JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genetic rescue of functional senescence in synaptic and behavioral plasticity.
Sleep
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
Aging has been linked with decreased neural plasticity and memory formation in humans and in laboratory model species such as the fruit fly, Drosophila melanogaster. Here, we examine plastic responses following social experience in Drosophila as a high-throughput method to identify interventions that prevent these impairments.
Related JoVE Video
Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1? production in response to ?-glucans and the fungal pathogen, Candida albicans.
J. Immunol.
PUBLISHED: 07-25-2014
Show Abstract
Hide Abstract
Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The nucleotide-binding domain and leucine-rich repeat containing family (NLR), pyrin domain-containing 3 (NLRP3) inflammasome plays a key role in triggering caspase-1-dependent IL-1? maturation and resistance to fungal dissemination in Candida albicans infection. ?-Glucans are major components of fungal cell walls that trigger IL-1? secretion in both murine and human immune cells. In this study, we sought to determine the contribution of ?-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-apoptosis-associated speck-like protein containing caspase recruitment domain protein-caspase-1 inflammasome is absolutely critical for IL-1? production in response to ?-glucans. Interestingly, we also found that both complement receptor 3 (CR3) and dectin-1 play a crucial role in coordinating ?-glucan-induced IL-1? processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the proapoptotic protease caspase-8 in promoting ?-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1? maturation. A strong requirement for CR3 and caspase-8 also was found for NLRP3-dependent IL-1? production in response to heat-killed C. albicans. Taken together, these results define the importance of dectin-1, CR3, and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating ?-glucan- and C. albicans-induced innate responses in dendritic cells. Collectively, these findings establish a novel link between ?-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components.
Related JoVE Video
The caspase-8 homolog Dredd cleaves Imd and Relish but is not inhibited by p35.
J. Biol. Chem.
PUBLISHED: 06-02-2014
Show Abstract
Hide Abstract
In Drosophila, the Imd pathway is activated by diaminopimelic acid-type peptidoglycan and triggers the humoral innate immune response, including the robust induction of antimicrobial peptide gene expression. Imd and Relish, two essential components of this pathway, are both endoproteolytically cleaved upon immune stimulation. Genetic analyses have shown that these cleavage events are dependent on the caspase-8 like Dredd, suggesting that Imd and Relish are direct substrates of Dredd. Among the seven Drosophila caspases, we find that Dredd uniquely promotes Imd and Relish processing, and purified recombinant Dredd cleaves Imd and Relish in vitro. In addition, interdomain cleavage of Dredd is not required for Imd or Relish processing and is not observed during immune stimulation. Baculovirus p35, a suicide substrate of executioner caspases, is not cleaved by purified Dredd in vitro. Consistent with this biochemistry but contrary to earlier reports, p35 does not interfere with Imd signaling in S2* cells or in vivo.
Related JoVE Video
Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-05-2014
Show Abstract
Hide Abstract
A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the "Black Death" in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase-caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-? (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1?, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-?B; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1? and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1-caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-?B and inflammasome activation, and host resistance after Y. pestis infection.
Related JoVE Video
RNA and ?-hemolysin of group B Streptococcus induce interleukin-1? (IL-1?) by activating NLRP3 inflammasomes in mouse macrophages.
J. Biol. Chem.
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
The inflammatory cytokine IL-1? is critical for host responses against many human pathogens. Here, we define Group B Streptococcus (GBS)-mediated activation of the Nod-like receptor-P3 (NLRP3) inflammasome in macrophages. NLRP3 activation requires GBS expression of the cytolytic toxin, ?-hemolysin, lysosomal acidification, and leakage. These processes allow the interaction of GBS RNA with cytosolic NLRP3. The present study supports a model in which GBS RNA, along with lysosomal components including cathepsins, leaks out of lysosomes and interacts with NLRP3 to induce IL-1? production.
Related JoVE Video
A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection.
Elife
PUBLISHED: 03-26-2014
Show Abstract
Hide Abstract
Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-?B, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.
Related JoVE Video
The genome of Anopheles darlingi, the main neotropical malaria vector.
Osvaldo Marinotti, Gustavo C Cerqueira, Luiz Gonzaga Paula de Almeida, Maria Inês Tiraboschi Ferro, Élgion Lúcio da Silva Loreto, Arnaldo Zaha, Santuza M R Teixeira, Adam R Wespiser, Alexandre Almeida E Silva, Aline Daiane Schlindwein, Ana Carolina Landim Pacheco, Artur Luiz da Costa da Silva, Brenton R Graveley, Brian P Walenz, Bruna de Araujo Lima, Carlos Alexandre Gomes Ribeiro, Carlos Gustavo Nunes-Silva, Carlos Roberto de Carvalho, Célia Maria de Almeida Soares, Claudia Beatriz Afonso de Menezes, Cleverson Matiolli, Daniel Caffrey, Demetrius Antonio M Araújo, Diana Magalhaes de Oliveira, Douglas Golenbock, Edmundo Carlos Grisard, Fabiana Fantinatti-Garboggini, Fabíola Marques de Carvalho, Fernando Gomes Barcellos, Francisco Prosdocimi, Gemma May, Gilson Martins de Azevedo Junior, Giselle Moura Guimarães, Gustavo Henrique Goldman, Itácio Q M Padilha, Jacqueline da Silva Batista, Jesus Aparecido Ferro, José M C Ribeiro, Juliana Lopes Rangel Fietto, Karina Maia Dabbas, Louise Cerdeira, Lucymara Fassarella Agnez-Lima, Marcelo Brocchi, Marcos Oliveira de Carvalho, Marcus de Melo Teixeira, Maria de Mascena Diniz Maia, Maria Helena S Goldman, Maria Paula Cruz Schneider, Maria Sueli Soares Felipe, Mariangela Hungria, Marisa Fabiana Nicolás, Maristela Pereira, Martín Alejandro Montes, Mauricio E Cantão, Michel Vincentz, Míriam Silva Rafael, Neal Silverman, Patrícia Hermes Stoco, Rangel Celso Souza, Renato Vicentini, Ricardo Tostes Gazzinelli, Rogério de Oliveira Neves, Rosane Silva, Spartaco Astolfi-Filho, Talles Eduardo Ferreira Maciel, Turán P Urményi, Wanderli Pedro Tadei, Erney Plessmann Camargo, Ana Tereza Ribeiro de Vasconcelos.
Nucleic Acids Res.
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ?100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.
Related JoVE Video
The Drosophila IMD pathway in the activation of the humoral immune response.
Dev. Comp. Immunol.
PUBLISHED: 05-04-2013
Show Abstract
Hide Abstract
The IMD pathway signaling plays a pivotal role in the Drosophila defense against bacteria. During the last two decades, significant progress has been made in identifying the components and deciphering the molecular mechanisms underlying this pathway, including the means of bacterial sensing and signal transduction. While these findings have contributed to the understanding of the immune signaling in insects, they have also provided new insights in studying the mammalian NF-?B signaling pathways. Here, we summarize the current view of the IMD pathway focusing on how it regulates the humoral immune response of Drosophila.
Related JoVE Video
Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.
EMBO J.
PUBLISHED: 04-04-2013
Show Abstract
Hide Abstract
Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.
Related JoVE Video
NF-?B/Rel proteins and the humoral immune responses of Drosophila melanogaster.
Curr. Top. Microbiol. Immunol.
PUBLISHED: 08-05-2011
Show Abstract
Hide Abstract
Nuclear Factor-?B (NF-?B)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-?B mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-?B signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-?B regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-?B signaling pathways are also highlighted.
Related JoVE Video
Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway.
Immunity
PUBLISHED: 01-02-2011
Show Abstract
Hide Abstract
Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential.
Related JoVE Video
Identification of Drosophila Yin and PEPT2 as evolutionarily conserved phagosome-associated muramyl dipeptide transporters.
J. Biol. Chem.
PUBLISHED: 04-20-2010
Show Abstract
Hide Abstract
NOD2 (nucleotide-binding oligomerization domain containing 2) is an important cytosolic pattern recognition receptor that activates NF-kappaB and other immune effector pathways such as autophagy and antigen presentation. Despite its intracellular localization, NOD2 participates in sensing of extracellular microbes such as Staphylococcus aureus. NOD2 ligands similar to the minimal synthetic ligand muramyl dipeptide (MDP) are generated by internalization and processing of bacteria in hydrolytic phagolysosomes. However, how these derived ligands exit this organelle and access the cytosol to activate NOD2 is poorly understood. Here, we address how phagosome-derived NOD2 ligands access the cytosol in human phagocytes. Drawing on data from Drosophila phagosomes, we identify an evolutionarily conserved role of SLC15A transporters, Drosophila Yin and PEPT2, as MDP transporters in fly and human phagocytes, respectively. We show that PEPT2 is highly expressed by human myeloid cells. Ectopic expression of both Yin and PEPT2 increases the sensitivity of NOD2-dependent NF-kappaB activation. Additionally, we show that PEPT2 associates with phagosome membranes. Together, these data identify Drosophila Yin and PEPT2 as evolutionarily conserved phagosome-associated transporters that are likely to be of particular importance in delivery of bacteria-derived ligands generated in phagosomes to cytosolic sensors recruited to the vicinity of these organelles.
Related JoVE Video
Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-kappaB signaling.
Mol. Cell
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
Innate immune responses are critical for the immediate protection against microbial infection. In Drosophila, infection leads to the rapid and robust production of antimicrobial peptides through two NF-kappaB signaling pathways-IMD and Toll. The IMD pathway is triggered by DAP-type peptidoglycan, common to most Gram-negative bacteria. Signaling downstream from the peptidoglycan receptors is thought to involve K63 ubiquitination and caspase-mediated cleavage, but the molecular mechanisms remain obscure. We now show that PGN stimulation causes caspase-mediated cleavage of the imd protein, exposing a highly conserved IAP-binding motif (IBM) at its neo-N terminus. A functional IBM is required for the association of cleaved IMD with the ubiquitin E3-ligase DIAP2. Through its association with DIAP2, IMD is rapidly conjugated with K63-linked polyubiquitin chains. These results mechanistically connect caspase-mediated cleavage and K63 ubiquitination in immune-induced NF-kappaB signaling.
Related JoVE Video
Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin.
Environ. Microbiol.
PUBLISHED: 12-27-2009
Show Abstract
Hide Abstract
In horizontally transmitted mutualisms between marine animals and their bacterial partners, the host environment promotes the initial colonization by specific symbionts that it harvests from the surrounding bacterioplankton. Subsequently, the host must develop long-term tolerance to immunogenic bacterial molecules, such as peptidoglycan and lipopolysaccaride derivatives. We describe the characterization of the activity of a host peptidoglycan recognition protein (EsPGRP2) during establishment of the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont Vibrio fischeri. Using confocal immunocytochemistry, we localized EsPGRP2 to all epithelial surfaces of the animal, and determined that it is exported in association with mucus shedding. Most notably, EsPGRP2 was released by the crypt epithelia into the extracellular spaces housing the symbionts. This translocation occurred only after the symbionts had triggered host morphogenesis, a process that is induced by exposure to the peptidoglycan monomer tracheal cytotoxin (TCT), a bacterial toxin that is constitutively exported by V. fischeri. Enzymatic analyses demonstrated that, like many described PGRPs, EsPGRP2 has a TCT-degrading amidase activity. The timing of EsPGRP2 export into the crypts provides evidence that the host does not export this protein until after TCT induces morphogenesis, and thereafter EsPGRP2 is constantly present in the crypts ameliorating the effects of V. fischeri TCT.
Related JoVE Video
Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-21-2009
Show Abstract
Hide Abstract
Elevated CO(2) levels (hypercapnia) frequently occur in patients with obstructive pulmonary diseases and are associated with increased mortality. However, the effects of hypercapnia on non-neuronal tissues and the mechanisms that mediate these effects are largely unknown. Here, we develop Drosophila as a genetically tractable model for defining non-neuronal CO(2) responses and response pathways. We show that hypercapnia significantly impairs embryonic morphogenesis, egg laying, and egg hatching even in mutants lacking the Gr63a neuronal CO(2) sensor. Consistent with previous reports that hypercapnic acidosis can suppress mammalian NF-kappaB-regulated innate immune genes, we find that in adult flies and the phagocytic immune-responsive S2* cell line, hypercapnia suppresses induction of specific antimicrobial peptides that are regulated by Relish, a conserved Rel/NF-kappaB family member. Correspondingly, modest hypercapnia (7-13%) increases mortality of flies inoculated with E. faecalis, A. tumefaciens, or S. aureus. During E. faecalis and A. tumefaciens infection, increased bacterial loads were observed, indicating that hypercapnia can decrease host resistance. Hypercapnic immune suppression is not mediated by acidosis, the olfactory CO(2) receptor Gr63a, or by nitric oxide signaling. Further, hypercapnia does not induce responses characteristic of hypoxia, oxidative stress, or heat shock. Finally, proteolysis of the Relish IkappaB-like domain is unaffected by hypercapnia, indicating that immunosuppression acts downstream of, or in parallel to, Relish proteolytic activation. Our results suggest that hypercapnic immune suppression is mediated by a conserved response pathway, and illustrate a mechanism by which hypercapnia could contribute to worse outcomes of patients with advanced lung disease, who frequently suffer from both hypercapnia and respiratory infections.
Related JoVE Video
Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-02-2009
Show Abstract
Hide Abstract
The Drosophila NF-kappaB transcription factor Relish is an essential regulator of antimicrobial peptide gene induction after gram-negative bacterial infection. Relish is a bipartite NF-kappaB precursor protein, with an N-terminal Rel homology domain and a C-terminal IkappaB-like domain, similar to mammalian p100 and p105. Unlike these mammalian homologs, Relish is endoproteolytically cleaved after infection, allowing the N-terminal NF-kappaB module to translocate to the nucleus. Signal-dependent activation of Relish, including cleavage, requires both the Drosophila IkappaB kinase (IKK) and death-related ced-3/Nedd2-like protein (DREDD), the Drosophila caspase-8 like protease. In this report, we show that the IKK complex controls Relish by direct phosphorylation on serines 528 and 529. Surprisingly, these phosphorylation sites are not required for Relish cleavage, nuclear translocation, or DNA binding. Instead they are critical for recruitment of RNA polymerase II and antimicrobial peptide gene induction, whereas IKK functions noncatalytically to support Dredd-mediated cleavage of Relish.
Related JoVE Video
Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis.
Cell. Microbiol.
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
Peptidoglycan recognition proteins (PGRPs) are mediators of innate immunity and recently have been implicated in developmental regulation. To explore the interplay between these two roles, we characterized a PGRP in the host squid Euprymna scolopes (EsPGRP1) during colonization by the mutualistic bacterium Vibrio fischeri. Previous research on the squid-vibrio symbiosis had shown that, upon colonization of deep epithelium-lined crypts of the host light organ, symbiont-derived peptidoglycan monomers induce apoptosis-mediated regression of remote epithelial fields involved in the inoculation process. In this study, immunofluorescence microscopy revealed that EsPGRP1 localizes to the nuclei of epithelial cells, and symbiont colonization induces the loss of EsPGRP1 from apoptotic nuclei. The loss of nuclear EsPGRP1 occurred prior to DNA cleavage and breakdown of the nuclear membrane, but followed chromatin condensation, suggesting that it occurs during late-stage apoptosis. Experiments with purified peptidoglycan monomers and with V. fischeri mutants defective in peptidoglycan-monomer release provided evidence that these molecules trigger nuclear loss of EsPGRP1 and apoptosis. The demonstration of a nuclear PGRP is unprecedented, and the dynamics of EsPGRP1 during apoptosis provide a striking example of a connection between microbial recognition and developmental responses in the establishment of symbiosis.
Related JoVE Video
Dermatophagoides pteronyssinus major allergen 1 activates the innate immune response of the fruit fly Drosophila melanogaster.
J. Immunol.
Show Abstract
Hide Abstract
Some allergens with relevant protease activity have the potential to directly interact with host structures. It remains to be elucidated whether this activity is relevant for developing their allergenic properties. The major goal of this study was to elucidate whether allergens with a strong protease activity directly interact with modules of the innate immune system, thereby inducing an immune response. We chose Drosophila melanogaster for our experiments to prevent the results from being influenced by the adaptive immune system and used the armamentarium of methods available for the fly to study the underlying mechanisms. We show that Dermatophagoides pteronyssinus major allergen 1 (Der p 1), the major allergen of the house dust mite, efficiently activates various facets of the Drosophila innate-immune system, including both epithelial and systemic responses. These responses depend on the immune deficiency (IMD) pathway via activation of the NF-?B transcription factor Relish. In addition, the major pathogen associated molecular pattern recognizing receptor of the IMD pathway, peptidoglycan recognition protein-LC, was necessary for this response. We showed that Der p 1, which has cysteine protease activity, cleaves the ectodomain of peptidoglycan recognition protein-LC and, thus, activates the IMD pathway to induce a profound immune response. We conclude that the innate immune response to this allergen-mediated proteolytic cleavage represents an ancient type of danger signaling that may be highly relevant for the primary allergenicity of compounds such as Der p 1.
Related JoVE Video
Cutting edge: FAS (CD95) mediates noncanonical IL-1? and IL-18 maturation via caspase-8 in an RIP3-independent manner.
J. Immunol.
Show Abstract
Hide Abstract
Fas, a TNF family receptor, is activated by the membrane protein Fas ligand expressed on various immune cells. Fas signaling triggers apoptosis and induces inflammatory cytokine production. Among the Fas-induced cytokines, the IL-1? family cytokines require proteolysis to gain biological activity. Inflammasomes, which respond to pathogens and danger signals, cleave IL-1? cytokines via caspase-1. However, the mechanisms by which Fas regulates IL-1? activation remain unresolved. In this article, we demonstrate that macrophages exposed to TLR ligands upregulate Fas, which renders them responsive to receptor engagement by Fas ligand. Fas signaling activates caspase-8 in macrophages and dendritic cells, leading to the maturation of IL-1? and IL-18 independently of inflammasomes or RIP3. Hence, Fas controls a novel noncanonical IL-1? activation pathway in myeloid cells, which could play an essential role in inflammatory processes, tumor surveillance, and control of infectious diseases.
Related JoVE Video
Serine/threonine acetylation of TGF?-activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-?B and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-?B signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition.
Related JoVE Video
Characterization of poxvirus-encoded proteins that regulate innate immune signaling pathways.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Innate immune recognition of pathogens is critical to the prompt control of infections, permitting the host to survive to develop long-term immunity via an adaptive immune response. Poxviruses encode a family of proteins that inhibit signaling by Toll-like receptors to their downstream signaling components, severely limiting nuclear translocation of transcription factors such as IRF3 and NF-?B and thereby decreasing production of host interferons and cytokines. We describe bioinformatics techniques for identifying candidate poxviral inhibitors of the innate immune response based on similarity to the family of proteins that includes A52, A46, and N1. Robust luciferase assays can determine whether a given poxviral gene affects innate immune signaling, and in combination with other approaches can identify the cellular targets of poxviral innate immune evasion genes. Because apoptosis is an innate immune response of the cell to viral infection, assays for identifying poxviral genes that inhibit apoptosis can also be employed. Novel poxviral innate immune inhibitors are being identified via several approaches and these techniques promise to identify further complexities in the way that poxviruses interact with the host innate immune system.
Related JoVE Video
Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling.
EMBO J.
Show Abstract
Hide Abstract
Caspases have been extensively studied as critical initiators and executioners of cell death pathways. However, caspases also take part in non-apoptotic signalling events such as the regulation of innate immunity and activation of nuclear factor-?B (NF-?B). How caspases are activated under these conditions and process a selective set of substrates to allow NF-?B signalling without killing the cell remains largely unknown. Here, we show that stimulation of the Drosophila pattern recognition protein PGRP-LCx induces DIAP2-dependent polyubiquitylation of the initiator caspase DREDD. Signal-dependent ubiquitylation of DREDD is required for full processing of IMD, NF-?B/Relish and expression of antimicrobial peptide genes in response to infection with Gram-negative bacteria. Our results identify a mechanism that positively controls NF-?B signalling via ubiquitin-mediated activation of DREDD. The direct involvement of ubiquitylation in caspase activation represents a novel mechanism for non-apoptotic caspase-mediated signalling.
Related JoVE Video
UnZIPping mechanisms of effector-triggered immunity in animals.
Cell Host Microbe
Show Abstract
Hide Abstract
The mechanisms by which epithelial cells distinguish pathogens from commensal microbes have long puzzled us. Now, McEwan et al. (2012) and Dunbar et al. (2012), in this issue of Cell Host & Microbe, demonstrate that in C. elegans, microbial toxin-induced inhibition of host cellular functions, especially blockade of protein translation, activates the effector-triggered immune response dependent on the transcription factor ZIP-2.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.