JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Related JoVE Video
Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya.
Am. J. Trop. Med. Hyg.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
We conducted serological surveys for Coxiella burnetii in archived sera from patients that visited a rural clinic in western Kenya from 2007 to 2008 and in cattle, sheep, and goats from the same area in 2009. We also conducted serological and polymerase chain reaction-based surveillance for the pathogen in 2009-2010, in human patients with acute lower respiratory illness, in ruminants following parturition, and in ticks collected from ruminants and domestic dogs. Antibodies against C. burnetii were detected in 30.9% (N = 246) of archived patient sera and in 28.3% (N = 463) of cattle, 32.0% (N = 378) of goats, and 18.2% (N = 159) of sheep surveyed. Four of 135 (3%) patients with acute lower respiratory illness showed seroconversion to C. burnetii. The pathogen was detected by polymerase chain reaction in specimens collected from three of six small ruminants that gave birth within the preceding 24 hours, and in five of 10 pools (50%) of Haemaphysalis leachi ticks collected from domestic dogs.
Related JoVE Video
Non-pneumococcal mitis-group streptococci confound detection of pneumococcal capsular serotype-specific loci in upper respiratory tract.
PeerJ
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
We performed culture-based and PCR-based tests for pneumococcal identification and serotyping from carriage specimens collected in rural and urban Kenya. Nasopharyngeal specimens from 237 healthy children <5 years old (C-NPs) and combined nasopharyngeal/oropharyngeal specimens from 158 adults (A-NP/OPs, 118 HIV-positive) were assessed using pneumococcal isolation (following broth culture enrichment) with Quellung-based serotyping, real-time lytA-PCR, and conventional multiplexed PCR-serotyping (cmPCR). Culture-based testing from C-NPs, HIV-positive A-NP/OPs, and HIV-negative A-NP/OPs revealed 85.2%, 40.7%, and 12.5% pneumococcal carriage, respectively. In contrast, cmPCR serotypes were found in 93.2%, 98.3%, and 95.0% of these sets, respectively. Two of 16 lytA-negative C-NPs and 26 of 28 lytA-negative A-NP/OPs were cmPCR-positive for 1-10 serotypes (sts) or serogroups (sgs). A-NP/OPs averaged 5.5 cmPCR serotypes/serogroups (5.2 in HIV-positive, 7.1 in HIV-negative) and C-NPs averaged 1.5 cmPCR serotypes/serogroups. cmPCR serotypes/serogroups from lytA-negative A-NP/OPs included st2, st4, sg7F/7A, sg9N/9L, st10A, sg10F/10C/33C, st13, st17F, sg18C/18A/18B/18F, sg22F/22A, and st39. Nine strains of three non-pneumococcal species (S. oralis, S. mitis, and S. parasanguinis) (7 from A-OP, 1 from both A-NP and A-OP, and 1 from C-NP) were each cmPCR-positive for one of 7 serotypes/serogroups (st5, st13, sg15A/15F, sg10F/10C/33C, sg33F/33A/37, sg18C/18A/18B/18F, sg12F/12A/12B/ 44/46) with amplicons revealing 83.6-99.7% sequence identity to pneumococcal references. In total, 150 cmPCR amplicons from carriage specimens were sequenced, including 25 from lytA-negative specimens. Amplicon sequences derived from specimens yielding a pneumococcal isolate with the corresponding serotype were identical or highly conserved (>98.7%) with the reference cmPCR amplicon for the st, while cmPCR amplicons from lytA-negative specimens were generally more divergent. Separate testing of 56 A-OPs and 56 A-NPs revealed that ?94% of the positive cmPCR results from A-NP/OPs were from OP microbiota. In contrast, A-NPs yielded >2-fold more pneumococcal isolates than A-OPs. Verified and suspected non-pneumococcal cmPCR serotypes/serogroups appeared to be relatively rare in C-NPs and A-NPs compared to A-OPs. Our findings indicate that non-pneumococcal species can confound serotype-specific PCR and other sequence-based assays due to evolutionarily conserved genes most likely involved in biosynthesis of surface polysaccharide structures.
Related JoVE Video
Epidemiology, seasonality, and burden of influenza and influenza-like illness in urban and rural Kenya, 2007-2010.
J. Infect. Dis.
Show Abstract
Hide Abstract
The epidemiology and burden of influenza remain poorly defined in sub-Saharan Africa. Since 2005, the Kenya Medical Research Institute and Centers for Disease Control and Prevention-Kenya have conducted population-based infectious disease surveillance in Kibera, an urban informal settlement in Nairobi, and in Lwak, a rural community in western Kenya.
Related JoVE Video
Rickettsia felis infection in febrile patients, western Kenya, 2007-2010.
Emerging Infect. Dis.
Show Abstract
Hide Abstract
To determine previous exposure and incidence of rickettsial infections in western Kenya during 2007-2010, we conducted hospital-based surveillance. Antibodies against rickettsiae were detected in 57.4% of previously collected serum samples. In a 2008-2010 prospective study, Rickettsia felis DNA was 2.2× more likely to be detected in febrile than in afebrile persons.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.