JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The role of the interaction of the vinculin proline-rich linker region with vinexin ? in sensing the stiffness of the extracellular matrix.
J. Cell. Sci.
PUBLISHED: 02-19-2014
Show Abstract
Hide Abstract
Although extracellular matrix (ECM) stiffness is an important aspect of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL-region-binding protein vinexin are involved in sensing the stiffness of ECM substrates. A rigid substrate increases the level of cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these responses to ECM stiffness. Furthermore, vinexin depletion impairs the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin ? plays a crucial role in sensing ECM stiffness and in mechanotransduction.
Related JoVE Video
ABCA1, ABCG1, and ABCG4 Are Distributed to Distinct Membrane Meso-Domains and Disturb Detergent-Resistant Domains on the Plasma Membrane.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-?-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.
Related JoVE Video
Small-molecule-induced clustering of heparan sulfate promotes cell adhesion.
J. Am. Chem. Soc.
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
Adhesamine is an organic small molecule that promotes adhesion and growth of cultured human cells by binding selectively to heparan sulfate on the cell surface. The present study combined chemical, physicochemical, and cell biological experiments, using adhesamine and its analogues, to examine the mechanism by which this dumbbell-shaped, non-peptidic molecule induces physiologically relevant cell adhesion. The results suggest that multiple adhesamine molecules cooperatively bind to heparan sulfate and induce its assembly, promoting clustering of heparan sulfate-bound syndecan-4 on the cell surface. A pilot study showed that adhesamine improved the viability and attachment of transplanted cells in mice. Further studies of adhesamine and other small molecules could lead to the design of assembly-inducing molecules for use in cell biology and cell therapy.
Related JoVE Video
24(S)-hydroxycholesterol is actively eliminated from neuronal cells by ABCA1.
J. Neurochem.
PUBLISHED: 04-13-2013
Show Abstract
Hide Abstract
High cholesterol turnover catalyzed by cholesterol 24-hydroxylase is essential for neural functions, especially learning. Because 24(S)-hydroxycholesterol (24-OHC), produced by 24-hydroxylase, induces apoptosis of neuronal cells, it is vital to eliminate it rapidly from cells. Here, using differentiated SH-SY5Y neuron-like cells as a model, we examined whether 24-OHC is actively eliminated via transporters induced by its accumulation. The expression of ABCA1 and ABCG1 was induced by 24-OHC, as well as TO901317 and retinoic acid, which are ligands of the nuclear receptors liver X receptor/retinoid X receptor (LXR/RXR). When the expression of ABCA1 and ABCG1 was induced, 24-OHC efflux was stimulated in the presence of high-density lipoprotein (HDL), whereas apolipoprotein A-I was not an efficient acceptor. The efflux was suppressed by the addition of siRNA against ABCA1, but not by ABCG1 siRNA. To confirm the role of each transporter, we analyzed human embryonic kidney 293 cells stably expressing human ABCA1 or ABCG1; we clearly observed 24-OHC efflux in the presence of HDL, whereas efflux in the presence of apolipoprotein A-I was marginal. Furthermore, the treatment of primary cerebral neurons with LXR/RXR ligands suppressed the toxicity of 24-OHC. These results suggest that ABCA1 actively eliminates 24-OHC in the presence of HDL as a lipid acceptor and protects neuronal cells.
Related JoVE Video
Non-specific protein modifications by a phytochemical induce heat shock response for self-defense.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities.
Related JoVE Video
Vinexin-? protects against cardiac hypertrophy by blocking the Akt-dependent signalling pathway.
Basic Res. Cardiol.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Cardiac hypertrophy is the hearts response to hypertrophic stimuli and is associated with increased mortality. Vinexin-? is a vinculin-binding protein that belongs to a family of adaptor proteins and mediates signal transduction and actin cytoskeleton organisation. A previous study has shown that Vinexin-? is ubiquitously expressed and that it is highly expressed in the heart. However, a critical role for Vinexin-? in cardiac hypertrophy has not been investigated. Therefore, to examine the role of Vinexin-? in pathological cardiac hypertrophy, we used Vinexin-? knockout mice and transgenic mice that overexpress human Vinexin-? in the heart. Cardiac hypertrophy was induced by aortic banding (AB). The extent of cardiac hypertrophy was quantitated by echocardiography and pathological and molecular analyses of heart samples. Our results demonstrated that Vinexin-? overexpression in the heart markedly attenuated cardiac hypertrophy, fibrosis, and cardiac dysfunction, whereas loss of Vinexin-? exaggerated the pathological cardiac remodelling and fibrosis response to pressure overload. Further analysis of the in vitro and in vivo signalling events indicated that beneficial Vinexin-? effects were associated with AKT signalling abrogation. Our findings demonstrate for the first time that Vinexin-? is a novel mediator that protects against cardiac hypertrophy by blocking the AKT signalling pathway.
Related JoVE Video
Dlg5 interacts with the TGF-? receptor and promotes its degradation.
FEBS Lett.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase adaptor family of proteins and is involved in epithelial-to-mesenchymal transition via transforming growth factor-? (TGF-?) signaling. However, the mechanism underlying the regulation of TGF-? signaling is unclear. We show here that Dlg5 interacts and colocalizes with both TGF-? type I (T?RI) and type II (T?RII) receptors at the plasma membrane. T?RI activation is not required for this interaction. Furthermore, the overexpression of Dlg5 enhances the degradation of T?RI. Proteasome inhibitors inhibited this enhanced degradation. These results suggest that Dlg5 interacts with T?Rs and promotes their degradation.
Related JoVE Video
ATPase activity of nucleotide binding domains of human MDR3 in the context of MDR1.
Biochim. Biophys. Acta
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Although human MDR1 and MDR3 share 86% similarity in their amino acid sequences and are predicted to share conserved domains for drug recognition, their physiological transport substrates are quite different: MDR1 transports xenobiotics and confers multidrug resistance, while MDR3 exports phosphatidylcholine into bile. Although MDR1 shows high ATPase activity, attempts to demonstrate the ATPase activity of human MDR3 have not succeeded. Therefore, it is possible that the difference in the functions of these proteins is caused by their different ATPase activities. To test this hypothesis, a chimera protein containing the transmembrane domains (TMDs) of MDR1 and the nucleotide binding domains (NBDs) of MDR3 was constructed and analyzed. The chimera protein was expressed on the plasma membrane and conferred resistance against vinblastine and paclitaxel, indicating that MDR3 NBDs can support drug transport. Vanadate-induced ADP trapping of MDR3 NBDs in the chimera protein was stimulated by verapamil as was MDR1 NBDs. The purified chimera protein showed drug-stimulated ATPase activity like MDR1, while its Vmax was more than 10-times lower than MDR1. These results demonstrate that the low ATPase activity of human MDR3 cannot account for the difference in the functions of these proteins, and furthermore, that TMDs determine the features of NBDs. To our knowledge, this is the first study analyzing the features of human MDR3 NBDs.
Related JoVE Video
ATP hydrolysis-dependent conformational changes in the extracellular domain of ABCA1 are associated with apoA-I binding.
J. Lipid Res.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high-density lipoprotein (HDL) metabolism. Although it is predicted that apolipoprotein A-I (apoA-I) directly binds to ABCA1, the physiological importance of this interaction is still controversial and the conformation required for apoA-I binding is unclear. In this study, the role of the two nucleotide-binding domains (NBD) of ABCA1 in apoA-I binding was determined by inserting a TEV protease recognition sequence in the linker region of ABCA1. Analyses of ATP binding and occlusion to wild-type ABCA1 and various NBD mutants revealed that ATP binds equally to both NBDs and is hydrolyzed at both NBDs. The interaction with apoA-I and the apoA-I-dependent cholesterol efflux required not only ATP binding but also hydrolysis in both NBDs. NBD mutations and cellular ATP depletion decreased the accessibility of antibodies to a hemagglutinin (HA) epitope that was inserted at position 443 in the extracellular domain (ECD), suggesting that the conformation of ECDs is altered by ATP hydrolysis at both NBDs. These results suggest that ATP hydrolysis at both NBDs induces conformational changes in the ECDs, which are associated with apoA-I binding and cholesterol efflux.
Related JoVE Video
Liver X receptor beta (LXRbeta) interacts directly with ATP-binding cassette A1 (ABCA1) to promote high density lipoprotein formation during acute cholesterol accumulation.
J. Biol. Chem.
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Cells have evolved multiple mechanisms for maintaining cholesterol homeostasis, and, among these, ATP-binding cassette protein A1 (ABCA1)-mediated cholesterol efflux is highly regulated at the transcriptional level through the activity of the nuclear receptor liver X receptor (LXR). Here, we show that in addition to its well defined role in transcription, LXR? directly binds to the C-terminal region ((2247)LTSFL(2251)) of ABCA1 to mediate its post-translational regulation. In the absence of cholesterol accumulation in the macrophage-like cell line THP-1, the ABCA1-LXR? complex stably localizes to the plasma membrane, but apolipoprotein A-I (apoA-I) binding or cholesterol efflux does not occur. Exogenously added LXR ligands, which mimic cholesterol accumulation, cause LXR? to dissociate from ABCA1, thus freeing ABCA1 for apoA-I binding and subsequent cholesterol efflux. Photoaffinity labeling experiments with 8-azido-[?-(32)P]ATP showed that the interaction of LXR? with ABCA1 inhibits ATP binding by ABCA1. This is the first study to show that a protein-protein interaction with the endogenous protein suppresses the function of ABC proteins by inhibiting ATP binding. LXR? can cause a post-translational response by binding directly to ABCA1, as well as a transcriptional response, to maintain cholesterol homeostasis.
Related JoVE Video
WAVE2 forms a complex with PKA and is involved in PKA enhancement of membrane protrusions.
J. Biol. Chem.
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
PKA contributes to many physiological processes, including glucose homeostasis and cell migration. The substrate specificity of PKA is low compared with other kinases; thus, complex formation with A-kinase-anchoring proteins is important for the localization of PKA in specific subcellular regions and the phosphorylation of specific substrates. Here, we show that PKA forms a complex with WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) in MDA-MB-231 breast cancer cells and mouse brain extracts. Two separate regions of WAVE2 are involved in WAVE2-PKA complex formation. This complex localizes to the leading edge of MDA-MB-231 cells. PKA activation results in enlargement of the membrane protrusion. WAVE2 depletion impairs PKA localization at membrane protrusions and the enlargement of membrane protrusion induced by PKA activation. Together, these results suggest that WAVE2 works as an A-kinase-anchoring protein that recruits PKA at membrane protrusions and plays a role in the enlargement of membrane protrusions induced by PKA activation.
Related JoVE Video
The closely related RNA helicases, UAP56 and URH49, preferentially form distinct mRNA export machineries and coordinately regulate mitotic progression.
Mol. Biol. Cell
PUBLISHED: 06-23-2010
Show Abstract
Hide Abstract
Nuclear export of mRNA is an essential process for eukaryotic gene expression. The TREX complex couples gene expression from transcription and splicing to mRNA export. Sub2, a core component of the TREX complex in yeast, has diversified in humans to two closely related RNA helicases, UAP56 and URH49. Here, we show that URH49 forms a novel URH49-CIP29 complex, termed the AREX (alternative mRNA export) complex, whereas UAP56 forms the human TREX complex. The mRNAs regulated by these helicases are different at the genome-wide level. The two sets of target mRNAs contain distinct subsets of key mitotic regulators. Consistent with their target mRNAs, depletion of UAP56 causes mitotic delay and sister chromatid cohesion defects, whereas depletion of URH49 causes chromosome arm resolution defects and failure of cytokinesis. In addition, depletion of the other human TREX components or CIP29 causes mitotic defects similar to those observed in UAP56- or URH49-depleted cells, respectively. Taken together, the two closely related RNA helicases have evolved to form distinct mRNA export machineries, which regulate mitosis at different steps.
Related JoVE Video
Crucial role of vinexin for keratinocyte migration in vitro and epidermal wound healing in vivo.
Exp. Cell Res.
PUBLISHED: 03-21-2010
Show Abstract
Hide Abstract
In the process of tissue injury and repair, epithelial cells rapidly migrate and form epithelial sheets. Vinexin is a cytoplasmic molecule of the integrin-containing cell adhesion complex localized at focal contacts in vitro. Here, we investigated the roles of vinexin in keratinocyte migration in vitro and wound healing in vivo. Vinexin knockdown using siRNA delayed migration of both HaCaT human keratinocytes and A431 epidermoid carcinoma cells in scratch assay but did not affect cell proliferation. Induction of cell migration by scratching the confluent monolayer culture of these cells activated both EGFR and ERK, and their inhibitors AG1478 and U0126 substantially suppressed scratch-induced keratinocyte migration. Vinexin knockdown in these cells inhibited the scratch-induced activation of EGFR, but not that of ERK, suggesting that vinexin promotes cell migration via activation of EGFR. We further generated vinexin (-/-) mice and isolated their keratinocytes. They similarly showed slow migration in scratch assay. Furthermore, vinexin (-/-) mice exhibited a delay in cutaneous wound healing in both the back skin and tail without affecting the proliferation of keratinocytes. Together, these results strongly suggest a crucial role of vinexin in keratinocyte migration in vitro and cutaneous wound healing in vivo.
Related JoVE Video
Tyrosine phosphorylation of vinexin in v-Src-transformed cells attenuates the affinity for vinculin.
Biochem. Biophys. Res. Commun.
PUBLISHED: 06-29-2009
Show Abstract
Hide Abstract
Vinexin is an adaptor-type focal adhesion protein that interacts with vinculin. Here, we report the tyrosine phosphorylation of vinexin alpha in v-Src-transformed NIH3T3 cells. Point mutational analysis of vinexin alpha clarified that three tyrosine residues in vinexin alpha were phosphorylated. A non-phosphorylatable mutant of vinexin alpha had higher binding affinity for vinculin than its wild-type counterpart. In conclusion, vinexin alpha is tyrosine phosphorylated in v-Src-transformed cells, and this tyrosine phosphorylation of vinexin alpha attenuates the association of vinexin alpha with vinculin.
Related JoVE Video
Formation of two intramolecular disulfide bonds is necessary for ApoA-I-dependent cholesterol efflux mediated by ABCA1.
J. Biol. Chem.
PUBLISHED: 03-03-2009
Show Abstract
Hide Abstract
ABCA1 plays a major role in cholesterol homeostasis and high density lipoprotein (HDL) metabolism. ABCA1 contains disulfide bond(s) between its N- and C-terminal halves, but it remains unclear whether disulfide bond formation is important for the functions of ABCA1 and which cysteines are involved in disulfide bond formation. To answer these questions, we constructed >30 ABCA1 mutants in which 16 extracellular domain (ECD) cysteines were replaced with serines and examined disulfide bond formation, apoA-I binding, and HDL formation in these mutants. From the single cysteine replacements, two cysteines (Cys(75) and Cys(309)) in ECD1 were found to be essential for apoA-I binding. In contrast, in ECD2, only Cys(1477) was found to be essential for HDL formation, and no single cysteine replacement impaired apoA-I binding. The concurrent replacement of two cysteines, Cys(1463) and Cys(1465), impaired apoA-I binding and HDL formation, suggesting that four of five extracellular cysteines (Cys(75), Cys(309), Cys(1463), Cys(1465), and Cys(1477)) are involved in these functions of ABCA1. Trypsin digestion experiments suggested that one disulfide bond is not sufficient and that two intramolecular disulfide bonds (between Cys(75) and Cys(309) in ECD1 and either Cys(1463) or Cys(1465) and Cys(1477) in ECD2) are required for ABCA1 to be fully functional.
Related JoVE Video
The COP9 signalosome controls ubiquitinylation of ABCA1.
Biochem. Biophys. Res. Commun.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
ATP-binding cassette protein A1 (ABCA1) mediates the transfer of cellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I), an extracellular acceptor in plasma, to form high-density lipoprotein (HDL). ABCA1 has been suggested to be degraded by proteasome in cholesterol-loaded macrophages, however, the mechanism and regulation of proteasomal degradation of ABCA1 remain unclear. In this study, we analyzed the putative interaction between ABCA1 and COP9 signalosome (CSN), a key molecule in controlling protein ubiquitination and deubiquitination. CSN2 and CSN5, subunits of COP9 CSN complex, were coprecipitated with ABCA1 when coexpressed in HEK293 cells and proteasomal degradation was inhibited by MG132. Overexpression of CSN2 increased endogenous CSN7 and CSN8, and decreased ubiquitinylated forms of ABCA1. These results suggest that CSN is a key molecule which controls the ubiquitinylation and deubiquitinylation of ABCA1, and is thus an important target for developing potential drugs to prevent atherosclerosis.
Related JoVE Video
Retroendocytosis pathway of ABCA1/apoA-I contributes to HDL formation.
Genes Cells
PUBLISHED: 01-28-2009
Show Abstract
Hide Abstract
ATP-binding cassette protein A1 (ABCA1) mediates transfer of cellular free cholesterol and phospholipids to apolipoprotein A-I (apoA-I), an extracellular acceptor in plasma, to form high-density lipoprotein (HDL). It is currently unknown to what extent ABCA1 endocytosis and recycling contribute to the HDL formation. To address this issue, we expressed human ABCA1 constructs with either an extracellular HA tag or an intracellular GFP tag in cells, and used this system to characterize endocytosis and recycling of ABCA1 and apoA-I. Under basal conditions, ABCA1 and apoA-I are endocytosed via a clathrin- and Rab5-mediated pathway and recycled rapidly back to the cell surface, at least in part via a Rab4-mediated route; approximately 30% of the endocytosed ABCA1 is recycled back to the cell surface. When receptor-mediated endocytosis is inhibited, the level of ABCA1 at the cell surface increases and apoA-I internalization is blocked. Under these conditions, apoA-I mediated cholesterol efflux from cells that have accumulated lipoprotein-derived cholesterol is decreased, whereas efflux from cells without excess cholesterol is increased. These results suggest that the retroendocytosis pathway of ABCA1/apoA-I contributes to HDL formation when excess lipoprotein-derived cholesterol has accumulated in cells.
Related JoVE Video
v-Src-mediated transformation suppresses the expression of focal adhesion protein vinexin.
Cancer Lett.
PUBLISHED: 01-09-2009
Show Abstract
Hide Abstract
Expression of focal adhesion protein vinexin is reported to be altered in several cancer tissues; however, the mechanism of expressional change in vinexin is not known. Here we report the suppression of vinexin expression according to cellular transformation by v-Src. We found that vinexin expression was down-regulated both at the mRNA level and at the post-transcriptional level in v-Src-transformed cells. Both mTOR and MEK/ERK signals were involved in the suppression. Inhibition of these pathways by pharmacological treatment partially restored both vinexin protein and mRNA expression. Moreover, re-expression of vinexin in v-Src-transformed cells suppressed cell migration. Taken together, these observations suggest that cellular transformation by v-Src suppressed vinexin expression and that down-regulation of vinexin may be associated with oncogenic transformation.
Related JoVE Video
ATPase activity of human ABCG1 is stimulated by cholesterol and sphingomyelin.
J. Lipid Res.
Show Abstract
Hide Abstract
ATP-binding cassette protein G1 (ABCG1) is important for the formation of HDL. However, the biochemical properties of ABCG1 have not been reported, and the mechanism of how ABCG1 is involved in HDL formation remains unclear. We established a procedure to express and purify human ABCG1 using the suspension-adapted human cell FreeStyle293-F. ABCG1, fused at the C terminus with green fluorescent protein and Flag-peptide, was solubilized with n-dodecyl-?-D-maltoside and purified via a single round of Flag-M2 antibody affinity chromatography. The purified ABCG1 was reconstituted in liposome of various lipid compositions, and the ATPase activity was analyzed. ABCG1 reconstituted in egg lecithin showed ATPase activity (150 nmol/min/mg), which was inhibited by beryllium fluoride. The ATPase activity of ABCG1, reconstituted in phosphatidylserine liposome, was stimulated by cholesterol and choline phospholipids (especially sphingomyelin), and the affinity for cholesterol was increased by the addition of sphingomyelin. These results suggest that ABCG1 is an active lipid transporter and possesses different binding sites for cholesterol and sphingomyelin, which may be synergistically coupled.
Related JoVE Video
Glyceraldehyde-3-phosphate dehydrogenase regulates cyclooxygenase-2 expression by targeting mRNA stability.
Arch. Biochem. Biophys.
Show Abstract
Hide Abstract
Cyclooxygenase (COX)-2 is an inducible inflammatory protein whose expression is partially regulated at the post-transcriptional level. We investigated whether glyceraldehyde-3-phosphate dehydrogenase (GAPDH) binds to the AU-rich element (ARE) of COX-2 mRNA for its degradation. Knockdown of GAPDH in hepa1c1c7 cells significantly enhanced COX-2 expressions. Recombinant GAPDH bound to the COX-2 ARE within the first 60 nucleotides of the 3-UTR via the NAD(+) binding domain. Interestingly, a C151S GAPDH mutant retained binding activity. Confocal microscopy observation revealed that LPS exposure reduced the localization of GAPDH in nuclei. Our results indicate that GAPDH negatively regulates COX-2 by binding to its ARE.
Related JoVE Video
Role of Dlg5/lp-dlg, a membrane-associated guanylate kinase family protein, in epithelial-mesenchymal transition in LLc-PK1 renal epithelial cells.
PLoS ONE
Show Abstract
Hide Abstract
Discs large homolog 5 (Dlg5) is a member of the membrane-associated guanylate kinase adaptor family of proteins, some of which are involved in the regulation of epithelial-to-mesenchymal transition (EMT). Dlg5 has been described as a susceptibility gene for Crohns disease; however, the physiological function of Dlg5 is unknown. We show here that transforming growth factor-? (TGF-?)-induced EMT suppresses Dlg5 expression in LLc-PK1 cells. Depletion of Dlg5 expression by knockdown promoted the expression of the mesenchymal marker proteins, fibronectin and ?-smooth muscle actin, and suppressed the expression of E-cadherin. In addition, activation of JNK and p38, which are stimulated by TGF-?, was enhanced by Dlg5 depletion. Furthermore, inhibition of the TGF-? receptor suppressed the effects of Dlg5 depletion. These observations suggest that Dlg5 is involved in the regulation of TGF-?receptor-dependent signals and EMT.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.