =0.061). In conclusion, CC genotype and CC/CC diplotype at IL-10-819T > C and -592A > C were significantly associated with risk of KD in case-parent trio study, which were replicated partially in our follow-up case-control study.
Related JoVE Video
The novel DNA alkylating agent BO-1090 suppresses the growth of human oral cavity cancer in xenografted and orthotopic mouse models.
Int. J. Cancer
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
Oral cancer is the fourth-most common cause of death in males and overall the sixth-most common cause of cancer death in Taiwan. Surgery, radiotherapy and chemotherapy combined with other therapies are the most common treatments for oral cavity cancer. Although cisplatin, 5-fluorouracil and docetaxel are commonly used clinically, there is no drug specific for oral cavity cancer. Here, we demonstrated that derivatives of 3a-aza-cyclopenta[a]indene, a class of newly synthesized alkylating agents, may be drugs more specific for oral cancer based on its potent in vitro cytotoxicity to oral cancer cells and on in vivo xenografts. Among them, BO-1090, bis(hydroxymethyl)-3a-aza-cyclopenta[a]indene derivative, targeted DNA for its cytotoxic effects as shown by inhibition of DNA synthesis (bromodeoxyuridine-based DNA synthesis assay), induction of DNA crosslinking (alkaline gel shift assay), and induction of DNA single-stranded breaks (Comet assay) and double-stranded breaks (?-H2AX focus formation). Following DNA damage, BO-1090 induced G1/S-phase arrest and apoptosis in oral cancer cell lines. The therapeutic potential of BO-1090 was tested in mice that received a xenograft of oral cavity cancer cell lines (SAS or Cal 27 cells). Intravenous injection of BO-1090 significantly suppressed tumor growth in comparison to control mice. BO-1090 also significantly reduced the tumor burden in orthotopic mouse models using SAS cells. There was no significant adverse effect of BO-1090 treatment with this dosage based on whole blood count, biochemical enzyme profiles in plasma and histopathology of various organs in mouse. Taken together, our current results demonstrate that B0-1090 may have potential as a treatment for oral cavity cancer.
Related JoVE Video
NAT2 slow acetylation haplotypes are associated with the increased risk of betel quid-related oral and pharyngeal squamous cell carcinoma.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod
PUBLISHED: 03-17-2011
Show Abstract
Hide Abstract
NAT2, the most important phase II metabolic enzyme for betel quid (BQ), might modify the risk of BQ-related oral and pharyngeal squamous cell carcinoma (OPSCC) in Taiwan.
Related JoVE Video
N-?-acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity.
Cancer Cell
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
N-?-acetyltransferase 10 protein, Naa10p, is an N-acetyltransferase known to be involved in cell cycle control. We found that Naa10p was expressed lower in varieties of malignancies with lymph node metastasis compared with non-lymph node metastasis. Higher Naa10p expression correlates the survival of lung cancer patients. Naa10p significantly suppressed migration, tumor growth, and metastasis independent of its enzymatic activity. Instead, Naa10p binds to the GIT-binding domain of PIX, thereby preventing the formation of the GIT-PIX-Paxillin complex, resulting in reduced intrinsic Cdc42/Rac1 activity and decreased cell migration. Forced expression of PIX in Naa10-transfected tumor cells restored the migration and metastasis ability. We suggest that Naa10p functions as a tumor metastasis suppressor by disrupting the migratory complex, PIX-GIT- Paxillin, in cancer cells.
Related JoVE Video
Minocycline inhibits the growth of glioma by inducing autophagy.
Autophagy
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Minocycline has been shown to alleviate several neurological disorders. Unexpectedly, we found that minocycline had opposite effects on glioma cells: minocycline induced nonapoptotic cell death in glioma cells. The glioma cell death was associated with the presence of autophagic vacuoles in the cytoplasm. Minocycline induced autophagy was confirmed by acridine orange, monodansylcadaverine (MDC) stainings of vesicle formation and the conversion of microtubule-associated proteins light chain 3 (LC3-I) to LC3-II. Pretreatment with autophagy inhibitor 3-methyladenine (3-MA) suppressed the induction of acidic vesicular organelles and the accumulation of LC3-II to the autophagosome membrane in glioma cells treated with minocycline. Despite the pretreatment of 3-MA, minocycline induced cell death which could result from the activation of caspase-3. Minocycline effectively inhibited tumor growth and induced autophagy in the xenograft tumor model of C6 glioma cells. These results suggest that minocycline may kill glioma cells by inducing autophagic cell death. When autophagy was inhibited, minocycline still induced cell death through the activation of caspase-3. Thus, minocycline is a promising agent in the treatment of malignant gliomas.
Related JoVE Video
Interaction between tumour necrosis factor-? gene polymorphisms and substance use on risk of betel quid-related oral and pharyngeal squamous cell carcinoma in Taiwan.
Arch. Oral Biol.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Betel quid (BQ) components induce the secretion of tumour necrosis factor-alpha (TNF-?) in oral keratinocytes, which promotes oral mucosal inflammation and oral cancer. This study was carried out to evaluate the association of TNFA genetic variants (-308G>A and -238G>A) with the risk and prognosis of BQ-related oral and pharyngeal squamous cell carcinoma (OPSCC).
Related JoVE Video
Manganese superoxide dismutase and glutathione peroxidase as prognostic markers in patients with buccal mucosal squamous cell carcinomas.
Head Neck
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
We investigated the relationship of the immunohistochemical expression status of manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase (GPx), and myeloperoxidase (MPO) in buccal mucosal squamous cell carcinoma (SCC) with clinicopathologic parameters and prognosis.
Related JoVE Video
IL-6 trans-signaling in formation and progression of malignant ascites in ovarian cancer.
Cancer Res.
PUBLISHED: 12-01-2010
Show Abstract
Hide Abstract
Classic signaling by the proinflammatory cytokine interleukin 6 (IL-6) involves its binding to target cells that express the membrane-bound IL-6 receptor ?. However, an alternate signaling pathway exists in which soluble IL-6 receptor (sIL-6R?) can bind IL-6 and activate target cells that lack mIL-6R?, such as endothelial cells. This alternate pathway, also termed trans-signaling, serves as the major IL-6 signaling pathway in various pathologic proinflammatory conditions including cancer. Here we report that sIL-6R? is elevated in malignant ascites from ovarian cancer patients, where it is associated with poor prognosis. IL-6 trans-signaling on endothelial cells prevented chemotherapy-induced apoptosis, induced endothelial hyperpermeability, and increased transendothelial migration of ovarian cancer cells. Selective blockade of the MAPK pathway with ERK inhibitor PD98059 reduced IL-6/sIL-6R?-mediated endothelial hyperpermeability. ERK activation by the IL-6/sIL-6R? complex increased endothelial integrity via Src kinase activation and Y685 phosphorylation of VE-cadherin. Selective targeting of IL-6 trans-signaling in vivo reduced ascites formation and enhanced the taxane sensitivity of intraperitoneal human ovarian tumor xenografts in mice. Collectively, our results show that increased levels of sIL-6R? found in ovarian cancer ascites drive IL-6 trans-signaling on endothelial cells, thereby contributing to cancer progression. Selective blockade of IL-6 trans-signaling may offer a promising therapeutic strategy to improve the management of patients with advanced ovarian cancer.
Related JoVE Video
Gastric juice acidity in upper gastrointestinal diseases.
World J. Gastroenterol.
PUBLISHED: 11-19-2010
Show Abstract
Hide Abstract
To search the independent factors determining gastric juice acidity and to investigate the acidity of gastric juices in various benign and malignant upper gastrointestinal diseases.
Related JoVE Video
Cytokine genetic polymorphisms and susceptibility to Kawasaki disease in Taiwanese children.
Circ. J.
PUBLISHED: 10-30-2010
Show Abstract
Hide Abstract
The relationship between cytokine gene polymorphisms and susceptibility to Kawasaki diseases (KD) is still controversial, so the aim of the present study was to investigate the association of 14 various polymorphisms of 9 cytokine genes (interleukin (IL)-1A, IL-1B, IL-1RN, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor-A and transforming growth factor-B) with KD risk.
Related JoVE Video
H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM.
Cancer Res.
PUBLISHED: 10-12-2010
Show Abstract
Hide Abstract
G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Emerging evidence suggests that G9a is required to maintain the malignant phenotype, but the role of G9a function in mediating tumor metastasis has not been explored. Here, we show that G9a is expressed in aggressive lung cancer cells, and its elevated expression correlates with poor prognosis. RNAi-mediated knockdown of G9a in highly invasive lung cancer cells inhibited cell migration and invasion in vitro and metastasis in vivo. Conversely, ectopic G9a expression in weakly invasive lung cancer cells increased motility and metastasis. Mechanistic investigations suggested that repression of the cell adhesion molecule Ep-CAM mediated the effects of G9a. First, RNAi-mediated knockdown of Ep-CAM partially relieved metastasis suppression imposed by G9a suppression. Second, an inverse correlation between G9a and Ep-CAM expression existed in primary lung cancer. Third, Ep-CAM repression was associated with promoter methylation and an enrichment for dimethylated histone H3K9. G9a knockdown reduced the levels of H3K9 dimethylation and decreased the recruitment of the transcriptional cofactors HP1, DNMT1, and HDAC1 to the Ep-CAM promoter. Our findings establish a functional contribution of G9a overexpression with concomitant dysregulation of epigenetic pathways in lung cancer progression.
Related JoVE Video
CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway.
J. Biol. Chem.
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin ?(v)?(3) is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the ?(v)?(3) receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the ?(v)?(3) integrin/integrin-linked kinase/ERK signaling pathway.
Related JoVE Video
Polyethylenimine-mediated PUMA gene delivery to orthotopic oral cancer: suppression of tumor growth through apoptosis induction in situ and prolonged survival.
Head Neck
PUBLISHED: 06-02-2010
Show Abstract
Hide Abstract
PUMA (a p53 up-regulated modulator of apoptosis) is induced by p53 tumor suppressor and other apoptotic stimuli. It was found to be a principal mediator of cell death in response to diverse apoptotic signals, implicating PUMA as a likely tumor suppressor.
Related JoVE Video
Downregulation of microRNA miR-520h by E1A contributes to anticancer activity.
Cancer Res.
PUBLISHED: 05-25-2010
Show Abstract
Hide Abstract
The leading cause of death in cancer patients is cancer metastasis, for which there is no effective treatment. MicroRNAs (miRNA) have been shown to play a significant role in cancer metastasis through regulation of gene expression. The adenovirus type 5 E1A (E1A) is associated with multiple tumor-suppressing activities including the inhibition of metastasis, and E1A gene therapies have been tested in several clinical trials. However, the mechanisms involved in E1A-mediated tumor-suppressing activities are not yet completely defined. Here, we showed that E1A downregulated the expression of the miRNA miR-520h, which was critical for E1A-mediated cancer cell mobility and in vitro invasion activity. In addition, we identified a signal cascade, namely, E1A-->miRNA-520h-->PP2A/C-->IkappaB kinase-->NF-kappaB-->Twist, in which E1A inhibited the expression of Twist through downregulation of miR-520h and the signal cascade. Our results indicated a functional link between miR-520h and tumorigenicity/invasive ability and provided a new insight into the role of E1A-mediated miRNA regulation in tumor suppression. Therefore, the results identified a new cascade of E1A-mediated tumor suppression activity via downregulation of miRNA-520h expression.
Related JoVE Video
Synergism between p53 and Mcl-1 in protecting from hepatic injury, fibrosis and cancer.
J. Hepatol.
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
Mcl-1-deficient hepatocytes are prone to undergo apoptosis. The tumor suppressor protein p53 plays an important role in apoptosis control as well as other cellular responses. This study was initially aimed to examine whether p53 was involved in Mcl-1 deficiency-induced apoptosis of hepatocytes.
Related JoVE Video
Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis.
Arthritis Rheum.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
To examine the effects of proinflammatory cytokines on Cyr61 expression in osteoblastic cells and the modulatory action of simvastatin, to assess the role of CREB in Cyr61 induction, and to investigate the relationship of osteoblastic expression of Cyr61 to disease progression in experimental arthritis.
Related JoVE Video
Enhancement of cell radiation sensitivity by pegylated gold nanoparticles.
Phys Med Biol
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
Biocompatible Au nanoparticles with surfaces modified by PEG (polyethylene glycol) were developed in view of possible applications for the enhancement of radiotherapy. Such nanoparticles exhibit preferential deposition at tumor sites due to the enhanced permeation and retention (EPR) effect. Here, we systematically studied their effects on EMT-6 and CT26 cell survival rates during irradiation for a dose up to 10 Gy with a commercial biological irradiator (E(average) = 73 keV), a Cu-Kalpha(1) x-ray source (8.048 keV), a monochromatized synchrotron source (6.5 keV), a radio-oncology linear accelerator (6 MeV) and a proton source (3 MeV). The percentage of surviving cells after irradiation was found to decrease by approximately 2-45% in the presence of PEG-Au nanoparticles ([Au] = 400, 500 or 1000 microM). The cell survival rates decreased as a function of the dose for all sources and nanoparticle concentrations. These results could open the way to more effective cancer irradiation therapies by using nanoparticles with optimized surface treatment. Difficulties in applying MTT assays were also brought to light, showing that this approach is not suitable for radiobiology.
Related JoVE Video
Diagnosis of gastric malignancy using gastric juice alpha1-antitrypsin.
Cancer Epidemiol. Biomarkers Prev.
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
No accurate, inexpensive, and noninvasive test for gastric cancer screening is currently available. Our recent study identified alpha1-antitrypsin as a potential biomarker of gastric cancer in gastric juice. The aim of this study was to develop a novel noninvasive modality for detecting gastric cancer by measurement of alpha1-antitrypsin concentration in gastric juice. The work consisted of two parts: (a) investigating the differences in gastric juice alpha1-antitrypsin concentrations between gastric cancer patients and controls, and (b) screening gastric cancer using string test to obtain gastric juice followed by immunoassay for alpha1-antitrypsin concentration. The data showed that gastric juice alpha1-antitrypsin concentration was markedly higher in gastric cancer patients than in healthy subjects, gastric ulcer patients, and duodenal ulcer patients (all P < 0.001). The area under the receiver operating characteristic curve for identifying gastric cancer cases was 0.96 (95% confidence interval, 0.93-0.99; P < 0.001). The sensitivity and specificity of gastric juice alpha1-antitrypsin concentration were 96% and 92%, respectively. Gastric juice alpha1-antitrypsin assay through string test was validated in 93 consecutive patients for gastric cancer screening. The sensitivity and specificity of gastric juice alpha1-antitrypsin string test at 85% accuracy were 74% and 88%, respectively. The area under the receiver operating characteristic curve for identifying gastric cancer was 0.84. In conclusion, gastric juice alpha1-antitrypsin concentration in gastric cancer patients markedly exceeds those in healthy subjects and patients with benign gastrointestinal diseases. A noninvasive alpha1-antitrypsin string test may serve as a new screening tool for identifying gastric cancer patients.
Related JoVE Video
hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing.
J. Clin. Invest.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Hypermethylation-mediated tumor suppressor gene silencing plays a crucial role in tumorigenesis. Understanding its underlying mechanism is essential for cancer treatment. Previous studies on human N-alpha-acetyltransferase 10, NatA catalytic subunit (hNaa10p; also known as human arrest-defective 1 [hARD1]), have generated conflicting results with regard to its role in tumorigenesis. Here we provide multiple lines of evidence indicating that it is oncogenic. We have shown that hNaa10p overexpression correlated with poor survival of human lung cancer patients. In vitro, enforced expression of hNaa10p was sufficient to cause cellular transformation, and siRNA-mediated depletion of hNaa10p impaired cancer cell proliferation in colony assays and xenograft studies. The oncogenic potential of hNaa10p depended on its interaction with DNA methyltransferase 1 (DNMT1). Mechanistically, hNaa10p positively regulated DNMT1 enzymatic activity by facilitating its binding to DNA in vitro and its recruitment to promoters of tumor suppressor genes, such as E-cadherin, in vivo. Consistent with this, interaction between hNaa10p and DNMT1 was required for E-cadherin silencing through promoter CpG methylation, and E-cadherin repression contributed to the oncogenic effects of hNaa10p. Together, our data not only establish hNaa10p as an oncoprotein, but also reveal that it contributes to oncogenesis through modulation of DNMT1 function.
Related JoVE Video
Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure.
Circ. Res.
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Angiotensin (Ang) II exerts diverse physiological actions in both the peripheral and central neural systems. It was reported that the activity of Ang II is higher in the nucleus tractus solitarii (NTS) of spontaneously hypertensive rats (SHRs) and that angiotensin type-1 receptors are colocalized with NAD(P)H oxidase in the neurons of the NTS, resulting in the induction of local reactive oxygen species production by Ang II. However, the signaling mechanisms of Ang II that induce hypertension remain unclear.
Related JoVE Video
Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway.
Carcinogenesis
PUBLISHED: 10-13-2009
Show Abstract
Hide Abstract
Vascular endothelial growth factor (VEGF)-C is recognized as a tumor lymphangiogenic factor based on the effects of activated VEGF-R3 on lymphatic endothelial cells. Many tumor cells express VEGF-R3 but the function of this receptor in tumor cells is largely unknown. It has been reported that the VEGF-C/VEGF-R3 axis is activated in subsets of leukemia patients. Herein, we have shown that VEGF-C induces angiogenic activity in the tube formation assay invitro and Matrigel plug assay in vivo by upregulating an angiogenic factor, cyclooxygenase-2 (COX-2), through VEGF-R3 in the human acute myeloid leukemia (AML) cell line, THP-1. COX-2 induction by VEGF-C was also observed in other VEGF-R3(+) human AML cell lines (U937 and HL60). Moreover, immunohistochemical analysis of bone marrow specimens of 37 patients diagnosed with AML revealed that VEGF-C expression in specimens was associated with the expression of COX-2 (P < 0.001). The manner by which signaling pathways transduced by VEGF-C is responsible for COX-2 upregulation was further investigated. Blocking the p42/44 mitogen-activated protein kinase (MAPK) pathway with the MAPK kinase inhibitor, PD 98059, failed to inhibit VEGF-C-mediated COX-2 expression. However, VEGF-C-induced COX-2 upregulation was effectively abolished by overexpression of dominant-negative c-Jun N-terminal kinase (JNK) or treatment with the JNK inhibitor, SP 600125. VEGF-C induced JNK-dependent nuclear translocation of c-Jun. Furthermore, chromatin immunoprecipitation and reporter assays revealed that VEGF-C enhanced c-Jun binding to the cyclic adenosine 3,5-monophosphate-response element of the COX-2 promoter and induced COX-2 expression. In sum, the data herein highlight the pathogenic role of VEGF-C in leukemia via regulation of angiogenesis through upregulation of COX-2.
Related JoVE Video
Suberoylanilide hydroxamic acid sensitizes human oral cancer cells to TRAIL-induced apoptosis through increase DR5 expression.
Mol. Cancer Ther.
PUBLISHED: 09-08-2009
Show Abstract
Hide Abstract
Suberoylanilide hydroxamic acid has been shown to selectively induce tumor apoptosis in cell cultures and animal models in several types of cancers and is about as a promising new class of chemotherapeutic agents. In addition, suberoylanilide hydroxamic acid showed synergistic anticancer activity with radiation, cisplatin, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in some cancers. Here, we report suberoylanilide hydroxamic acid also induced apoptosis in human oral cancer cells. Western blotting showed suberoylanilide hydroxamic acid increased Fas, Fas ligand, DR4, and DR5 protein expression and activated caspase-8 and caspase-9. The apoptosis was almost completely inhibited by caspase-8 inhibitor Z-IETD-FMK and attenuated by caspase-9 inhibitor Z-LEHD-FMK. Human recombinant DR5/Fc chimera protein but not Fas/Fc or DR4/Fc significantly inhibited apoptosis induced by suberoylanilide hydroxamic acid. These results suggest that suberoylanilide hydroxamic acid induces apoptosis mainly through activation of DR5/TRAIL death pathway. Furthermore, subtoxic concentrations of suberoylanilide hydroxamic acid sensitize two TRAIL resistant human oral cancer cells, SAS and Ca9-22, to exogenous recombinant TRAIL-induced apoptosis in a p53-independent manner. Combined treatment of suberoylanilide hydroxamic acid and TRAIL may be used as a new promising therapy for oral cancer.
Related JoVE Video
MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma.
Hepatology
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
MicroRNAs (miRNAs), which are inhibitors of gene expression, participate in diverse biological functions and in carcinogenesis. In this study, we show that liver-specific microRNA-122 (miR-122) is significantly down-regulated in liver cancers with intrahepatic metastasis and negatively regulates tumorigenesis. Restoration of miR-122 in metastatic Mahlavu and SK-HEP-1 cells significantly reduced in vitro migration, invasion, and anchorage-independent growth as well as in vivo tumorigenesis, angiogenesis, and intrahepatic metastasis in an orthotopic liver cancer model. Because an inverse expression pattern is often present between an miRNA and its target genes, we used a computational approach and identified multiple miR-122 candidate target genes from two independent expression microarray datasets. Thirty-two target genes were empirically verified, and this group of genes was enriched with genes regulating cell movement, cell morphology, cell-cell signaling, and transcription. We further showed that one of the miR-122 targets, ADAM17 (a disintegrin and metalloprotease 17) is involved in metastasis. Silencing of ADAM17 resulted in a dramatic reduction of in vitro migration, invasion, in vivo tumorigenesis, angiogenesis, and local invasion in the livers of nude mice, which is similar to that which occurs with the restoration of miR-122. Conclusion: Our study suggests that miR-122, a tumor suppressor microRNA affecting hepatocellular carcinoma intrahepatic metastasis by angiogenesis suppression, exerts some of its action via regulation of ADAM17. Restoration of miR-122 has a far-reaching effect on the cell. Using the concomitant down-regulation of its targets, including ADAM17, a rational therapeutic strategy based on miR-122 may prove to be beneficial for patients with hepatocellular carcinoma.
Related JoVE Video
Pin1 overexpression is associated with poor differentiation and survival in oral squamous cell carcinoma.
Oncol. Rep.
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
Phosphorylation on certain Ser/Thr-Pro motifs is a major oncogenic mechanism. The conformation and function of phosphorylated Ser/Thr-Pro motifs are further regulated by the prolyl isomerase Pin1. Pin1 has been shown to be prevalently overexpressed in human breast cancer cell lines and cancer tissues and to play a critical role in the transformation of mammary epithelial cells by activating multiple oncogenic pathways. Pin1 expression was found to be an excellent independent prognostic marker in prostate cancer. However, little is known about Pin1 and its downstream targets beta-catenin and cyclin D1 expressions in human oral cancers. In the present study, we quantified Pin1 expression in 74 paired normal/tumor human oral cancer samples as well as oral cancer cell lines. Pin1 was overexpressed in oral squamous cell carcinoma (OSCC) and its level correlated with beta-catenin accumulation and cyclin D1 expression. Moreover, we examined Pin1 mRNA expression in OSCC and cancer cell lines by RT-PCR analysis. The results showed that there is concordance in the relationship between the Pin1 mRNA level and Pin1 protein expression. The up-regulation of Pin1 mRNA expression in tumor part when comparing with that in non-tumor part was in agreement with that of the Pin1 protein overexpressed in OSCC. In addition, we showed that the molecular and immunohistochemical profiles of Pin1 overexpression were associated with progression of OSCC. Taken together, these results indicate that Pin1 is a regulator of cyclin D1 expression in OSCC and might play a role in oral oncogenesis. The overexpression of Pin1 can be used as an indicator for pathological diagnosis of OSCC.
Related JoVE Video
Loss of RUNX3 expression correlates with differentiation, nodal metastasis, and poor prognosis of gastric cancer.
Ann. Surg. Oncol.
PUBLISHED: 02-13-2009
Show Abstract
Hide Abstract
RUNX3 is a major growth regulator of gastric epithelial cells that is involved in gastric tumorigenesis in both humans and mice. In this study, we investigated the involvement of RUNX3 in tumor progression, and in the prognosis of human gastric cancer.
Related JoVE Video
MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer.
Exp. Cell Res.
PUBLISHED: 01-26-2009
Show Abstract
Hide Abstract
LATS2 is a member of the LATS tumor suppressor family. It has been implicated in regulation of the cell cycle and apoptosis. Frequent loss of heterozygosity (LOH) of LATS2 has been reported in human esophageal cancer. But, the LATS2 gene expression and its regulatory mechanism in esophageal cancer remain unclear. The present study has shown that LATS2 protein expression was mediated by miR-373 at the post-transcriptional level and inversely correlated with miR-373 amounts in esophageal cancer cell lines. Furthermore, we demonstrated that the direct inhibition of LATS2 protein was mediated by miR-373 and manipulated the expression of miR-373 to affect esophageal cancer cells growth. Moreover, this correlation was supported by data collected ex vivo, in which esophageal cancer tissues from esophageal squamous cell carcinoma (ESCC) patients were analyzed. Finally, by miRNA microarray analysis, four miRNAs including miR-373 were over-expressed in ESCC samples. Our findings reveal that miR-373 would be a potential oncogene and it participates in the carcinogenesis of human esophageal cancer by suppressing LATS2 expression.
Related JoVE Video
Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
The up-regulation of fucosyltransferase 8 (FUT8), the only enzyme catalyzing ?1,6-fucosylation in mammals, has been observed in several malignant cancers including liver, ovarian, thyroid, and colorectal cancers. However, the pathological role and the regulatory mechanism of FUT8 in cancers remain largely unknown. In the current study, we report that the expression of FUT8 is up-regulated in nonsmall cell lung cancer (NSCLC) and correlates with tumor metastasis, disease recurrence, and poor survival in patients with NSCLC. Knocking down FUT8 in aggressive lung cancer cell lines significantly inhibits their malignant behaviors including in vitro invasion and cell proliferation, as well as in vivo metastasis and tumor growth. The results of glycoproteomic and microarray analyses show that FUT8 globally modifies surface antigens, receptors, and adhesion molecules and is involved in the regulation of dozens of genes associated with malignancy, suggesting that FUT8 contributes to tumor progression through multiple mechanisms. Moreover, we show that FUT8 is up-regulated during epithelial-mesenchymal transition (EMT), a critical process for malignant transformation of tumor, via the transactivation of ?-catenin/lymphoid enhancer-binding factor-1 (LEF-1). These results provide a model to illustrate the relation between FUT8 expression and lung cancer progression and point to a promising direction for the prognosis and therapy of lung cancer.
Related JoVE Video
Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling.
Cancer Res.
Show Abstract
Hide Abstract
Platinum-based chemotherapy is the first-line treatment for non-small cell lung cancer, but recurrence occurs in most patients. Recent evidence suggests that CD133(+) cells are the cause of drug resistance and tumor recurrence. However, the correlation between chemotherapy and regulation of CD133(+) cells has not been investigated methodically. In this study, we revealed that CD133(+) lung cancer cells labeled by a human CD133 promoter-driven GFP reporter exhibited drug resistance and stem cell characteristics. Treatment of H460 and H661 cell lines with low-dose cisplatin (IC(20)) was sufficient to enrich CD133(+) cells, to induce DNA damage responses, and to upregulate ABCG2 and ABCB1 expression, which therefore increased the cross-resistance to doxorubicin and paclitaxel. This cisplatin-induced enrichment of CD133(+) cells was mediated through Notch signaling as judged by increased levels of cleaved Notch1 (NICD1). Pretreatment with the ?-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT), or Notch1 short hairpin RNAs (shRNA) remarkably reduced the cisplatin-induced enrichment of CD133(+) cells and increased the sensitivity to doxorubicin and paclitaxel. Ectopic expression of NICD1 reversed the action of DAPT on drug sensitivity. Immunohistochemistry showed that CD133(+) cells were significantly increased in the relapsed tumors in three of six patients with lung cancer who have received cisplatin treatment. A similar effect was observed in animal experiments as cisplatin treatment increased Notch1 cleavage and the ratio of CD133(+) cells in engrafted tumors. Intratumoral injection of DAPT with cisplatin treatment significantly reduced CD133(+) cell number. Together, our results showed that cisplatin induces the enrichment of CD133(+) cells, leading to multidrug resistance by the activation of Notch signaling.
Related JoVE Video
Related JoVE Video
Adenylate kinase-4 is a marker of poor clinical outcomes that promotes metastasis of lung cancer by downregulating the transcription factor ATF3.
Cancer Res.
Show Abstract
Hide Abstract
Biomarkers predicting metastatic capacity might assist the development of better therapeutic strategies for aggressive cancers such as lung cancer. In this study, we show that adenylate kinase-4 (AK4) is a progression-associated gene in human lung cancer that promotes metastasis. Analysis of published microarray data showed that AK4 was upregulated in lung adenocarcinoma compared with normal cells. High AK4 expression was associated with advanced stage, disease recurrence and poor prognosis. Loss of AK4 expression suppressed the invasive potential of lung cancer cell lines, whereas AK4 overexpression promoted invasion in vitro and in vivo. Mechanistically, the transcription factor ATF3 was identified as a pivotal regulatory target of AK4. Simultaneous reduction in AK4 and ATF3 expression abolished the inhibitory effects of ATF3 on invasion. ATF3 overexpression in AK4-overexpressing cells limits invasion activity. Furthermore, patients with high AK4 and low ATF3 expression showed unfavorable outcomes compared with patients with low AK4 and high ATF3 expression. Taken together, our findings indicated that AK4 promotes malignant progression and recurrence by promoting metastasis in an ATF3-dependent manner.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.