JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Improvement in Staphylococcus and Bacillus strain differentiation by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling by using microwave-assisted enzymatic digestion.
Rapid Commun. Mass Spectrom.
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Distinguishing between individual bacterial strains below the species level is a challenge to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) bacterial profiling. We propose a quick method for improving strain differentiation of two Staphylococcus and one Bacillus species.
Related JoVE Video
Micro-scale determinants of bacterial diversity in soil.
FEMS Microbiol. Rev.
PUBLISHED: 03-08-2013
Show Abstract
Hide Abstract
Soil habitats contain vast numbers of microorganisms and harbor a large portion of the planets biological diversity. Although high-throughput sequencing technologies continue to advance our appreciation of this remarkable phylogenetic and functional diversity, we still have only a rudimentary understanding of the forces that allow diverse microbial populations to coexist in soils. This conspicuous knowledge gap may be partially due the human perspective from which we tend to examine soilborne microorganisms. This review focusses on the highly heterogeneous soil matrix from the vantage point of individual bacteria. Methods describing micro-scale soil habitats and their inhabitants based on sieving, dissecting, and visualizing individual soil aggregates are discussed, as are microcosm-based experiments allowing the manipulation of key soil parameters. We identify how the spatial heterogeneity of soil could influence a number of ecological interactions promoting the evolution and maintenance of bacterial diversity.
Related JoVE Video
ODoSE: a webserver for genome-wide calculation of adaptive divergence in prokaryotes.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Quantifying patterns of adaptive divergence between taxa is a major goal in the comparative and evolutionary study of prokaryote genomes. When applied appropriately, the McDonald-Kreitman (MK) test is a powerful test of selection based on the relative frequency of non-synonymous and synonymous substitutions between species compared to non-synonymous and synonymous polymorphisms within species. The webserver ODoSE (Ortholog Direction of Selection Engine) allows the calculation of a novel extension of the MK test, the Direction of Selection (DoS) statistic, as well as the calculation of a weighted-average Neutrality Index (NI) statistic for the entire core genome, allowing for systematic analysis of the evolutionary forces shaping core genome divergence in prokaryotes. ODoSE is hosted in a Galaxy environment, which makes it easy to use and amenable to customization and is freely available at www.odose.nl.
Related JoVE Video
No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1.
PLoS ONE
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures.
Related JoVE Video
A species concept for bacteria based on adaptive divergence.
Trends Microbiol.
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
Bacterial strains are currently grouped into species based on overall genomic similarity and sharing of phenotypes deemed ecologically important. Many believe this polyphasic taxonomy is in need of revision because it lacks grounding in evolutionary theory, and boundaries between species are arbitrary. Recent taxonomy efforts using multilocus sequence typing (MLST) data are based on the identification of distinct phylogenetic clusters. However, these approaches face the problem of deciding the phylogenetic level at which clusters are representative of evolutionary or taxonomically distinct units. In this review, I propose classifying two phylogenetic clusters as separate species only when they have statistically significantly diverged as a result of adaptive evolution. More than a method for classification, the concept of adaptive divergence can be used in a reverse ecology approach to identify lineages that are in the process of speciation or genes involved in initial adaptive divergence.
Related JoVE Video
Local adaptation of bacteriophages to their bacterial hosts in soil.
Science
PUBLISHED: 08-15-2009
Show Abstract
Hide Abstract
Microbes are incredibly abundant and diverse and are key to ecosystem functioning, yet relatively little is known about the ecological and evolutionary mechanisms that shape their distributions. Bacteriophages, viral parasites that lyse their bacterial hosts, exert intense and spatially varying selection pressures on bacteria and vice versa. We measured local adaptation of bacteria and their associated phages in a centimeter-scale soil population. We first demonstrate that a large proportion of bacteria is sensitive to locally occurring phages. We then show that sympatric phages (isolated from the same 2-gram soil samples as the bacteria) are more infective than are phages from samples some distance away. This study demonstrates the importance of biotic interactions for the small-scale spatial structuring of microbial genetic diversity in soil.
Related JoVE Video
Sociobiology of the myxobacteria.
Annu. Rev. Microbiol.
PUBLISHED: 07-07-2009
Show Abstract
Hide Abstract
Cooperation is integral to much of biological life but can be threatened by selfish evolutionary strategies. Diverse cooperative traits have evolved among microbes, but particularly sophisticated forms of sociality have arisen in the myxobacteria, including group motility and multicellular fruiting body development. Myxobacterial cooperation has succeeded against socially destructive cheaters and can readily re-evolve from some socially defective genotypes. However, social harmony does not extend far. Spatially structured natural populations of the model species Myxococcus xanthus have fragmented into a large number of socially incompatible genotypes that exclude, exploit, and/or antagonize one another, including genetically similar neighbors. Here, we briefly review basic social evolution concepts as they pertain to microbes, discuss potential benefits of myxobacterial social traits, highlight recent empirical studies of social evolution in M. xanthus, and consider their implications for how myxobacterial cooperation and conflict evolve in the wild.
Related JoVE Video
Social conflict in centimeter-and global-scale populations of the bacterium Myxococcus xanthus.
Curr. Biol.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
Social interactions among microbes that engage in cooperative behaviors are well studied in laboratory contexts [1, 2], but little is known about the scales at which initially cooperative microbes diversify into socially conflicting genotypes in nature. The predatory soil bacterium Myxococcus xanthus responds to starvation by cooperatively forming multicellular fruiting bodies in which a portion of the population differentiates into stress-resistant spores [3, 4]. Natural M. xanthus populations are spatially structured [5], and genetically divergent isolates from distant origins exhibit striking developmental antagonisms that decrease spore production in chimeric fruiting bodies [6]. Here we show that genetically similar isolates of M. xanthus from a centimeter-scale population [7] also exhibit strong and pervasive antagonisms when mixed in development. Negative responses to chimerism were less intense on average among local strains than among global isolates, although no significant correlation was found between genetic distance at multilocus sequence typing (MLST) loci and the degree of social asymmetry between competitors. A test for self/nonself discrimination during vegetative swarming revealed a great diversity of distinct self-recognition types even among identical MLST genotypes. Such nonself exclusion may serve to direct the benefits of cooperation to close kin within diverse populations in which the probability of social conflict among neighbors is high.
Related JoVE Video
Why do bacteria engage in homologous recombination?
Trends Microbiol.
PUBLISHED: 03-15-2009
Show Abstract
Hide Abstract
Microbiologists have long recognized that the uptake and incorporation of homologous DNA from outside the cell is a common feature of bacteria, with important implications for their evolution. However, the exact reasons why bacteria engage in homologous recombination remain elusive. This Opinion article aims to reinvigorate the debate by examining the costs and benefits that homologous recombination could engender in natural populations of bacteria. It specifically focuses on the hypothesis that homologous recombination is selectively maintained because the genetic variation it generates improves the response of bacterial populations to natural selection, analogous to sex in eukaryotes.
Related JoVE Video
A comparison of homologous recombination rates in bacteria and archaea.
ISME J
PUBLISHED: 02-14-2009
Show Abstract
Hide Abstract
It is a standard practice to test for the signature of homologous recombination in studies examining the genetic diversity of bacterial populations. Although it has emerged that homologous recombination rates can vary widely between species, comparing the results from different studies is made difficult by the diversity of estimation methods used. Here, Multi Locus Sequence Typing (MLST) datasets from a wide variety of bacteria and archaea are analyzed using the ClonalFrame method. This enables a direct comparison between species and allows for a first exploration of the question whether phylogeny or ecology is the primary determinant of homologous recombination rate.
Related JoVE Video
A comparison of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial diversity.
PLoS ONE
Show Abstract
Hide Abstract
The 16S rRNA gene is the gold standard in molecular surveys of bacterial and archaeal diversity, but it has the disadvantages that it is often multiple-copy, has little resolution below the species level and cannot be readily interpreted in an evolutionary framework. We compared the 16S rRNA marker with the single-copy, protein-coding rpoB marker by amplifying and sequencing both from a single soil sample. Because the higher genetic resolution of the rpoB gene prohibits its use as a universal marker, we employed consensus-degenerate primers targeting the Proteobacteria.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.