JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The putative eukaryotic-like O-GlcNAc transferase of the cyanobacterium Synechococcus elongatus PCC7942 hydrolyzes UDP-GlcNAc and is involved in multiple cellular processes.
J. Bacteriol.
PUBLISHED: 11-12-2014
Show Abstract
Hide Abstract
The post-translational addition of a single O-linked ?-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification, O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with a domain structure similar to eukaryotic OGTs are predicted for many bacteria species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacterium Synechococcus elongatus PCC 7942 that shows active site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the media. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by re-introduction of the wild type OGT, but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity. S. elongatus OGT purified from E. coli hydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryotic-like OGTs, like their eukaryotic counterparts, influence multiple processes.
Related JoVE Video
O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection.
Virology
PUBLISHED: 01-20-2013
Show Abstract
Hide Abstract
O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus.
Related JoVE Video
O-GlcNAcylation of the Plum pox virus capsid protein catalyzed by SECRET AGENT: characterization of O-GlcNAc sites by electron transfer dissociation mass spectrometry.
Amino Acids
PUBLISHED: 04-13-2010
Show Abstract
Hide Abstract
The capsid protein of Plum pox virus (PPV-CP) is modified with O-linked ?-N-acetylglucosamine (O-GlcNAc). In Arabidopsis thaliana this modification is made by an O-GlcNAc transferase named SECRET AGENT (SEC). Modification of PPV-CP by SEC is hypothesized to have a direct role in the infection process, because virus titer and rate of spread are reduced in SEC mutants. Previous studies used deletion mapping and site-directed mutagenesis to identify four O-GlcNAc sites on the capsid protein that are modified by Escherichia coli-expressed SEC. The infection process was not affected when two of these sites were mutated suggesting that O-GlcNAcylation of these sites does not have a significant role in the infection process or that a subset of the modifications is sufficient. Since it is possible that the mutational mapping approach missed or incorrectly identified O-GlcNAc sites, the modifications produced by E. coli-expressed SEC were characterized using mass spectrometry. O-GlcNAcylated peptides were enzymatically tagged with galactose, the products were enriched on immobilized Ricinus communis agglutinin I and sequenced by electron transfer dissociation (ETD) mass spectrometry. Five O-GlcNAc sites on PPV-CP were identified. Two of these sites were not identified in by the previous mutational mapping. In addition, one site previously predicted by mutation mapping was not detected, but modification of this site was not supported when the mutation mapping was repeated. This study suggests that mapping modification sites by ETD mass spectrometry is more comprehensive and accurate than mutational mapping.
Related JoVE Video
O-GlcNAc protein modification in plants: Evolution and function.
Biochim. Biophys. Acta
PUBLISHED: 09-27-2009
Show Abstract
Hide Abstract
The role in plants of posttranslational modification of proteins with O-linked N-acetylglucosamine and the evolution and function of O-GlcNAc transferases responsible for this modification are reviewed. Phylogenetic analysis of eukaryotic O-GlcNAc transferases (OGTs) leads us to propose that plants have two distinct OGTs, SEC- and SPY-like, that originated in prokaryotes. Animals and some fungi have a SEC-like enzyme while plants have both. Green algae and some members of the Apicomplexa and amoebozoa have the SPY-like enzyme. Interestingly the progenitor of the Apicomplexa lineage likely had a photosynthetic plastid that persists in a degenerated form in some species, raising the possibility that plant SPY-like OGTs are derived from a photosynthetic endosymbiont. OGTs have multiple tetratricopeptide repeats (TPRs) that within the SEC- and SPY-like classes exhibit evidence of strong selective pressure on specific repeats, suggesting that the function of these repeats is conserved. SPY-like and SEC-like OGTs have both unique and overlapping roles in the plant. The phenotypes of sec and spy single and double mutants indicate that O-GlcNAc modification is essential and that it affects diverse plant processes including response to hormones and environmental signals, circadian rhythms, development, intercellular transport and virus infection. The mechanistic details of how O-GlcNAc modification affects these processes are largely unknown. A major impediment to understanding this is the lack of knowledge of the identities of the modified proteins.
Related JoVE Video
O-glycosylation of protein subpopulations in alcohol-extracted rice proteins.
J. Plant Physiol.
PUBLISHED: 06-11-2009
Show Abstract
Hide Abstract
Mucin-type O-glycosylation has been well characterized in mammalian systems but not in plants. In this study, the purified alcohol-soluble, non-reduced protein (prolamin) fraction from rice seed was investigated for the occurrence of O-linked oligosaccharides. As storage prolamins are unlikely to be O-glycosylated, any O-glycosylation found was likely to belong to co-extracted proteins, whether because of association with the protein body or solubility. SDS-PAGE and MS analyses revealed 14 and 16kDa protein families in fractions that bound to the lectins peanut agglutinin (PNA), Vicia villosa lectin (VVL) and Jacalin, indicative of the presence of O-linked saccharides. Enzymatic cleavage, fluorescent labeling and high-performance liquid chromatography (HPLC) analysis demonstrated a peak consistent with Gal-beta-(1-->3)-GalNAc, with similar MS/MS fragmentation. Additionally, upon chemical analysis, a GlcNAc-containing O-linked carbohydrate moiety was discovered. Protein blotting with anti-O-GlcNAc antibody (clone CTD110.6) was positive in a subpopulation of the 14kDa alcohol-soluble protein fraction, but a hot capping experiment was negative. Therefore, the GlcNAc residue in this case is unlikely to be terminal. Additionally, a positive reaction with CTD110.6mAb cannot be taken as absolute proof of O-GlcNAc modification and further confirmatory experiments should be employed. We hypothesize that O-glycosylation may contribute to protein functionality or regulation. Further investigation is required to identify the specific proteins with these modifications. This reverse approach could lead to the identification of proteins involved in mRNA targeting, signaling, translation, anchoring or maintenance of translational quiescence and may be applied to germinating rice seed extracts for further elucidation of protein function and regulation.
Related JoVE Video
Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway.
Plant J.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Specific plant developmental processes are modulated by cross-talk between gibberellin (GA)- and cytokinin-response pathways. Coordination of the two pathways involves the O-linked N-acetylglucosamine transferase SPINDLY (SPY) that suppresses GA signaling and promotes cytokinin responses in Arabidopsis. Although SPY is a nucleocytoplasmic protein, its site of action and targets are unknown. Several studies have suggested that SPY acts in the nucleus, where it modifies nuclear components such as the DELLA proteins to regulate signaling networks. Using chimeric GFP-SPY fused to a nuclear-export signal or to a glucocorticoid receptor, we show that cytosolic SPY promotes cytokinin responses and suppresses GA signaling. In contrast, nuclear-localized GFP-SPY failed to complement the spy mutation. To examine whether modulation of cytokinin activity by GA and spy is mediated by the nuclear DELLA proteins, cytokinin responses were studied in double and quadruple della mutants lacking the activities of REPRESSOR OF GA1-3 (RGA) and GA-INSENSITIVE (GAI) or RGA, GAI, RGA Like1 (RGL1) and RGL2. Unlike spy, the della mutants were cytokinin-sensitive. Moreover, when GA was applied to a cytokinin-treated quadruple della mutant it was able to suppress various cytokinin responses. These results suggest that cytosolic SPY and GA regulate cytokinin responses via a DELLA-independent pathway(s).
Related JoVE Video
Complete nucleotide sequence of rose yellow vein virus, a member of the family Caulimoviridae having a novel genome organization.
Arch. Virol.
Show Abstract
Hide Abstract
This report describes the complete nucleotide sequence and genome organization of rose yellow vein virus (RYVV), a proposed new member of the family Caulimoviridae. The RYVV genome is 9314 bp in size and contains eight open reading frames (ORFs). ORFs 1, 2, and 3 have 22-38 % amino acid sequence similarity to known members of the family Caulimoviridae. The remaining ORFs have no significant amino acid sequence similarity to known viruses. Based on differences in its genome organization, its low sequence similarity to known members of the family Caulimoviridae, and the results of phylogenetic analysis, RYVV appears to be a distinct new member of this family.
Related JoVE Video
Identification and origin of N-linked ?-D-N-acetylglucosamine monosaccharide modifications on Arabidopsis proteins.
Plant Physiol.
Show Abstract
Hide Abstract
Many plant proteins are modified with N-linked oligosaccharides at asparagine-X-serine/threonine sites during transit through the endoplasmic reticulum and the Golgi. We have identified a number of Arabidopsis (Arabidopsis thaliana) proteins with modifications consisting of an N-linked N-acetyl-D-glucosamine monosaccharide (N-GlcNAc). Electron transfer dissociation mass spectrometry analysis of peptides bearing this modification mapped the modification to asparagine-X-serine/threonine sites on proteins that are predicted to transit through the endoplasmic reticulum and Golgi. A mass labeling method was developed and used to study N-GlcNAc modification of two thioglucoside glucohydrolases (myrosinases), TGG1 and TGG2 (for thioglucoside glucohydrolase). These myrosinases are also modified with high-mannose (Man)-type glycans. We found that N-GlcNAc and high-Man-type glycans can occur at the same site. It has been hypothesized that N-GlcNAc modifications are generated when endo-?-N-acetylglucosaminidase (ENGase) cleaves N-linked glycans. We examined the effects of mutations affecting the two known Arabidopsis ENGases on N-GlcNAc modification of myrosinase and found that modification of TGG2 was greatly reduced in one of the single mutants and absent in the double mutant. Surprisingly, N-GlcNAc modification of TGG1 was not affected in any of the mutants. These data support the hypothesis that ENGases hydrolyze high-Man glycans to produce some of the N-GlcNAc modifications but also suggest that some N-GlcNAc modifications are generated by another mechanism. Since N-GlcNAc modification was detected at only one site on each myrosinase, the production of the N-GlcNAc modification may be regulated.
Related JoVE Video
The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers.
Plant Cell
Show Abstract
Hide Abstract
O-linked N-acetylglucosamine (O-GlcNAc) modifications regulate the posttranslational fate of target proteins. The Arabidopsis thaliana O-GlcNAc transferase (OGT) SPINDLY (SPY) suppresses gibberellin signaling and promotes cytokinin (CK) responses by unknown mechanisms. Here, we present evidence that two closely related class I TCP transcription factors, TCP14 and TCP15, act with SPY to promote CK responses. TCP14 and TCP15 interacted with SPY in yeast two-hybrid and in vitro pull-down assays and were O-GlcNAc modified in Escherichia coli by the Arabidopsis OGT, SECRET AGENT. Overexpression of TCP14 severely affected plant development in a SPY-dependent manner and stimulated typical CK morphological responses, as well as the expression of the CK-regulated gene RESPONSE REGULATOR5. TCP14 also promoted the transcriptional activity of the CK-induced mitotic factor CYCLIN B1;2. Whereas TCP14-overexpressing plants were hypersensitive to CK, spy and tcp14 tcp15 double mutant leaves and flowers were hyposensitive to the hormone. Reducing CK levels by overexpressing CK OXIDASE/DEHYDROGENASE3 suppressed the TCP14 overexpression phenotypes, and this suppression was reversed when the plants were treated with exogenous CK. Taken together, we suggest that responses of leaves and flowers to CK are mediated by SPY-dependent TCP14 and TCP15 activities.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.