JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Production of Water-Soluble Few-Layer Graphene Mesosheets by Dry Milling with Hydrophobic Drug.
Langmuir
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
A novel, fast and easy mechano-chemistry-based (dry milling) method has been developed to exfoliate graphene with hydrophobic drugs generating few layer graphene mesosheets (< 10 nm in thickness and ~ 1 µm in width). The electronic properties of the graphitic structure were partially preserved after the milling treatment compared to Graphene Oxide (GO) prepared by Hummers' method. Several characterization techniques such as thermogravimetric analysis (TGA), Raman spectroscopy, atomic force microscopy (AFM), Electron Microscopy (EM) and molecular dynamics simulation were used to characterize this material. The drug-exfoliated mesosheets were pharmacologically inactive offering a new approach for making water-soluble few-layer graphene mesosheets upon dry milling with hydrophobic drugs, mainly used as exfoliating agents.
Related JoVE Video
Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo.
ACS Nano
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and (1)H NMR studies. The PEG and folic acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs in vivo.
Related JoVE Video
Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo.
ACS Nano
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
We report in this study the complexation of the chemotherapeutic drug doxorubicin (DOX) with the novel sixth-generation cationic poly-l-lysine dendrimer (DM) (MW 8149 kDa), which we previously reported to exhibit systemic antiangiogenic activity in tumor-bearing mice. DOX-DM complexation was confirmed by florescence polarization measurement, proton nuclear magnetic resonance spectroscopy, and molecular modeling. Enhanced penetration of DOX-DM (at 1:10 molar ratio), compared to the free DOX, into prostate 3D multicellular tumor spheroids (MTS) was confirmed by confocal laser scanning microscopy. Furthermore, DOX-DM complexes achieved a significantly higher cytotoxicity in DU145 MTS system compared to the free drug, as shown by growth delay curves. Incubation of MTS with low DOX concentration (1 ?M) complexed with DM led to a significant delay in MTS growth compared to untreated MTS or MTS treated with free DOX. DOX-DM complex retention was also achieved in a Calu-6 lung cancer xenograft model in tumor-bearing mice, as shown by live whole animal fluorescence imaging. Therapeutic experiments in B16F10 tumor bearing mice have shown enhanced therapeutic efficacy of DOX when complexed to DM. This study suggests that the cationic poly-l-lysine DM molecules studied here could, in addition to their systemic antiangiogenic property, complex chemotherapeutic drugs such as DOX and improve their accumulation and cytotoxicity into MTS and solid tumors in vivo. Such an approach offers new capabilities for the design of combinatory antiangiogenic/anticancer therapeutics.
Related JoVE Video
Ball-milling modification of single-walled carbon nanotubes: purification, cutting, and functionalization.
Small
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Single-walled carbon nanotubes (SWNTs) can be successfully cut with relatively homogeneous sizes using a planetary mill. The optimized conditions produce highly dispersible SWNTs that can be efficiently functionalized in a variety of synthetic ways. As clearly shown by Raman spectroscopy, the milling/cutting procedure compares very favorably with the most common way of purifying SWNTs, namely, treatment with strong oxidizing acids. Moreover a similar milling process can be used to functionalize and cut pristine SWNTs by one-step nitrene chemistry.
Related JoVE Video
Versatile microwave-induced reactions for the multiple functionalization of carbon nanotubes.
Org. Biomol. Chem.
PUBLISHED: 05-08-2010
Show Abstract
Hide Abstract
Carbon nanotubes (CNTs) have been readily functionalized by microwave activation using two different reactions affording functional derivatives characterized by two orthogonally protected amino groups. The doubly functionalized CNTs can serve as multipurpose, versatile synthons in materials science and biological applications.
Related JoVE Video
Synthesis and characterization of highly water-soluble dendrofulleropyrrolidine bisadducts with DNA binding activity.
Org. Lett.
Show Abstract
Hide Abstract
The synthesis, characterization and DNA binding studies of a series of polycationic fullerene adducts are reported. These cationic species, exhibiting reasonably high water solubility and a heterogeneous distribution of positive charges, can efficiently complex plasmid DNA. Electrophoresis studies show different DNA binding efficiencies for different adducts, some of which can be considered excellent candidates for DNA binding therapies.
Related JoVE Video
Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA.
Biomaterials
Show Abstract
Hide Abstract
We synthesized a non-viral delivery system (f-CNH3) for small interfering RNA (siRNA) by anchoring a fourth-generation polyamidoamine dendrimer (G4-PAMAM) to carbon nanohorns (CNHs). Using this new compound, we delivered a specific siRNA designed to knockdown cofilin-1, a key protein in the regulation of cellular cytoskeleton, to human prostate cancer (PCa) cells. The carbon nanohorn (CNH) derivative was able to bind siRNA and release it in the presence of an excess of the polyanion heparin. Moreover, this hybrid nanomaterial protected the siRNA from RNAse-mediated degradation. Synthetic siRNA delivered to PCa cells by f-CNH3 decreased the cofilin-1 mRNA and protein levels to about 20% of control values. Docetaxel, the drug of choice for the treatment of PCa, produced a concentration-dependent activation of caspase-3, an increase in cell death assessed by lactate dehydrogenase release to the culture medium, cell cycle arrest and inhibition of tumor cell proliferation. All of these toxic effects were potentiated when cofilin-1 was down regulated in these cells by a siRNA delivered by the nanoparticle. This suggests that knocking down certain proteins involved in cancer cell survival and/or proliferation may potentiate the cytotoxic actions of anticancer drugs and it might be a new therapeutic approach to treat tumors.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.