JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters.
PLoS ONE
PUBLISHED: 03-16-2009
Show Abstract
Hide Abstract
Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)(4) can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles.
Related JoVE Video
Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum.
New Phytol.
PUBLISHED: 02-09-2009
Show Abstract
Hide Abstract
Understanding the morphogenesis of mineralized structures found in shells, bones, teeth, spicules and plant cell walls is difficult because of the complexities underlying biomineralization, and the requirement of accurate models for pattern formation. Here, we investigated the spatial and temporal development of siliceous structures found in a model diatom species, Phaeodactylum tricornutum, for which the entire genome has been sequenced and transformation is routine. Analyses of pattern formation revealed that the process of silicification starts from a pi-like structure that controls the spatial organization of a sternum upon which regular instabilities are initiated and developed. Detailed analyses also demonstrate that morphogenesis of silica is nonuniform. We also tested the sensitivity of pattern formation to perturbation of proton pumps, and found that selective inhibitors of H(+)-V-ATPases affect silica biomineralization both quantitatively and qualitatively. Morphometric analyses of valves purified from isogenic populations of cells show that the morphometric noise of several traits is under exquisite regulation, explaining why the overall valve pattern is reproducibly maintained. Altogether our analyses demonstrate that silica morphogenesis is a robust but nonuniform process, and allow us to propose a model for the dynamic growth of materials within a spatially controlled geometry.
Related JoVE Video
Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms.
PLoS ONE
Show Abstract
Hide Abstract
Diatoms, the major contributors of the global biogenic silica cycle in modern oceans, account for about 40% of global marine primary productivity. They are an important component of the biological pump in the ocean, and their assemblage can be used as useful climate proxies; it is therefore critical to better understand the changes induced by environmental pH on their physiology, silicification capability and morphology. Here, we show that external pH influences cell growth of the ubiquitous diatom Thalassiosira weissflogii, and modifies intracellular silicic acid and biogenic silica contents per cell. Measurements at the single-cell level reveal that extracellular pH modifications lead to intracellular acidosis. To further understand how variations of the acid-base balance affect silicon metabolism and theca formation, we developed novel imaging techniques to measure the dynamics of valve formation. We demonstrate that the kinetics of valve morphogenesis, at least in the early stages, depends on pH. Analytical modeling results suggest that acidic conditions alter the dynamics of the expansion of the vesicles within which silica polymerization occurs, and probably its internal pH. Morphological analysis of valve patterns reveals that acidification also reduces the dimension of the nanometric pores present on the valves, and concurrently overall valve porosity. Variations in the valve silica network seem to be more correlated to the dynamics and the regulation of the morphogenesis process than the silicon incorporation rate. These multiparametric analyses from single-cell to cell-population levels demonstrate that several higher-level processes are sensitive to the acid-base balance in diatoms, and its regulation is a key factor for the control of pattern formation and silicon metabolism.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.