JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cortical source analysis of high-density EEG recordings in children.
J Vis Exp
PUBLISHED: 07-22-2014
Show Abstract
Hide Abstract
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited, because the composition and spatial configuration of head tissues changes dramatically over development. In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis.
Related JoVE Video
Neonatal Hypoxia, Hippocampal Atrophy, and Memory Impairment: Evidence of a Causal Sequence.
Cereb. Cortex
PUBLISHED: 12-18-2013
Show Abstract
Hide Abstract
Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohorts HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life.
Related JoVE Video
Memory for action sequences in semantic dementia.
Neuropsychologia
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Semantic dementia (SD) is associated with a progressive, relatively selective, degeneration of semantic memory (both verbal and nonverbal facts and knowledge). Episodic memory, however, is thought to be relatively preserved. This study aimed to further assess the nonverbal, incidental, episodic memory profile associated with SD using deferred imitation, which measures recall by the nonverbal imitation of novel action sequences after a 24-h delay. The performance of six individuals with SD was compared to that of 10 healthy age- and education-matched controls. After a baseline phase, where sets of objects were presented for manipulation to measure the spontaneous production of relevant action sequences, participants were shown eight novel three-step action sequences with the sets of objects. The component actions of the sequences were causally related in four of the eight series and arbitrarily related in the remaining four, to investigate the influence of sequence structure on memory performance. All participants produced more target actions and pairs in the arbitrary sequences 24-h after demonstration compared to baseline, indicating memory for the sequences, but only the control group showed significant memory for the order of the causal sequences (pairs). Furthermore, and perhaps more strikingly, only the control participants showed a recall advantage for the causal relative to the arbitrary sequences, indicating that they, but not the patients, could take advantage of the semantic nature of these sequences. Together these findings suggest that individuals with SD show some nonverbal episodic memory, even after a 24-h delay, and that new anterograde memory can to some extent be established without significant support from semantic memory.
Related JoVE Video
Early developmental outcomes in children following convulsive status epilepticus: a longitudinal study.
Epilepsia
PUBLISHED: 01-28-2013
Show Abstract
Hide Abstract
Convulsive status epilepticus (CSE) is the most common pediatric neurologic emergency and is often associated with unfavorable neurodevelopmental outcomes. The early developmental trajectory of children following CSE has not been previously investigated, leaving a gap in our understanding of how these adverse long-term outcomes emerge.
Related JoVE Video
Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings.
Neuroimage
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
There is increasing interest in applying connectivity analysis to brain measures (Rubinov and Sporns, 2010), but most studies have relied on fMRI, which substantially limits the participant groups and numbers that can be studied. High-density EEG recordings offer a comparatively inexpensive easy-to-use alternative, but require channel-level connectivity analysis which currently lacks a common analytic framework and is very limited in spatial resolution. To address this problem, we have developed a new technique for studies of network development that overcomes the spatial constraint and obtains functional networks of cortical areas by using EEG source reconstruction with age-matched average MRI templates (He et al., 1999). In contrast to previously reported channel-level analysis, this approach provides information about the cortical areas most likely to be involved in the network as well as their functional relationship (Babiloni et al., 2005; De Vico Fallani et al., 2007). In this study, we applied source reconstruction with age-matched templates to task-free high-density EEG recordings in typically-developing children between 2 and 6 years of age (OReilly, 2012). Graph theory was then applied to the association strengths of 68 cortical regions of interest based on the Desikan-Killiany atlas. We found linear increases of mean node degree, mean clustering coefficient and maximum betweenness centrality between 2 years and 6 years of age. Characteristic path length was negatively correlated with age. The correlation of the network measures with age indicates network development towards more closely integrated networks similar to reports from other imaging modalities (Fair et al., 2008; Power et al., 2010). We also applied eigenvalue decomposition to obtain functional modules (Clayden et al., 2013). Connection strength within these modules did not change with age, and the modules resembled hub networks previously described for MRI (Hagmann et al., 2010; Power et al., 2010). The high temporal resolution of EEG additionally allowed us to distinguish between frequency bands potentially reflecting dynamic coupling between different neural oscillators. Generally, network parameters were similar for networks based on different frequency bands, but frequency band did emerge as a significant factor for clustering coefficient and characteristic path length. In conclusion, the current analysis shows that source reconstruction of high-density EEG recordings with appropriate head models offers a valuable tool for estimating network parameters in studies of brain development. The findings replicate the pattern of closer functional integration over development described for other imaging modalities (Fair et al., 2008; Power et al., 2010).
Related JoVE Video
Nocturnal oxygen desaturation and disordered sleep as a potential factor in executive dysfunction in sickle cell anemia.
J Int Neuropsychol Soc
PUBLISHED: 11-24-2011
Show Abstract
Hide Abstract
Previous research has identified cognitive impairment in children with sickle cell anemia (SCA, Hemoglobin SS) compared with controls, partly accounted for by overt neuropathology after clinical stroke, "covert" ("silent") infarction, and severity of anemia. However, cognitive deficits have also been identified in children with SCA with no history of stroke and a normal T2-weighted magnetic resonance imaging (MRI) scan. Our aim was to investigate whether nocturnal hemoglobin oxygen desaturation and sleep fragmentation could be associated with cognitive impairment in children with SCA. We assessed 10 children with SCA (9 with normal MRI) using neuropsychological measures of executive function. Cognitive assessment was immediately followed by overnight polysomnography to record nocturnal hemoglobin oxygen saturation and sleep arousals. Decreases in hemoglobin oxygen saturation and/or increased sleep arousals were associated with reduced performance on cognitive assessment. Nocturnal hemoglobin oxygen desaturation and sleep fragmentation may be a contributing factor to executive dysfunction in SCA.
Related JoVE Video
Audiovisual speech integration in autism spectrum disorders: ERP evidence for atypicalities in lexical-semantic processing.
Autism Res
PUBLISHED: 08-22-2011
Show Abstract
Hide Abstract
In typically developing (TD) individuals, behavioral and event-related potential (ERP) studies suggest that audiovisual (AV) integration enables faster and more efficient processing of speech. However, little is known about AV speech processing in individuals with autism spectrum disorders (ASD). This study examined ERP responses to spoken words to elucidate the effects of visual speech (the lip movements accompanying a spoken word) on the range of auditory speech processing stages from sound onset detection to semantic integration. The study also included an AV condition, which paired spoken words with a dynamic scrambled face in order to highlight AV effects specific to visual speech. Fourteen adolescent boys with ASD (15-17 years old) and 14 age- and verbal IQ-matched TD boys participated. The ERP of the TD group showed a pattern and topography of AV interaction effects consistent with activity within the superior temporal plane, with two dissociable effects over frontocentral and centroparietal regions. The posterior effect (200-300 ms interval) was specifically sensitive to lip movements in TD boys, and no AV modulation was observed in this region for the ASD group. Moreover, the magnitude of the posterior AV effect to visual speech correlated inversely with ASD symptomatology. In addition, the ASD boys showed an unexpected effect (P2 time window) over the frontocentral region (pooled electrodes F3, Fz, F4, FC1, FC2, FC3, FC4), which was sensitive to scrambled face stimuli. These results suggest that the neural networks facilitating processing of spoken words by visual speech are altered in individuals with ASD.
Related JoVE Video
Ophthalmological, cognitive, electrophysiological and MRI assessment of visual processing in preterm children without major neuromotor impairment.
Dev Sci
PUBLISHED: 08-18-2010
Show Abstract
Hide Abstract
Many studies report chronic deficits in visual processing in children born preterm. We investigated whether functional abnormalities in visual processing exist in children born preterm but without major neuromotor impairment (i.e. cerebral palsy). Twelve such children (< 33 weeks gestation or birthweight < 1000 g) without major neuromotor impairment and 12 born full-term controls were assessed at 8-12 years of age by means of ophthalmological assessment (visual acuity, colour vision, stereopsis, stereoacuity, visual fields, ocular motility, motor fusion), cognitive tests of visual-motor, visual-perceptual and visual-spatial skills and pattern-reversal visual evoked potentials (PR-VEPs). All participants also underwent magnetic resonance imaging (MRI) of the brain and neuromotor assessments. No significant differences were found between the groups on the ophthalmological, visual cognitive, neurological, neuromotor or MRI measures. The P100 component of the PR-VEP showed a significantly shorter latency in the preterm compared with the full-term participants. Whilst this P100 finding suggests that subtle abnormalities may exist at the neurophysiological level, we conclude that visual dysfunction is not systematically associated with preterm birth in the context of normal neurological status.
Related JoVE Video
Atypical brain response to novelty in rural African children with a history of severe falciparum malaria.
J. Neurol. Sci.
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Plasmodium falciparum is the most common parasitic infection of the central nervous system causing neuro-cognitive deficits in 5-26% of paediatric cases. The burden cannot be reliably estimated because of lack of sensitive, culture-fair and robust assessments in rural settings. Auditory and visual brain event related potentials (ERPs) are used to compare novelty processing in children exposed to severe malaria with community controls. Fifty children previously admitted and discharged from Kilifi District Hospital with severe falciparum malaria were selected and compared with 77 unexposed age matched children. The results showed that up to 14% of children exposed to severe malaria had significantly different responses to novelty compared to unexposed children. Children exposed to severe malaria had smaller P3a amplitudes to novelty in both auditory [F (3, 119)=4.545, p=0.005] and visual [F (3, 119)=6.708, p<0.001] paradigms compared to unexposed children. In the auditory domain the differences in processing of novelty were not related to early component processing. The percentage of children with severe malaria showing impaired performance using ERPs is within the range previously reported using neuropsychological tests. The overall pattern suggests that severe malaria affects prefrontal and temporal cortices normally activated by stimulus novelty.
Related JoVE Video
Auditory and visual novelty processing in normally-developing Kenyan children.
Clin Neurophysiol
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
The aim of this study was to describe the normative development of the electrophysiological response to auditory and visual novelty in children living in rural Kenya.
Related JoVE Video
Impaired everyday memory associated with encephalopathy of severe malaria: the role of seizures and hippocampal damage.
Malar. J.
PUBLISHED: 09-16-2009
Show Abstract
Hide Abstract
Seizures are common in children admitted with severe falciparum malaria and are associated with neuro-cognitive impairments. Prolonged febrile seizures are associated with hippocampal damage and impaired memory. It was hypothesized that severe malaria causes impaired everyday memory which may be associated with hippocampal damage.
Related JoVE Video
Recognition memory is impaired in children after prolonged febrile seizures.
Brain
Show Abstract
Hide Abstract
Children with a history of a prolonged febrile seizure show signs of acute hippocampal injury on magnetic resonance imaging. In addition, animal studies have shown that adult rats who suffered febrile seizures during development reveal memory impairments. Together, these lines of evidence suggest that memory impairments related to hippocampal injury may be evident in human children after prolonged febrile seizures. The current study addressed this question by investigating memory abilities in 26 children soon after a prolonged febrile seizure (median: 37.5 days) and compared their results to those of 37 normally developing children. Fifteen patients were reassessed at a mean of 12.5 months after their first assessment to determine the transiency of any observed effects. We used the visual paired comparison task to test memory abilities in our group, as this task does not depend on verbal abilities and also because successful performance on the task has been proven to depend on the presence of functional hippocampi. Our findings show that patients perform as well as controls in the absence of a delay between the learning phase and the memory test, suggesting that both groups are able to form representations of the presented stimulus. However, after a 5-min delay, patients recognition memory is not different from chance, and comparison of patients and controls points to an accelerated forgetting rate in the prolonged febrile seizure group. The patients performance was not related to the time elapsed from the acute event or the duration of the prolonged febrile seizure, suggesting that the observed effect is not a by-product of the seizure itself or a delayed effect of medication administered to terminate the seizure. By contrast, performance was related to hippocampal size; participants with the smallest mean hippocampal volumes revealed the biggest drop in performance from the immediate to the delayed paradigm. At follow-up, children were still showing deficiencies in recognizing a face after a 5-min delay. Similarly, this suggests that the observed memory impairments are not a transient effect of the prolonged febrile seizures. This is the first report of such impairments in humans, and it is clinically significant given the links between mesial temporal sclerosis and prolonged febrile seizures. The persistence of these impairments a year onwards signals the potential benefits of intervention in these children who run the risk of developing episodic memory deficits in later childhood.
Related JoVE Video
Links between infant temperament and neurophysiological measures of attention to happy and fearful faces.
J Child Psychol Psychiatry
Show Abstract
Hide Abstract
Developing control of attention helps infants to regulate their emotions, and individual differences in attention skills may shape how infants perceive and respond to their socio-emotional environments. This study examined whether the temperamental dimensions of self-regulation and negative emotionality relate to infants attention skills and whether the emotional content of the attended stimulus affects this relation.
Related JoVE Video
Precursors of executive function in infants with sickle cell anemia.
J. Child Neurol.
Show Abstract
Hide Abstract
Executive dysfunction occurs in sickle cell anemia, but there are few early data. Infants with sickle cell anemia (n = 14) and controls (n = 14) performed the "A-not-B" and Object Retrieval search tasks, measuring precursors of executive function at 9 and 12 months. Significant group differences were not found. However, for the A-not-B task, 7 of 11 sickle cell anemia infants scored in the lower 2 performance categories at 9 months, but only 1 at 12 months (P = .024); controls obtained scores at 12 months that were statistically comparable to the scores they had already obtained at 9 months. On the Object Retrieval task, 9- and 12-month controls showed comparable scores, whereas infants with sickle cell anemia continued to improve (P = .027); at 9 months, those with lower hemoglobin oxygen saturation passed fewer trials (R s = 0.670, P = .024) and took longer to obtain the toy (R s = -0.664, P = .013). Subtle delays in acquiring developmental skills may underlie abnormal executive function in childhood.
Related JoVE Video
Cognitive deficits following exposure to pneumococcal meningitis: an event-related potential study.
BMC Infect. Dis.
Show Abstract
Hide Abstract
Pneumococcal meningitis (PM) is a severe and life-threatening disease that is associated with cognitive impairment including learning difficulties, cognitive slowness, short-term memory deficits and poor academic performance. There are limited data on cognitive outcomes following exposure to PM from Africa mainly due to lack of culturally appropriate tools. We report cognitive processes of exposed children as measured by auditory and visual event-related potentials.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.