JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Portraying the unique contribution of the default mode network to internally driven mnemonic processes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Numerous neuroimaging studies have implicated default mode network (DMN) involvement in both internally driven processes and memory. Nevertheless, it is unclear whether memory operations reflect a particular case of internally driven processing or alternatively involve the DMN in a distinct manner, possibly depending on memory type. This question is critical for refining neurocognitive memory theorem in the context of other endogenic processes and elucidating the functional significance of this key network. We used functional MRI to examine DMN activity and connectivity patterns while participants overtly generated words according to nonmnemonic (phonemic) or mnemonic (semantic or episodic) cues. Overall, mnemonic word fluency was found to elicit greater DMN activity and stronger within-network functional connectivity compared with nonmnemonic fluency. Furthermore, two levels of functional organization of memory retrieval were shown. First, across both mnemonic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribution to generic aspects of memory beyond its general involvement in endogenous processes. Second, parts of the DMN showed distinct selectivity for each of the mnemonic conditions; greater recruitment of the anterior prefrontal cortex, retroesplenial cortex, and hippocampi and elevated connectivity between anterior and posterior medial DMN nodes characterized the semantic condition, whereas increased recruitment of posterior DMN components and elevated connectivity between them characterized the episodic condition. This finding emphasizes the involvement of DMN elements in discrete aspects of memory retrieval. Altogether, our results show a specific contribution of the DMN to memory processes, corresponding to the specific type of memory retrieval.
Related JoVE Video
Emotional processing of personally familiar faces in the vegetative state.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The Vegetative State (VS) is a severe disorder of consciousness in which patients are awake but display no signs of awareness. Yet, recent functional magnetic resonance imaging (fMRI) studies have demonstrated evidence for covert awareness in VS patients by recording specific brain activations during a cognitive task. However, the possible existence of incommunicable subjective emotional experiences in VS patients remains largely unexplored. This study aimed to probe the question of whether VS patients retain a brain ability to selectively process external stimuli according to their emotional value and look for evidence of covert emotional awareness in patients.
Related JoVE Video
Towards a neuroscience of mind-wandering.
Front Hum Neurosci
PUBLISHED: 01-08-2011
Show Abstract
Hide Abstract
Mind-wandering (MW) is among the most robust and permanent expressions of human conscious awareness, classically regarded by philosophers, clinicians, and scientists as a core element of an intact sense of self. Nevertheless, the scientific exploration of MW poses unique challenges; MW is by nature a spontaneous, off task, internal mental process which is often unaware and usually difficult to control, document or replicate. Consequently, there is a lack of accepted modus operandi for exploring MW in a laboratory setup, leading to a relatively small amount of studies regarding the neural basis of MW. In order to facilitate scientific examination of MW the current review categorizes recent literature into five suggested strategies. Each strategy represents a different methodology of MW research within functional neuroimaging paradigms. Particular attention is paid to resting-state brain activity and to the "default-mode" network. Since the default network is known to exert high activity levels during off-task conditions, it stands out as a compelling candidate for a neuro-biological account of mind-wandering, in itself a rest-based phenomenon. By summarizing the results within and across strategies we suggest further insights into the neural basis and adaptive value of MW, a truly intriguing and unique human experience.
Related JoVE Video
Never resting region--mPFC in schizophrenia.
Schizophr. Res.
Show Abstract
Hide Abstract
Reduced functional connectivity (FC) in schizophrenia has been demonstrated either in task related or default network areas, but not between these networks, which interact meaningfully. We examined the role of FC between the inferior frontal gyrus (IFG) and medial prefrontal cortex (mPFC) in determining language-lateralization during a language task, and its association with structural integrity of the corpus-callosum. Only schizophrenia patients presented increased mPFC-IFG FC during task, which additionally corresponded to decreased white-matter organization of the corpus-callosum. These findings suggest that inability to suppress irrelevant internally-generated information while processing external stimuli might be the basis of functional psychopathology in schizophrenia.
Related JoVE Video
The dark side of the alpha rhythm: fMRI evidence for induced alpha modulation during complete darkness.
Eur. J. Neurosci.
Show Abstract
Hide Abstract
The unique role of the EEG alpha rhythm in different states of cortical activity is still debated. The main theories regarding alpha function posit either sensory processing or attention allocation as the main processes governing its modulation. Closing and opening eyes, a well-known manipulation of the alpha rhythm, could be regarded as attention allocation from inward to outward focus though during light is also accompanied by visual change. To disentangle the effects of attention allocation and sensory visual input on alpha modulation, 14 healthy subjects were asked to open and close their eyes during conditions of light and of complete darkness while simultaneous recordings of EEG and fMRI were acquired. Thus, during complete darkness the eyes-open condition is not related to visual input but only to attention allocation, allowing direct examination of its role in alpha modulation. A data-driven ridge regression classifier was applied to the EEG data in order to ascertain the contribution of the alpha rhythm to eyes-open/eyes-closed inference in both lighting conditions. Classifier results revealed significant alpha contribution during both light and dark conditions, suggesting that alpha rhythm modulation is closely linked to the change in the direction of attention regardless of the presence of visual sensory input. Furthermore, fMRI activation maps derived from an alpha modulation time-course during the complete darkness condition exhibited a right frontal cortical network associated with attention allocation. These findings support the importance of top-down processes such as attention allocation to alpha rhythm modulation, possibly as a prerequisite to its known bottom-up processing of sensory input.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.