JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Intracellular Trafficking of AIP56, an NF-?B-Cleaving Toxin from Photobacterium damselae subsp. piscicida.
Infect. Immun.
PUBLISHED: 10-06-2014
Show Abstract
Hide Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-?B. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-?B p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.
Related JoVE Video
Biomonitoring of heavy metals (Cd, Hg, and Pb) and metalloid (As) with the Portuguese common buzzard (Buteo buteo).
Environ Monit Assess
PUBLISHED: 06-30-2014
Show Abstract
Hide Abstract
The accumulation of heavy metals in the environment may have a wide range of health effects on animals and humans. Thus, in this study, the concentrations of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in the blood and tissues (liver and kidney) of Portuguese common buzzards (Buteo buteo) were determined by inductively coupled plasma-mass spectrometer (ICP-MS) in order to monitor environmental pollution to these elements. In general, Hg and As were the elements which appeared in the highest and lowest concentrations, respectively. A highest percentage of non-detected concentration was found for blood Cd (94.6 %) but, in turn, it was the only metal that was detected in all kidney samples. The kidney was the analyzed sample which showed the highest concentrations of each element evaluated. Statistically, significant differences among blood, liver, and kidney samples were observed for As and Cd (P?
Related JoVE Video
N-diethylnitrosamine mouse hepatotoxicity: Time-related effects on histology and oxidative stress.
Exp. Toxicol. Pathol.
PUBLISHED: 05-04-2014
Show Abstract
Hide Abstract
Animal models, namely mice, have been used to study chemically induced carcinogenesis due to their similarity to the histological and genetic features of human patients. Hepatocellular carcinoma (HCC) is a common malignancy with poor clinical outcome. The high incidence of HCC might be related to exposure to known risk factors, including carcinogenic compounds, such as N-nitrosamines, which cause DNA damage. N-nitrosamines affect cell mitochondrial metabolism, disturbing the balance between reactive oxygen species (ROS) and antioxidants, causing oxidative stress and DNA damage, potentially leading to carcinogenesis. This work addresses the progressive histological changes in the liver of N-diethylnitrosamine (DEN)-exposed mice and its correlation with oxidative stress. Male ICR mice were randomly divided into five DEN-exposed and five matched control groups. DEN was IP administered, once a week, for eight consecutive weeks. Samples were taken 18h after the last DEN injection (8 weeks post-exposure). The following sampling occurred at weeks 15th, 22nd, 29th and 36th after the first DEN injection. DEN resulted in early toxic lesions and, from week 29 onwards, in progressive proliferative lesions. Between 15 and 29 weeks, DEN-exposed animals showed significant changes in hepatic antioxidant (glutathione, glutathione reductase, and catalase) status (p<0.05) compared with controls. These results point to an association between increased DEN-induced oxidative stress and the early histopathological alterations, suggesting that DEN disrupted the antioxidant defense mechanism, thereby triggering liver carcinogenesis.
Related JoVE Video
Doppler spectroscopy as a path to the detection of Earth-like planets.
Nature
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Doppler spectroscopy was the first technique used to reveal the existence of extrasolar planetary systems hosted by solar-type stars. Radial-velocity surveys led to the detection of a rich population of super-Earths and Neptune-type planets. The numerous detected systems revealed a remarkable diversity. Combining Doppler measurements with photometric observations of planets transiting their host stars further provides access to the planet bulk density, a first step towards comparative exoplanetology. The development of new high-precision spectrographs and space-based facilities will ultimately lead us to characterize rocky planets in the habitable zone of our close stellar neighbours.
Related JoVE Video
Eliciting nicotine craving with virtual smoking cues.
Cyberpsychol Behav Soc Netw
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
Craving is a strong desire to consume that emerges in every case of substance addiction. Previous studies have shown that eliciting craving with an exposure cues protocol can be a useful option for the treatment of nicotine dependence. Thus, the main goal of this study was to develop a virtual platform in order to induce craving in smokers. Fifty-five undergraduate students were randomly assigned to two different virtual environments: high arousal contextual cues and low arousal contextual cues scenarios (17 smokers with low nicotine dependency were excluded). An eye-tracker system was used to evaluate attention toward these cues. Eye fixation on smoking-related cues differed between smokers and nonsmokers, indicating that smokers focused more often on smoking-related cues than nonsmokers. Self-reports of craving are in agreement with these results and suggest a significant increase in craving after exposure to smoking cues. In sum, these data support the use of virtual environments for eliciting craving.
Related JoVE Video
Cytokeratin 7/19 expression in N-diethylnitrosamine-induced mouse hepatocellular lesions: implications for histogenesis.
Int J Exp Pathol
PUBLISHED: 03-06-2014
Show Abstract
Hide Abstract
Hepatocellular carcinoma (HCC) is a common malignancy with poor clinical outcome, whose histogenesis is the subject of intense debate. Specifically, expression of cytokeratins (CKs) 7 and 19, associated with aggressive biological behaviour, is proposed to reflect a possible progenitor cell origin or tumour dedifferentiation towards a primitive phenotype. This work addresses that problem by studying CKs 7 and 19 expression in N-diethylnitrosamine (DEN)-induced mouse HCCs. ICR mice were divided into six DEN-exposed and six matched control groups. Samples were taken from each group at consecutive time points. Hyperplastic foci (13 lesions) occurred at 29-40 weeks (groups 8, 10 and 12) with diffuse dysplastic areas (19 lesions) and with one hepatocellular adenoma (HCA) (at 29 weeks). HCCs (4 lesions) were observed 40 weeks after the first DEN administration (group 12). CKs 7 and 19 showed identical expression patterns and located to large, mature hepatocytes, isolated or in small clusters. Hyperplastic foci and the single HCA were consistently negative for both markers, while dysplastic areas and HCCs were positive. These results support the hypothesis that CKs 7 and 19 expression in hepatocellular malignancies results from a dedifferentiation process rather than from a possible progenitor cell origin.
Related JoVE Video
Singlet oxygen effects on lipid membranes: implications for the mechanism of action of broad-spectrum viral fusion inhibitors.
Biochem. J.
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
It was reported recently that a new aryl methyldiene rhodanine derivative, LJ001, and oxazolidine-2,4-dithione, JL103, act on the viral membrane, inhibiting its fusion with a target cell membrane. The aim of the present study was to investigate the interactions of these two active compounds and an inactive analogue used as a negative control, LJ025, with biological membrane models, in order to clarify the mechanism of action at the molecular level of these new broad-spectrum enveloped virus entry inhibitors. Fluorescence spectroscopy was used to quantify the partition and determine the location of the molecules on membranes. The ability of the compounds to produce reactive oxygen molecules in the membrane was tested using 9,10-dimethylanthracene, which reacts selectively with singlet oxygen (1O2). Changes in the lipid packing and fluidity of membranes were assessed by fluorescence anisotropy and generalized polarization measurements. Finally, the ability to inhibit membrane fusion was evaluated using FRET. Our results indicate that 1O2 production by LJ001 and JL103 is able to induce several changes on membrane properties, specially related to a decrease in its fluidity, concomitant with an increase in the order of the polar headgroup region, resulting in an inhibition of the membrane fusion necessary for cell infection.
Related JoVE Video
Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure.
J. Antimicrob. Chemother.
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
The aim of the present work was to evaluate the interaction of two new HIV fusion inhibitors {HIVP3 [C34-polyethylene glycol (PEG)?-cholesterol] and HIVP4 [(C34-PEG?)?-cholesterol]} with membrane model systems and human blood cells in order to clarify where and how the fusion inhibitors locate, allowing us to understand their mechanism of action at the molecular level, and which strategies may be followed to increase efficacy.
Related JoVE Video
Defensins: antifungal lessons from eukaryotes.
Front Microbiol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Related JoVE Video
Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro District in the Southeast of Mozambique.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an infectious disease of cattle that also affects other domestic animals, free-ranging and farmed wildlife, and also humans. In Mozambique, scattered surveys have reported a wide variation of bTB prevalence rates in cattle from different regions. Due to direct economic repercussions on livestock and indirect consequences for human health and wildlife, knowing the prevalence rates of the disease is essential to define an effective control strategy.
Related JoVE Video
The Rigid Amphipathic Fusion Inhibitor dUY11 Acts Through Photosensitization of Viruses.
J. Virol.
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
Rigid Amphipathic Fusion Inhibitors (RAFIs) are lipophilic inverted cone-shaped molecules thought to antagonize the membrane curvature transitions that occur during virus-cell fusion, and are broad-spectrum anti-virals against enveloped viruses (Broad-SAVE). Here, we show that RAFIs act like membrane-binding photosensitizers: their antiviral effect is dependent on light and the generation of singlet oxygen ((1)O2), similar to the mechanistic paradigm established for LJ001, a chemically unrelated class of Broad-SAVE. Photosensitization of viral membranes is a common mechanism that underlies these Broad-SAVE.
Related JoVE Video
Biological activity of antibacterial peptides matches synergism between electrostatic and non electrostatic forces.
Colloids Surf B Biointerfaces
PUBLISHED: 08-14-2013
Show Abstract
Hide Abstract
Substitution of Ala 108 and Ala 111 in the 107-115 human lysozyme (hLz) fragment results in a 20-fold increased anti-staphylococcal activity while its hemolytic activity becomes significant (30%) at very high concentrations. This analog displays an additional positive charge near the N-terminus (108) and an extra Trp residue at the center of the molecule (111), indicating that this particular amino acid sequence improves its interaction with the bacterial plasma membrane. In order to understand the role of this arrangement in the membrane interaction, studies with model lipid membranes were carried out. The interactions of peptides, 107-115 hLz and the novel analog ([K(108)W(111)]107-115 hLz) with liposomes and lipid monolayers were evaluated by monitoring the changes in the fluorescence of the Trp residues and the variation of the monolayers surface pressure, respectively. Results obtained with both techniques revealed a significant affinity increase of [K(108)W(111)]107-115 hLz for lipids, especially when the membranes containing negatively charged lipids, such as phosphatidylglycerol. However, there is also a significant interaction with zwitterionic lipids, suggesting that other forces in addition to electrostatic interactions are involved in the binding. The analysis of adsorption isotherms and the insertion kinetics suggest that relaxation processes of the membrane structure are involved in the insertion process of novel peptide [K(108)W(111)]107-115 hLz but not in 107-115 hLz, probably by imposing a reorganization of water at the interphases. In this regard, the enhanced activity of peptide [K(108)W(111)]107-115 hLz may be explained by a synergistic effect between the increased electrostatic forces as well as the increased hydrophobic interactions.
Related JoVE Video
Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry.
J Mass Spectrom
PUBLISHED: 07-31-2013
Show Abstract
Hide Abstract
Photodynamic therapy combines visible light and a photosensitizer (PS) in the presence of molecular oxygen to generate reactive oxygen species able to modify biological structures such as phospholipids. Phosphatidylethanolamines (PEs), being major phospholipid constituents of mammalian cells and membranes of Gram-negative bacteria, are potential targets of photosensitization. In this work, the oxidative modifications induced by white light in combination with cationic porphyrins (Tri-Py(+) -Me-PF and Tetra-Py(+) -Me) were evaluated on PE standards. Electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) were used to identify and characterize the oxidative modifications induced in PEs (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4). Photo-oxidation products of POPE, PLPE and PAPE as hydroxy, hydroperoxy and keteno derivatives and products due to oxidation in ethanolamine polar head were identified. Hydroperoxy-PEs were found to be the major photo-oxidation products. Quantification of hydroperoxides (PE-OOH) allowed differentiating the potential effect in photodamage of the two porphyrins. The highest amounts of PE-OOH were notorious in the presence of Tri-Py(+) -Me-PF, a highly efficient PS against bacteria. The identification of these modifications in PEs is an important key point in the understanding cell damage processes underlying photodynamic therapy approaches. Copyright © 2013 John Wiley & Sons, Ltd.
Related JoVE Video
Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action.
FEBS J.
PUBLISHED: 07-04-2013
Show Abstract
Hide Abstract
Cell penetrating peptides (CPPs) can be used as drug delivery systems for different therapeutic molecules. In this work two novel CPPs, pepR and pepM, designed from two domains of the dengue virus (DENV) capsid protein, were studied for their ability to deliver nucleic acids into cells as non-covalently bound cargo. Translocation studies were performed by confocal microscopy in HepG2, BHK and HEK cell lineages, astrocytes and peripheral blood mononuclear cells. Combined studies in HepG2 cells, astrocytes and BHK cells, at 4 and 37 °C or using specific endocytosis inhibitors, revealed that pepR and pepM use distinct internalization routes: pepM translocates lipid membranes directly, while pepR uses an endocytic pathway. To confirm these results, a methodology was developed to monitor the translocation kinetics of both peptides by real-time flow cytometry. Kinetic constants were determined, and the amount of nucleic acids delivered was estimated. Additional studies were performed in order to understand the molecular bases of the peptide-mediated translocation. Peptide-nucleic acid and peptide-lipid membrane interactions were studied quantitatively based on the intrinsic fluorescence of the peptides. pepR and pepM bound ssDNA to the same extent. Partition studies revealed that both peptides bind preferentially to anionic lipid membranes, adopting an ?-helical conformation. However, fluorescence quenching studies suggest that pepM is deeply inserted into the lipid bilayer, in contrast with pepR. Moreover, only pepM is able to promote the fusion and aggregation of vesicles composed of zwitterionic lipids. Altogether, the results show that DENV capsid protein derived peptides serve as good templates for novel CPP-based nucleic acid delivery strategies, defining different routes for cell entry.
Related JoVE Video
rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures.
Biochim. Biophys. Acta
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
rBPI21 belongs to the antimicrobial peptide and protein (AMP) family. It has high affinity for lipopolysaccharide (LPS), acting mainly against Gram-negative bacteria. This work intends to elucidate the mechanism of action of rBPI21 at the membrane level. Using isothermal titration calorimetry, we observed that rBPI21 interaction occurs only with negatively charged membranes (mimicking bacterial membranes) and is entropically driven. Differential scanning calorimetry shows that membrane interaction with rBPI21 is followed by an increase of rigidity on negatively charged membrane, which is corroborated by small angle X-ray scattering (SAXS). Additionally, SAXS data reveal that rBPI21 promotes the multilamellarization of negatively charged membranes. The results support the proposed model for rBPI21 action: first it may interact with LPS at the bacterial surface. This entropic interaction could cause the release of ions that maintain the packed structure of LPS, ensuring peptide penetration. Then, rBPI21 may interact with the negatively charged leaflets of the outer and inner membranes, promoting the interaction between the two bacterial membranes, ultimately leading to cell death.
Related JoVE Video
Structural requirements of glycosaminoglycans for their interaction with HIV-1 envelope glycoprotein gp120.
Arch. Virol.
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
Heparan sulfate proteoglycans are known to assist HIV-1 entry into host cells, mediated by the viral envelope glycoprotein gp120. We aimed to determine the general structural features of glycosaminoglycans that enable their binding to gp120, by surface plasmon resonance. Binding was found to be dependent on sequence type, size and sulfation patterns. HIV-1 gp120 prefers heparin and heparan sulfate (with at least 16 monomers in length) over chondroitin and dermatan. Sulfate groups were essential to promote this interaction. These results advance the understanding of the molecular-level requirements for virus attachment and cell entry.
Related JoVE Video
Novel tretinoin formulations: a drug-in-cyclodextrin-in-liposome approach.
J Liposome Res
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
The aims of this experimental work were the incorporation and full characterization of the system Tretinoin-in-dimethyl-beta-cyclodextrin-in-ultradeformable vesicles (Tretinoin-CyD-UDV) and Tretinoin-in-ultradeformable vesicles (Tretinoin-UDV).
Related JoVE Video
Highly efficient singlet-singlet energy transfer in light-harvesting [60,70]fullerene-4-amino-1,8-naphthalimide dyads.
Chemphyschem
PUBLISHED: 04-28-2013
Show Abstract
Hide Abstract
New C60 and C70 fullerene dyads formed with 4-amino-1,8-naphthalimide chromophores have been prepared by the Bingel cyclopropanation reaction. The resulting monoadducts were investigated with respect to their fluorescence properties (quantum yields and lifetimes) to unravel the role of the charge-transfer naphthalimide chromophore as a light-absorbing antenna and excited-singlet-state sensitizer of fullerenes. The underlying intramolecular singlet-singlet energy transfer (EnT) process was fully characterized and found to proceed quantitatively (?(EnT)?1) for all dyads. Thus, these conjugates are of considerable interest for applications in which fullerene excited states have to be created and photonic energy loss should be minimized. In polar solvents (tetrahydrofuran and benzonitrile), fluorescence quenching of the fullerene by electron transfer from the ground-state aminonaphthalimide was postulated as an additional path.
Related JoVE Video
Dengue virus capsid protein interacts specifically with very low-density lipoproteins.
Nanomedicine
PUBLISHED: 04-15-2013
Show Abstract
Hide Abstract
Dengue affects millions of people worldwide. No specific treatment is currently available, in part due to an incomplete understanding of the viral components interactions with host cellular structures. We tested dengue virus (DENV) capsid protein (C) interaction with low- and very low-density lipoproteins (LDL and VLDL, respectively) using atomic force microscopy-based force spectroscopy, dynamic light scattering, NMR and computational analysis. Data reveal a specific DENV C interaction with VLDL, but not LDL. This binding is potassium-dependent and involves the DENV C N-terminal region, as previously observed for the DENV C-lipid droplets (LDs) interaction. A successful inhibition of DENV C-VLDL binding was achieved with a peptide drug lead. The similarities between LDs and VLDL, and between perilipin 3 (DENV C target on LDs) and ApoE, indicate ApoE as the molecular target on VLDL. We hypothesize that DENV may form lipoviroparticles, which would constitute a novel step on DENV life cycle.
Related JoVE Video
A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion.
PLoS Pathog.
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
LJ001 is a lipophilic thiazolidine derivative that inhibits the entry of numerous enveloped viruses at non-cytotoxic concentrations (IC50 ? 0.5 µM), and was posited to exploit the physiological difference between static viral membranes and biogenic cellular membranes. We now report on the molecular mechanism that results in LJ001s specific inhibition of virus-cell fusion. The antiviral activity of LJ001 was light-dependent, required the presence of molecular oxygen, and was reversed by singlet oxygen ((1)O2) quenchers, qualifying LJ001 as a type II photosensitizer. Unsaturated phospholipids were the main target modified by LJ001-generated (1)O2. Hydroxylated fatty acid species were detected in model and viral membranes treated with LJ001, but not its inactive molecular analog, LJ025. (1)O2-mediated allylic hydroxylation of unsaturated phospholipids leads to a trans-isomerization of the double bond and concurrent formation of a hydroxyl group in the middle of the hydrophobic lipid bilayer. LJ001-induced (1)O2-mediated lipid oxidation negatively impacts on the biophysical properties of viral membranes (membrane curvature and fluidity) critical for productive virus-cell membrane fusion. LJ001 did not mediate any apparent damage on biogenic cellular membranes, likely due to multiple endogenous cytoprotection mechanisms against phospholipid hydroperoxides. Based on our understanding of LJ001s mechanism of action, we designed a new class of membrane-intercalating photosensitizers to overcome LJ001s limitations for use as an in vivo antiviral agent. Structure activity relationship (SAR) studies led to a novel class of compounds (oxazolidine-2,4-dithiones) with (1) 100-fold improved in vitro potency (IC50<10 nM), (2) red-shifted absorption spectra (for better tissue penetration), (3) increased quantum yield (efficiency of (1)O2 generation), and (4) 10-100-fold improved bioavailability. Candidate compounds in our new series moderately but significantly (p?0.01) delayed the time to death in a murine lethal challenge model of Rift Valley Fever Virus (RVFV). The viral membrane may be a viable target for broad-spectrum antivirals that target virus-cell fusion.
Related JoVE Video
Craniofacial skeletal architecture and obstructive sleep apnoea syndrome severity.
J Craniomaxillofac Surg
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
Obstructive sleep apnoea syndrome (OSAS) is a sleep related breathing disorder caused by pharynx obstruction that often terminates in abrupt arousals and is capable of disrupting physiological sleep profile. Its severity has been associated, among others, with craniofacial skeletal morphology. To investigate this relationship and elucidate craniofacial skeleton patterns in individuals without obvious maxillofacial abnormalities, 171 OSAS patients were studied with nocturnal polysomnographic record and chephalometric X-ray (24 variables). Chephalometric variables were compared between three apnoea/hypopnoea index (AHI) groups (AHI ? 15; 15 < AHI < 30; AHI ? 30) and uni/multivariate analysis between chephalometric variables and AHI were performed. The patients were predominantly men (83%), with a mean age of 48.1 years. Mean BMI and AHI were 28.4 kg/m(2) and 26.2, respectively. Most chephalometric variables differed among the three AHI groups. Fifteen chephalometric variables showed a correlation with AHI. Five chephalometric variables and BMI were independent AHI predictors. Chephalometric variables were better AHI predictors in normal weight patients. Significant evidence of craniofacial skeleton influence was found on OSAS severity, caudalization of the hyoid and lower sagittal facial projection being the most important patterns. From the chephalometric variables analysed, the hypopharynx calibre demonstrated a higher predictive value for AHI, independently of BMI.
Related JoVE Video
Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid.
Biopolymers
PUBLISHED: 03-16-2013
Show Abstract
Hide Abstract
The structural organization of viral particles is among the most astonishing examples of molecular self-assembly in nature, involving proteins, nucleic acids, and, sometimes, lipids. Proper assembly is essential to produce well structured infectious virions. A great variety of structural arrangements can be found in viral particles. Nucleocapsids, for instance, may display highly ordered geometric shapes or consist in macroscopically amorphous packs of the viral genome. Alphavirus and flavivirus are viral genera that exemplify these extreme cases, the former comprising viral particles structured with a T?=?4 icosahedral symmetry, whereas flavivirus capsids have no regular geometry. Dengue virus is a member of flavivirus genus and is used in this article to illustrate how viral protein-derived peptides can be used advantageously over full-length proteins to unravel the foundations of viral supramolecular assemblies. Membrane- and viral RNA-binding data of capsid protein-derived dengue virus peptides are used to explain the amorphous organization of the viral capsid. Our results combine bioinformatic and spectroscopic approaches using two- or three-component peptide and/or nucleic acid and/or lipid systems. © 2013 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 100: 325-336, 2013.
Related JoVE Video
Anionic lipids are required for vesicular stomatitis virus G protein-mediated single particle fusion with supported lipid bilayers.
J. Biol. Chem.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Viral glycoproteins mediate fusion between viral and cellular membranes upon binding to cognate receptors and/or experiencing low pH. Although activation of viral glycoproteins is thought to be necessary and sufficient for fusion, accumulating evidence suggests that additional cellular factors, including lipids, can modulate the fusion process. Understanding the role of lipids in virus entry via endocytosis is impeded by poor accessibility and the highly diverse nature of endosomes. Here we imaged fusion of single retroviral particles pseudotyped with the vesicular stomatitis virus (VSV) G protein with dextran-supported lipid bilayers. Incorporation of diffusible fluorescent labels into the viral membrane and the viral interior enabled detection of the lipid mixing (hemifusion) and content transfer (full fusion) steps of VSV G-mediated fusion at low pH. Although single virus fusion with supported bilayers made of zwitterionic lipids could not be detected, inclusion of anionic lipids, phosphatidylserine, and bis(monoacylglycero)phosphate (BMP), greatly enhanced the efficiency of hemifusion and permitted full fusion. Importantly, lipid mixing always preceded the opening of a fusion pore, demonstrating that VSV G-mediated fusion proceeds through a long-lived hemifusion intermediate. Kinetic analysis of lipid and content transfer showed that the lags between lipid and content mixing defining the lifetime of a hemifusion intermediate were significantly shorter for BMP-containing compared with PS-containing bilayers. The strong fusion-enhancing effect of BMP, a late endosome-resident lipid, is consistent with the model that VSV initiates fusion in early endosomes but releases its core into the cytosol after reaching late endosomal compartments.
Related JoVE Video
The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-?b P65.
PLoS Pathog.
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-?B p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-?B are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-?B at the Cys(39)-Glu(40) peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol.
Related JoVE Video
Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action.
PLoS ONE
PUBLISHED: 02-25-2013
Show Abstract
Hide Abstract
Recently, the covalent binding of a cholesterol moiety to a classical HIV-1 fusion inhibitor peptide, C34, was shown to potentiate its antiviral activity. Our purpose was to evaluate the interaction of cholesterol-conjugated and native C34 with membrane model systems and human blood cells to understand the effects of this derivatization. Lipid vesicles and monolayers with defined compositions were used as model membranes. C34-cholesterol partitions more to fluid phase membranes that mimic biological membranes. Importantly, there is a preference of the conjugate for liquid ordered membranes, rich in cholesterol and/or sphingomyelin, as observed both from partition and surface pressure studies. In human erythrocytes and peripheral blood mononuclear cells (PBMC), C34-cholesterol significantly decreases the membrane dipole potential. In PBMC, the conjugate was 14- and 115-fold more membranotropic than T-1249 and enfuvirtide, respectively. C34 or cholesterol alone did not show significant membrane activity. The enhanced interaction of C34-cholesterol with biological membranes correlates with its higher antiviral potency. Higher partitions for lipid-raft like compositions direct the drug to the receptor-rich domains where membrane fusion is likely to occur. This intermediary membrane binding step may facilitate the drug delivery to gp41 in its pre-fusion state.
Related JoVE Video
Two thioredoxin-superfamily members from sea bass (Dicentrarchus labrax, L.): characterization of PDI (PDIA1) and ERp57 (PDIA3).
Fish Shellfish Immunol.
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
PDI (PDIA1) and ERp57 (PDIA3), members of the PDI family and of the thioredoxin (Trx) superfamily, are multifunctional proteins with wide physiological roles and have been implicated in several pathologies. Importantly, they are both involved in the MHC class I antigen presentation pathway. This paper reports the isolation and characterization of full cDNA and genomic clones from sea bass (Dicentrarchus labrax, L.) PDI (Dila-PDI) and ERp57 (Dila-ERp57). The genes are ~12.4 and ~7.1 kb long, originating 2155 and 2173 bp transcripts and encoding 497 and 484 amino acids mature proteins, for Dila-PDI and -ERp57, respectively. The PDI gene consists of eleven exons and ERp57 of thirteen. As described in other species, both molecules are composed of four Trx-like domains (abba) followed by a C-terminal tail, retaining two CGHC active sites and an ER-signalling sequence, suggestive of a conserved function. Additionally, three-dimensional homology models further support Dila-PDI and Dila-ERp57 as orthologs of mammalian PDI and ERp57, respectively. Finally, high similarity is observed to their vertebrate counterparts (>69% identity), especially among the few ones from closely related teleosts (>79% identity). Hence, these results provide relevant primary data and will enable further studies to clarify the roles of PDI and ERp57 in European sea bass immunity.
Related JoVE Video
Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) calreticulin.
Fish Shellfish Immunol.
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation.
Related JoVE Video
Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria.
Nanomedicine
PUBLISHED: 01-29-2013
Show Abstract
Hide Abstract
New classes of antibiotics, such as antimicrobial peptides or proteins (AMPs), are crucial to deal with threatening bacterial diseases. rBPI21 is an AMP based on the human neutrophil BPI protein, with potential clinical use against meningitis. We studied the membrane perturbations promoted by rBPI21 on Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Its interaction with bacteria was also studied in the presence of lipopolysaccharide (LPS), rBPI21 major ligand. Flow cytometry analysis of both bacteria shows that rBPI21 induces membrane depolarization. rBPI21 increases the negative surface charge of both bacteria toward positive values, as shown by zeta-potential measurements. This is followed by surface perturbations, culminating in cell lysis, as visualized by atomic force microscopy (AFM). Force spectroscopy measurements show that soluble LPS decreases the interaction of rBPI21 with bacteria, especially with S. aureus. This suggests that the rBPI21 LPS-binding pocket may also participate on the binding to Gram-positive bacteria.
Related JoVE Video
High-resolution melting analysis for bird sexing: a successful approach to molecular sex identification using different biological samples.
Mol Ecol Resour
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
High-resolution melting (HRM) analysis is a very attractive and flexible advanced post-PCR method with high sensitivity/specificity for simple, fast and cost-effective genotyping based on the detection of specific melting profiles of PCR products. Next generation real-time PCR systems, along with improved saturating DNA-binding dyes, enable the direct acquisition of HRM data after quantitative PCR. Melting behaviour is particularly influenced by the length, nucleotide sequence and GC content of the amplicons. This method is expanding rapidly in several research areas such as human genetics, reproductive biology, microbiology and ecology/conservation of wild populations. Here we have developed a successful HRM protocol for avian sex identification based on the amplification of sex-specific CHD1 fragments. The melting curve patterns allowed efficient sexual differentiation of 111 samples analysed (plucked feathers, muscle tissues, blood and oral cavity epithelial cells) of 14 bird species. In addition, we sequenced the amplified regions of the CHD1 gene and demonstrated the usefulness of this strategy for the genotype discrimination of various amplicons (CHD1Z and CHD1W), which have small size differences, ranging from 2 bp to 44 bp. The established methodology clearly revealed the advantages (e.g. closed-tube system, high sensitivity and rapidity) of a simple HRM assay for accurate sex differentiation of the species under study. The requirements, strengths and limitations of the method are addressed to provide a simple guide for its application in the field of molecular sexing of birds. The high sensitivity and resolution relative to previous real-time PCR methods makes HRM analysis an excellent approach for improving advanced molecular methods for bird sexing.
Related JoVE Video
Kinetic uptake profiles of cell penetrating peptides in lymphocytes and monocytes.
Biochim. Biophys. Acta
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
Nucleolar targeting peptides (NrTPs), resulting from structural minimization of the rattlesnake toxin crotamine, are a novel family of cell-penetrating peptides (CPPs) shown to internalize and deliver cargos into different cell types.
Related JoVE Video
Characteristics of frequent users of an acute psychiatric inpatient unit: a five-year study in Portugal.
Psychiatr Serv
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
This study examined demographic and clinical characteristics of frequent users of a psychiatric inpatient unit in Portugal.
Related JoVE Video
Moving to the core: spatiotemporal analysis of Forkhead box O (FOXO) and nuclear factor-?B (NF-?B) nuclear translocation.
Traffic
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
Nuclear translocation of proteins is an essential aspect of normal cell function, and defects in this process have been detected in many disease-associated conditions. The detection and quantification of nuclear translocation was significantly boosted by the association of robotized microscopy with automated image analysis, a technology designated as high-content screening. Image-based high-content screening and analysis provides the means to systematically observe cellular translocation events in time and space in response to chemical or genetic perturbation at large scale. This approach yields powerful insights into the regulation of complex signaling networks independently of preconceived notions of mechanistic relationships. In this review, we briefly overview the different mechanisms involved in nucleocytoplasmic protein trafficking. In addition, we discuss high-content approaches used to interrogate the mechanistic and spatiotemporal dynamics of cellular signaling events using Forkhead box O (FOXO) proteins and the nuclear factor-?B (NF-?B) as important and clinically relevant examples.
Related JoVE Video
Intracellular nucleic Acid delivery by the supercharged dengue virus capsid protein.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins.
Related JoVE Video
Decoding distinct membrane interactions of HIV-1 fusion inhibitors using a combined atomic force and fluorescence microscopy approach.
Biochim. Biophys. Acta
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Enfuvirtide and T-1249 are two potent HIV-1 fusion inhibitor peptides. Recent studies indicate that lipids play an important role in the mode of action of those bioactive molecules. Using a combined tandem atomic force microscopy (AFM)-epifluorescence microscopy approach, we studied the interaction of both enfuvirtide and T-1249 with supported lipid bilayers. Fluid (ld)-gel (so) and ld-liquid ordered (lo) phase-separated membrane systems were tested. Results, especially for T-1249, show significant lipid membrane activity at a 15?M peptide concentration. T-1249, in opposition to enfuvirtide, induces an increase in membrane surface roughness, decrease in membrane fluidity, bilayer thinning at ld domains and disruption of the so domain borders. In terms of structural properties, both enfuvirtide and T-1249 possess distinct functional hydrophobic and amphipathic domains of HIV gp41. While enfuvirtide only yields the tryptophan-rich domain (TRD), T-1249 possesses both TRD and pocket-binding domain (PBD). TRD increases the hydrophobicity of the peptide while PBD enhances the amphipathic characteristics. As such, the enhanced membrane activity of T-1249 may be explained by a synergism between its amphipathic N-terminal segment and its hydrophophic C-terminal. Our findings provide valuable insights on the molecular-level mode of action of HIV-1 fusion inhibitors, unraveling the correlation between their structural properties and membrane interactions as a factor influencing their antiviral activity. Ultimately, this work validates the applicability of a combined AFM and fluorescence approach to evaluate the mechanic and structural properties of supported lipid bilayers upon interaction with membrane-active peptides.
Related JoVE Video
Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins.
J. Virol.
PUBLISHED: 11-30-2011
Show Abstract
Hide Abstract
Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of -19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na(+)/K(+)-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.
Related JoVE Video
Efficient cellular delivery of ?-galactosidase mediated by NrTPs, a new family of cell-penetrating peptides.
Bioconjug. Chem.
PUBLISHED: 10-13-2011
Show Abstract
Hide Abstract
Nucleolar targeting peptides (NrTPs), a recently developed family of cell-penetrating peptides, have been shown to be very efficient in entering cells and accumulating in their nucleoli. In this work, we have used conjugates of NrTP6 (YKQSHKKGGKKGSG) covalently linked to ?-galactosidase in order to demonstrate the capacity of NrTP for intracellular delivery of large molecules. NrTP6/?-galactosidase conjugates, prepared by maleimide-based chemistry, were stable and enzymatically active on the standard 4-methylumbelliferyl ?-d-galactopyranoside substrate. Their translocation into HeLa cells, monitored by ?-galactosidase activity as a readout of the uptake, showed efficient cellular entry and thus demonstrated the potential of NrTPs for intracellular delivery of large-size cargos with preservation of biological activity.
Related JoVE Video
Optimal sampling and estimation in PASL perfusion imaging.
IEEE Trans Biomed Eng
PUBLISHED: 08-15-2011
Show Abstract
Hide Abstract
Pulsed arterial spin labeling (PASL) techniques potentially allow the absolute, noninvasive quantification of brain perfusion using MRI. This can be achieved by fitting a kinetic model to the data acquired at a number of sampling times. However, the intrinsically low signal-to-noise ratio of PASL measurements usually requires substantial signal averaging, which may result in undesirably long scanning times. A judicious choice of the sampling points is, therefore, crucial in order to minimize scanning time, while optimizing estimation accuracy. On the other hand, a priori information regarding the model parameters may improve estimation performance. Here, we propose a Bayesian framework to determine an optimal sampling strategy and estimation method for the measurement of brain perfusion and arterial transit time (ATT). A Bayesian Fisher information criterion is used to determine the optimal sampling points and a MAP criterion is employed for the estimation of the model parameters, both taking into account the uncertainty in the model parameters as well as the amount of noise in the data. By Monte Carlo simulations, we show that using optimal compared to uniform sampling strategies, as well as the Bayesian estimator relative to a standard least squares approach, improves the accuracy of perfusion and ATT measurements. Moreover, we also demonstrate the applicability of the proposed approach to real data, with the advantage of reduced intersubject variability relative to conventional sampling and estimation approaches.
Related JoVE Video
Domestic dog origin of canine distemper virus in free-ranging wolves in Portugal as revealed by hemagglutinin gene characterization.
J. Wildl. Dis.
PUBLISHED: 07-02-2011
Show Abstract
Hide Abstract
Serologic evidence for canine distemper virus (CDV) has been described in grey wolves but, to our knowledge, virus strains circulating in wolves have not been characterized genetically. The emergence of CDV in several non-dog hosts has been associated with amino acid substitutions at sites 530 and 549 of the hemagglutinin (H) protein. We sequenced the H gene of wild-type canine distemper virus obtained from two free-ranging Iberian wolves (Canis lupus signatus) and from one domestic dog (Canis familiaris). More differences were found between the two wolf sequences than between one of the wolves (wolf 75) and the dog. The latter two had a very high nucleotide similarity resulting in identical H gene amino acid sequences. Possible explanations include geographic and especially temporal proximity of the CDV obtained from wolf 75 and the domestic dog, taken in 2007-2008, as opposed to that from wolf 3 taken more distantly in 1998. Analysis of the deduced amino acids of the viral hemagglutinin revealed a glycine (G) and a tyrosine (Y) at amino acid positions 530 and 549, respectively, of the partial signaling lymphocytic activation molecule (SLAM)-receptor binding region which is typically found in viral strains obtained from domestic dogs. This suggests that the CDV found in these wolves resulted from transmission events from local domestic dogs rather than from wildlife species.
Related JoVE Video
Infection by Plasmodium changes shape and stiffness of hepatic cells.
Nanomedicine
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
Infection of liver cells by Plasmodium, the malaria parasite, is a clinically silent, obligatory step of the parasites life cycle. The authors studied the progression of Plasmodium infection in hepatic cells by atomic force microscopy, measuring both topographical and nanomechanical changes upon infection. In recent years, several studies have suggested that cellular nanomechanical properties can be correlated with disease progression. The authors results show that infected cells exhibit considerable topographical changes, which can be correlated with the presence of the parasite, leading to a significant roughening of the cell membrane. The nanomechanical measurements showed that infected cells were significantly stiffer than noninfected cells. Furthermore, the stiffening of the cells appeared to be a cellular reaction to the Plasmodium infection, rather than a result of the stiffness of the invading parasites themselves. This article provides the first evidence of mechanical changes occurring in hepatic cells in response to Plasmodium infection.
Related JoVE Video
Virtual reality exposure on nicotine craving.
Stud Health Technol Inform
PUBLISHED: 06-21-2011
Show Abstract
Hide Abstract
Several forms of treatment for nicotine dependence that combine the classical smoking cessation strategies with new Virtual Reality (VR) exposure techniques to smoking-related cues are in development. In this line, the main goal of our study was to develop a virtual platform in order to induce cravings in smokers. Sixty undergraduate students were randomly assigned to two different virtual environments (high-arousal cues and low-arousal cues). Both environments were based on a three-room apartment with commercial music playing and virtual characters interacting in a social event. The assessment was carried out before and after exposure through psychophysiological activation and self-report data for craving and nicotine dependence levels. No statistical differences were observed between smokers and non-smokers in psychophysiological activation. As far as self-report data is concerned, smokers revealed a significant increase in craving after the VR exposure to high arousal environments. Overall results were in line with previous studies suggesting the use of virtual environments as a tool for the existing smoking cessation programs.
Related JoVE Video
Complexation and full characterization of the tretinoin and dimethyl-?-cyclodextrin complex.
AAPS PharmSciTech
PUBLISHED: 03-12-2011
Show Abstract
Hide Abstract
The aim of this work is to prepare tretinoin/dimethyl-beta-cyclodextrin complexes and fully characterize them through various analytical techniques. According to the phase solubility studies performed, the equilibrium for maximum complexation is reached in about 8 days presenting an A(L)-type diagram (soluble complexes) corresponding mainly to 1:1 stoichiometry (K(s) = 13,600 M(-1)), although the possibility of the presence of 1:2 complexes was mathematically proven. Differential scanning calorimetry, X-ray diffraction and all the other analytical techniques have proven the presence of true complex formation in all the preparation methods tested. H-NMR and FTIR spectra allowed the selection of the best complexation method. The comparison between Raman spectra revealed that the more relevant feature is the band at 1,573 cm(-1), which corresponds to the entire delocalization of the superconjugated system, and after inclusion is observed as a positive frequency shift. Based on these results and the data obtained by molecular modelling calculations, it is proposed that the structure of the drug included into the cyclodextrin corresponds to the side chain including the functional group COOH. The complex was also analysed by atomic force microscopy to determine its size distribution which was heterogeneous and polymodal. However, it could be observed that they all have the same phase constitution.
Related JoVE Video
Variations on fibrinogen-erythrocyte interactions during cell aging.
PLoS ONE
PUBLISHED: 02-27-2011
Show Abstract
Hide Abstract
Erythrocyte hyperaggregation, a cardiovascular risk factor, is considered to be caused by an increase in plasma adhesion proteins, particularly fibrinogen. We have recently reported a specific binding between fibrinogen and an erythrocyte integrin receptor with a ?(3) or ?(3)-like subunit. In this study we evaluate the influence of erythrocyte aging on the fibrinogen binding. By atomic force microscopy-based force spectroscopy measurements we found that increasing erythrocyte age, there is a decrease of the binding to fibrinogen by decreasing the frequency of its occurrence but not its force. This observation is reinforced by zeta-potential and fluorescence spectroscopy measurements. We conclude that upon erythrocyte aging the number of fibrinogen molecules bound to each cell decreases significantly, due to the progressive impairment of the specific fibrinogen-erythrocyte receptor interaction. Knowing that younger erythrocytes bind more to fibrinogen, we could presume that this population is the main contributor to the cardiovascular diseases associated with increased fibrinogen content in blood, which could disturb the blood flow. Our data also show that the sialic acids exposed on the erythrocyte membrane contribute for the interaction with fibrinogen, possibly by facilitating its binding to the erythrocyte membrane receptor.
Related JoVE Video
Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) Tapasin.
Fish Shellfish Immunol.
PUBLISHED: 02-10-2011
Show Abstract
Hide Abstract
Mammalian tapasin (TPN) is a key member of the major histocompatibility complex (MHC) class I antigen presentation pathway, being part of the multi-protein complex called the peptide loading complex (PLC). Several studies describe its important roles in stabilizing empty MHC class I complexes, facilitating peptide loading and editing the repertoire of bound peptides, with impact on CD8(+) T cell immune responses. In this work, the gene and cDNA of the sea bass (Dicentrarchus labrax) glycoprotein TPN have been isolated and characterized. The coding sequence has a 1329 bp ORF encoding a 442-residue precursor protein with a predicted 24-amino acid leader peptide, generating a 418-amino acid mature form that retains a conserved N-glycosylation site, three conserved mammalian tapasin motifs, two Ig superfamily domains, a transmembrane domain and an ER-retention di-lysine motif at the C-terminus, suggestive of a function similar to mammalian tapasins. Similar to the human counterpart, the sea bass TPN gene comprises 8 exons, some of which correspond to separate functional domains of the protein. A three-dimensional homology model of sea bass tapasin was calculated and is consistent with the structural features described for the human molecule. Together, these results support the concept that the basic structure of TPN has been maintained through evolution. Moreover, the present data provides information that will allow further studies on cell-mediated immunity and class I antigen presentation pathway in particular, in this important fish species.
Related JoVE Video
Transporters associated with antigen processing (TAP) in sea bass (Dicentrarchus labrax, L.): molecular cloning and characterization of TAP1 and TAP2.
Dev. Comp. Immunol.
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
The transporters associated with antigen processing (TAP), play an important role in the MHC class I antigen presentation pathway. In this work, sea bass (Dicentrarchus labrax) TAP1 and TAP2 genes and transcripts were isolated and characterized. Only the TAP2 gene is structurally similar to its human orthologue. As other TAP molecules, sea bass TAP1 and TAP2 are formed by one N-terminal accessory domain, one core membrane-spanning domain and one canonical C-terminal nucleotide-binding domain. Homology modelling of the sea bass TAP dimer predicts that its quaternary structure is in accordance with that of other ABC transporters. Phylogenetic analysis segregates sea bass TAP1 and TAP2 into each subfamily cluster of transporters, placing them in the fish class and suggesting that the basic structure of these transport-associated proteins is evolutionarily conserved. Furthermore, the present data provides information that will enable more studies on the class I antigen presentation pathway in this important fish species.
Related JoVE Video
Anti-HIV-1 antibodies 2F5 and 4E10 interact differently with lipids to bind their epitopes.
AIDS
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
2F5 and 4E10 are two broadly neutralizing monoclonal antibodies (mAbs) targeting the membrane proximal external region (MPER) of HIV-1 gp41 envelope protein. This region, which contacts the viral membrane, is highly conserved and has been regarded as a promising target for vaccine development. We aimed to clarify the basis of 2F5 and 4E10 molecular interactions with epitope cores in MPER and lipid bilayers.
Related JoVE Video
Using zeta-potential measurements to quantify peptide partition to lipid membranes.
Eur. Biophys. J.
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
Many cellular phenomena occur on the biomembranes. There are plenty of molecules (natural or xenobiotics) that interact directly or partially with the cell membrane. Biomolecules, such as several peptides (e.g., antimicrobial peptides) and proteins, exert their effects at the cell membrane level. This feature makes necessary investigating their interactions with lipids to clarify their mechanisms of action and side effects necessary. The determination of molecular lipid/water partition constants (K ( p )) is frequently used to quantify the extension of the interaction. The determination of this parameter has been achieved by using different methodologies, such as UV-Vis absorption spectrophotometry, fluorescence spectroscopy and ?-potential measurements. In this work, we derived and tested a mathematical model to determine the K ( p ) from ?-potential data. The values obtained with this method were compared with those obtained by fluorescence spectroscopy, which is a regular technique used to quantify the interaction of intrinsically fluorescent peptides with selected biomembrane model systems. Two antimicrobial peptides (BP100 and pepR) were evaluated by this new method. The results obtained by this new methodology show that ?-potential is a powerful technique to quantify peptide/lipid interactions of a wide variety of charged molecules, overcoming some of the limitations inherent to other techniques, such as the need for fluorescent labeling.
Related JoVE Video
Bayesian optimization of perfusion and transit time estimation in PASL-MRI.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 11-25-2010
Show Abstract
Hide Abstract
Pulsed Arterial Spin Labeling (PASL) techniques potentially allow the absolute, non-invasive quantification of brain perfusion and arterial transit time. This can be achieved by fitting a kinetic model to the data acquired at a number of inversion time points (TI). The intrinsically low SNR of PASL data, together with the uncertainty in the model parameters, can hinder the estimation of the parameters of interest. Here, a two-compartment kinetic model is used to estimate perfusion and transit time, based on a Maximum a Posteriori (MAP) criterion. A priori information concerning the physiological variation of the multiple model parameters is used to guide the solution. Monte Carlo simulations are performed to compare the accuracy of our proposed Bayesian estimation method with a conventional Least Squares (LS) approach, using four different sets of TI points. Each set is obtained either with a uniform distribution or an optimal sampling strategy designed based on the same MAP criterion. We show that the estimation errors are minimized when our proposed Bayesian estimation method is employed in combination with an optimal set of sampling points. In conclusion, our results indicate that PASL perfusion and transit time measurements would benefit from a Bayesian approach for the optimization of both the sampling strategy and the estimation algorithm, whereby prior information on the parameters is used.
Related JoVE Video
Diagnosis of myocardial infarction using the new universal definition: is it enough for risk stratification and guiding decision for revascularization?
Acute Card Care
PUBLISHED: 10-18-2010
Show Abstract
Hide Abstract
Abstract Objectives: Evaluate the new ESC/ACCF/AHA/WHF universal definition of myocardial infarction (MI) in relation to its prognostic implications and the role for guiding decision for revascularization. It was also compared with the multivariable based GRACE Risk Score (GRS). Methods: Single centre registry of 389 consecutive patients admitted with non-ST-segment elevation (NSTE) ACS. We calculated the adjusted HR & 95%CI for death/MI at 30-days and one-year follow-up, between the presence or absence of MI using: (1) universal definition: > 99th URL for cTnI (> 0.06 ng/ml) or MBm (> 3.2 ng/ml); (2) MBm > 2 × URL (> 12.2 ng/ml); 3) old WHO: MBact > 2 × URL (> 32U/l). Logistic analysis was performed to test the interaction between tertiles of biomarkers or GRS and the effect of revascularization on the outcome. Results: The universal definition increased the incidence of MI in 3.5-fold for cTnI, but was not an independent predictor of outcome. The GRS was the only independent predictor of prognosis at 30-days and one-year. The interaction with the prognostic impact of revascularization was only present for the GRS categorized by tertiles. Conclusions: In a contemporary unselected population with NSTE-ACS, the universal definition of MI alone was not adequate for risk assessment and revascularization decision making. These purposes were fully addressed with the GRS.
Related JoVE Video
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide.
Biochem. Biophys. Res. Commun.
PUBLISHED: 10-12-2010
Show Abstract
Hide Abstract
Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended the study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.
Related JoVE Video
Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes.
ACS Nano
PUBLISHED: 08-25-2010
Show Abstract
Hide Abstract
The established hypothesis for the increase on erythrocyte aggregation associated with a higher incidence of cardiovascular pathologies is based on an increase on plasma adhesion proteins concentration, particularly fibrinogen. Fibrinogen-induced erythrocyte aggregation has been considered to be caused by its nonspecific binding to erythrocyte membranes. In contrast, platelets are known to have a fibrinogen integrin receptor expressed on the membrane surface (the membrane glycoprotein complex alpha(IIb)beta(3)). We demonstrate, by force spectroscopy measurements using an atomic force microscope (AFM), the existence of a single molecule interaction between fibrinogen and an unknown receptor on the erythrocyte membrane, with a lower but comparable affinity relative to platelet binding (average fibrinogen--erythrocyte and --platelet average (un)binding forces were 79 and 97 pN, respectively). This receptor is not as strongly influenced by calcium and eptifibatide (an alpha(IIb)beta(3) specific inhibitor) as the platelet receptor. However, its inhibition by eptifibatide indicates that it is an alpha(IIb)beta(3)-related integrin. Results obtained for a Glanzmann thrombastenia (a rare hereditary bleeding disease caused by alpha(IIb)beta(3) deficiency) patient show (for the first time) an impaired fibrinogen--erythrocyte binding. Correlation with genetic sequencing data demonstrates that one of the units of the fibrinogen receptor on erythrocytes is a product of the expression of the beta(3) gene, found to be mutated in this patient. This work demonstrates and validates the applicability of AFM-based force spectroscopy as a highly sensitive, rapid and low operation cost nanotool for the diagnostic of genetic mutations resulting in hematological diseases, with an unbiased functional evaluation of their severity.
Related JoVE Video
The bacterial exotoxin AIP56 induces fish macrophage and neutrophil apoptosis using mechanisms of the extrinsic and intrinsic pathways.
Fish Shellfish Immunol.
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
It has been previously shown that the exotoxin of the important fish pathogen Photobacterium damselae ssp. piscicida is a key pathogenicity factor and is responsible for the extensive systemic apoptosis of macrophages and neutrophils seen in acute fish photobacteriosis. The focus of the present study was to further characterize the AIP56-induced apoptosis of sea bass professional phagocytes by assessing the involvement of caspases, mitochondria and oxidative stress. The resulting data indicate that the apoptotic response in peritoneal macrophages and neutrophils treated ex vivo with AIP56 involves activation of caspase-8, -9 and -3, and mitochondria as shown by loss of mitochondrial membrane potential, release of cytochrome c and over-production of ROS. These results together with previous data from this laboratory suggest that both the extrinsic and intrinsic apoptotic pathways are involved in the AIP56-induced phagocyte apoptosis.
Related JoVE Video
Francisella-like endosymbiont in Dermacentor reticulatus collected in Portugal.
Vector Borne Zoonotic Dis.
PUBLISHED: 06-24-2010
Show Abstract
Hide Abstract
In Portugal, recent studies have confirmed the presence of Francisella tularensis in Dermacentor reticulatus. Bacterial endosymbionts with significant homology to F. tularensis have been described in several species of ticks. In this work we identified Francisella-like endosymbionts in D. reticulatus ticks (39%), confirming the presence of these bacteria in Portugal. This finding should be considered in future studies using molecular approaches to detect Francisella prevalence in ticks and environmental samples.
Related JoVE Video
Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR.
J. Biol. Chem.
PUBLISHED: 06-21-2010
Show Abstract
Hide Abstract
The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred.
Related JoVE Video
Training presence: the importance of virtual reality experience on the "sense of being there".
Stud Health Technol Inform
PUBLISHED: 06-15-2010
Show Abstract
Hide Abstract
Nature and origin of presence are still unclear. Although it can be characterized, under a neurophysiological perspective, as a process resulting from a synchrony between cognitive and perceptive systems, the multitude of associated processes reduces the chances of brain mapping presence. In this way, our study was designed in order to understand the possible role of VR experience on presence in a virtual environment. For our study, 16 participants (M=28.39 years; SD=13.44) of both genders without computer experience were selected. The study design consisted of two assessments (initial and final), where the participants were evaluated with BFI, PQ, ITQ, QC, MCSDS-SF, STAI, visual attention and behavioral measures after playing an first person shooter (FPS) game. In order to manipulate the level of VR experience the participants were trained on, a different FPS was used during the 12 weekly sessions of 30 minutes. Results revealed significant differences between the first and final assessment for presence (F(1,15)=11.583; MSE=775.538; p<01) and immersion scores (F(1,15)=6.234; MSE=204.962; p<05), indicating higher levels of presence and immersion in the final assessment. No statistical significant results were obtained for cybersickness or the behavioral measures. In summary, our results showed that training and the subsequent higher computer experience levels can increase immersion and presence.
Related JoVE Video
[Portuguese translation of Alistair Munros criteria for paraphrenia].
Acta Med Port
PUBLISHED: 06-14-2010
Show Abstract
Hide Abstract
The current concept of paraphrenia has its historical origins in Emil Kraepelins work. Several factors, however, contributed to the fading out of this disorder, namely the follow-up study of W. Mayer, the influences of Bleuler and of some related concepts, such as Roths late paraphrenia. Over the last decades Alistair Munro and co-workers have contributed to the clarification and precision of the paraphrenia concept. One of the essentials steps was to come up with a specific set of diagnostic criteria, which are presented here translated to Portuguese.
Related JoVE Video
Conjugated linoleic acid reduces permeability and fluidity of adipose plasma membranes from obese Zucker rats.
Biochem. Biophys. Res. Commun.
PUBLISHED: 06-10-2010
Show Abstract
Hide Abstract
Conjugated linoleic acid (CLA) is a dietary fatty acid frequently used as a body fat reducing agent whose effects upon cell membranes and cellular function remain unknown. Obese Zucker rats were fed atherogenic diets containing saturated fats of vegetable or animal origin with or without 1% CLA, as a mixture of cis(c)9,trans(t)11 and t10,c12 isomers. Plasma membrane vesicles obtained from visceral adipose tissue were used to assess the effectiveness of dietary fat and CLA membrane incorporation and its outcome on fluidity and permeability to water and glycerol. A significant decrease in adipose membrane fluidity was correlated with the changes observed in permeability, which seem to be caused by the incorporation of the t10,c12 CLA isomer into membrane phospholipids. These results indicate that CLA supplementation in obese Zucker rats fed saturated and cholesterol rich diets reduces the fluidity and permeability of adipose membranes, therefore not supporting CLA as a body fat reducing agent through membrane fluidification in obese fat consumers.
Related JoVE Video
Thermal stability of extracellular hemoglobin of Glossoscolex paulistus: determination of activation parameters by optical spectroscopic and differential scanning calorimetric studies.
Biophys. Chem.
PUBLISHED: 05-13-2010
Show Abstract
Hide Abstract
Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56°C, 4°C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DLS allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DLS) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 °C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin.
Related JoVE Video
48,XXYY in a General Adult Psychiatry Department.
Psychiatry (Edgmont)
PUBLISHED: 05-04-2010
Show Abstract
Hide Abstract
The 48,XXYY syndrome is a distinct clinical and genetic entity, with an incidence of 1:17,000 to 1:50,000 newborns. Patients often access mental healthcare services due to behavior problems, such as aggressiveness and impulsiveness, and are frequently intellectually disabled. We report a case of a patient with 48,XXYY syndrome treated in a general adult psychiatry department.A 23-year-old man was frequently admitted to our inpatient psychiatric unit (14 admissions in five years) due to disruptive behavior, including self harm, aggression to objects and animals, and fire-setting behavior, in a context of dysphoric mood and marked impulsivity. Upon observation, the patient had mild intellectual disability, with prominent impulsive and aggressive features and very low tolerance to frustration. His physical examination revealed hypertelorism, increased thickness of neck, acne, sparse body hair, triangular pubic hair distribution, fifth digit clinodactyly, small testicles and penis, and gynecoid pelvis. Laboratory analysis revealed endocrine abnormalities (low plasma testosterone and subclinical hypothyroidism). Cardiac Doppler sonogram was normal. Electroencephalogram revealed only a diffuse slowing electrogenesis, with no etiological specificity. Clinical suspicion of a chromosomal disorder was confirmed by a 48,XXYY karyotype. Subsequent magnetic resonance imaging detected discrete bilateral reduction of the hippocampal formations, possibly related to temporal dysgenesia. Psychopharmacological treatment options met moderate success, with lack of adherence. Other psychosocial treatment interventions ensued, including family therapy and psychoeducation. We underscore the need to be alert for chromosomal disorders, even in a general adult psychiatry department, as a minority of patients may reach adult care without proper diagnosis.
Related JoVE Video
Isoelectric point determination for Glossoscolex paulistus extracellular hemoglobin: oligomeric stability in acidic pH and relevance to protein-surfactant interactions.
Langmuir
PUBLISHED: 04-29-2010
Show Abstract
Hide Abstract
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 MDa. It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole pH range. Our zeta-potential data are consistent with light scattering results. Average values of pI obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at pH 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5.0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Related JoVE Video
Drug-lipid interaction evaluation: why a 19th century solution?
Trends Pharmacol. Sci.
PUBLISHED: 04-23-2010
Show Abstract
Hide Abstract
The affinity of a drug candidate for a biological membrane (its lipophilicity) is closely related to the pharmacologically crucial events of absorption, biodistribution, metabolization and excretion. The evolution of knowledge of biological membranes during the past two decades contrasts with the rudimentary parameter most commonly used to assess lipophilicity: P(o/w), the octanol-water partition coefficient. P(o/w) is especially unrealistic when testing molecules that are polar or partially charged. By contrast, lipid vesicle-based methods determine the extent of the actual partition of a drug to a membrane much more accurately, and have the additional advantage of enabling the choice of the lipid composition considered most suitable to answer a specific biological or pharmaceutical question. In addition, some of these methods are appropriate for high throughput screening, thus shifting determinations of membrane partition to a more preliminary stage of drug development. This streamlines research and development, by saving the time and money that would be spent on unpromising leads.
Related JoVE Video
Diagnosis of tuberculosis in the wild boar (Sus scrofa): a comparison of methods applicable to hunter-harvested animals.
PLoS ONE
PUBLISHED: 04-12-2010
Show Abstract
Hide Abstract
To obtain robust epidemiological information regarding tuberculosis (TB) in wildlife species, appropriate diagnostic methods need to be used. Wild boar (Sus scrofa) recently emerged as a major maintenance host for TB in some European countries. Nevertheless, no data is available to evaluate TB post-mortem diagnostic methods in hunter-harvested wild boar.
Related JoVE Video
AIP56: a novel bacterial apoptogenic toxin.
Toxins (Basel)
PUBLISHED: 03-31-2010
Show Abstract
Hide Abstract
Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative pathogen agent of an important fish septicemia. The key virulence factor of Phdp is the plasmid-encoded exotoxin AIP56, which is secreted by exponentially growing pathogenic strains. AIP56 has 520 amino acids including an N-terminal cleavable signal peptide of 23 amino acid residues, two cysteine residues and a zinc-binding region signature HEXXH that is typical of most zinc metallopeptidases. AIP56 induces in vitro and in vivo selective apoptosis of fish macrophages and neutrophils through a caspase-3 dependent mechanism that also involves caspase-8 and -9. In vivo, the AIP56-induced phagocyte apoptosis progresses to secondary necrosis with release of cytotoxic phagocyte molecules including neutrophil elastase. Fish injected with recombinant AIP56 die with a pathology similar to that seen in the natural infection.
Related JoVE Video
Quantitative assessment of peptide-lipid interactions. Ubiquitous fluorescence methodologies.
Biochim. Biophys. Acta
PUBLISHED: 03-27-2010
Show Abstract
Hide Abstract
Peptide-membrane interactions have been gaining increased relevance, mainly in biomedical investigation, as the potential of the natural, nature-based and synthetic peptides as new drugs or drug candidates also expands. These peptides must face the cell membrane when they interfere with or participate in intracellular processes. Additionally, several peptide drugs and drug leads actions occur at the membrane level (e.g., antimicrobial peptides, cell-penetrating peptides and enveloped viruses membrane fusion inhibitors). Here we explore fluorescence spectroscopy methods that can be used to monitor such interactions. Two main approaches are considered, centered either on the peptide or on the membrane. On the first, we consider mainly the methodologies based on the intrinsic fluorescence of the aminoacid residues tryptophan and tyrosine. Regarding membrane-centric approaches, we review methods based on lipophilic probes sensitive to membrane potentials. The use of fluorescence constitutes a simple and sensitive method to measure these events. Unraveling the molecular mechanisms that govern these interactions can unlock the key to understand specific biological processes involving natural peptides or to optimize the action of a peptide drug.
Related JoVE Video
HIV-1 fusion inhibitor peptides enfuvirtide and T-1249 interact with erythrocyte and lymphocyte membranes.
PLoS ONE
PUBLISHED: 03-02-2010
Show Abstract
Hide Abstract
Enfuvirtide and T-1249 are two HIV-1 fusion inhibitor peptides that bind to gp41 and prevent its fusogenic conformation, inhibiting viral entry into host cells. Previous studies established the relative preferences of these peptides for membrane model systems of defined lipid compositions. We aimed to understand the interaction of these peptides with the membranes of erythrocytes and peripheral blood mononuclear cells. The peptide behavior toward cell membranes was followed by di-8-ANEPPS fluorescence, a lipophilic probe sensitive to the changes in membrane dipole potential. We observed a fusion inhibitor concentration-dependent decrease on the membrane dipole potential. Quantitative analysis showed that T-1249 has an approximately eight-fold higher affinity towards cells, when compared with enfuvirtide. We also compared the binding towards di-8-ANEPPS labeled lipid vesicles that model cell membranes and obtained concordant results. We demonstrated the distinct enfuvirtide and T-1249 membranotropism for circulating blood cells, which can be translated to a feasible in vivo scenario. The enhanced interaction of T-1249 with cell membranes correlates with its higher efficacy, as it can increase and accelerate the drug binding to gp41 in its pre-fusion state.
Related JoVE Video
Blood cell membrane fluidity and intracellular Ca2+ changes in antiretroviral-naïve and -treated HIV-1-infected patients.
ScientificWorldJournal
PUBLISHED: 03-02-2010
Show Abstract
Hide Abstract
We previously showed that lymphocytes and erythrocytes of HIV-1-infected patients, prior to antiretroviral therapy, presented significant changes in intracellular calcium concentration ([Ca(2+)](int)) and membrane fluidity. The present study evaluates the same parameters after response to highly active antiretroviral therapy (HAART). Blood samples were collected from patients prior to and after antiretroviral therapy, and from control subjects. Membrane fluidity and [Ca(2+)](int) were assessed by fluorescence spectroscopy measurements, using three different probes: TMA-DPH and DPH for membrane fluidity, and fura-2 for Ca(2+). When compared with the control group, both untreated and treated patients presented increased lymphocyte [Ca(2+)](int) and decreased lymphocyte membrane fluidity, without significant differences between the two groups of patients. On the contrary, the therapy reversed the membrane fluidity variations observed in erythrocytes. The decreased erythrocyte [Ca(2+)](int) of untreated patients was not reversed by HAART. AIDS patients present changes in lymphocyte (mostly noninfected) and erythrocyte properties, partially reversed by HAART, consistent with a process of facilitated propagation of the infection to new cells, stimulation of virion production, and maintenance of a reservoir of erythrocyte-bound infectious virus. These observations can be related with the action of the HIV Nef protein in the cells proteins and lipid composition, as well as with the recently observed cell infection by HIV-1 via endocytosis.
Related JoVE Video
Molecular cloning of sea bass (Dicentrarchus labrax L.) caspase-8 gene and its involvement in Photobacterium damselae ssp. piscicida triggered apoptosis.
Fish Shellfish Immunol.
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
Caspase-8 is an initiator caspase that plays a crucial role in some cases of apoptosis by extrinsic and intrinsic pathways. Caspase-8 structure and function have been extensively studied in mammals, but in fish the characterization of that initiator caspase is still scarce. In this work, the sea bass counterpart of mammalian caspase-8 was sequenced and characterized, and its involvement in the apoptogenic activity of a toxin from a fish pathogen was assessed. A 2472 bp cDNA of sea bass caspase-8 was obtained, consisting of 1455 bp open reading frame coding for 484 amino acids and with a predicted molecular weight of 55.2 kDa. The sea bass caspase-8 gene has 6639 bp and is organized in 11 introns and 12 exons. Several distinctive features of sea bass caspase-8 were identified, which include two death effector domains, the caspase family domains p20 and p10, the caspase-8 active-site pentapeptide and potential aspartic acid cleavage sites. The sea bass caspase-8 sequence revealed a significant degree of similarity to corresponding sequences from several vertebrate taxonomic groups. A low expression of sea bass caspase-8 was detected in various tissues of non-stimulated sea bass. Furthermore, it is shown that stimulation of sea bass with mid-exponential phase culture supernatants from Photobacterium damselae ssp. piscicida (Phdp), known to induce selective apoptosis of macrophages and neutrophils, resulted in an increased expression of caspase-8 in the spleen, one of the main affected organs by Phdp infection.
Related JoVE Video
Unravelling the molecular basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid membranes.
Biochim. Biophys. Acta
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
Sifuvirtide, a 36 amino acid negatively charged peptide, is a novel HIV-1 fusion inhibitor with improved antiretroviral activity. In this work we evaluated the physical chemistry foundation of the interaction of sifuvirtide with biomembrane model systems. Since this peptide has aromatic residues, fluorescence spectroscopy techniques were mostly used. The interaction was assessed by partition and quenching experiments. Results showed no significant interaction with large unilamellar vesicles composed by sphingomyelin and ceramide. In contrast, sifuvirtide presented selectivity towards vesicles composed by phosphatidylcholines (PC) in the gel phase, in opposition to fluid phase PC vesicles. The interaction of this peptide with gel phase PC membranes (K(p)=1.2x10(2)) is dependent on the ionic strength, which indicates the mediation of electrostatic interactions at an interfacial level. The effects of sifuvirtide on the lipid membranes structural properties were further evaluated using dipole-potential membrane probes, zeta-potential, dynamic light scattering and atomic force microscopy measurements. The results show that sifuvirtide does not cause a noticeable effect on lipid bilayer structure, except for membranes composed by cationic phospholipids. Altogether, we can conclude that sifuvirtide presents a specific affinity towards rigid PC membranes, and the interaction is mediated by electrostatic factors, not affecting the membrane architecture.
Related JoVE Video
Epidemiology of Mycobacterium bovis infection in wild boar (Sus scrofa) from Portugal.
J. Wildl. Dis.
PUBLISHED: 11-11-2009
Show Abstract
Hide Abstract
Tuberculosis has been diagnosed in wild boar (Sus scrofa) in several European countries during the last decade; however, almost no information has been reported to date for Portugal. This study aimed to investigate tuberculosis in wild boar in Portugal through characterization of Mycobacterium bovis infection and identification of disease risk factors. Tissue samples were obtained from hunted wild boar during the 2005 and 2006 hunting seasons. Samples were inspected for gross lesions and processed for culture. Acid-fast bacterial isolates were identified by polymerase chain reaction and spoligotyping. Associations between tuberculosis in wild boar and several variables linked to wild ungulate diversity and relative abundance, livestock density, and cattle tuberculosis incidence were investigated. Mycobacterium bovis isolates were identified in 18 of 162 wild boars from three of eight study areas. Infection rates ranged from 6% (95% confidence interval [CI(P95%)] = 1-21%) to 46% (CI(P95%) = 27-67%) in the three infected study areas; females in our sample were at greater risk of being infected than males (odds ratio = 4.33; CI(P95%) = 3.31-5.68). Spoligotyping grouped the M. bovis isolates in three clusters and one isolate was a novel spoligotype not previously reported in international databases. Detection of M. bovis was most consistently associated with variables linked to wild ungulate relative abundance, suggesting that these species, particularly the wild boar, might act as maintenance hosts in Portugal.
Related JoVE Video
rBPI(21) promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes.
PLoS ONE
PUBLISHED: 11-09-2009
Show Abstract
Hide Abstract
Antimicrobial peptides (AMPs) are important potential alternatives to conventional therapies against bacterial infections. rBPI(21) is a 21 kDa peptide based on the N-terminal region of the neutrophil bactericidal/permeability-increasing protein (BPI). This AMP possesses highly selective bactericidal effects on Gram-negative bacteria and have affinity for lipopolysaccharide (LPS) which is believed to be at the origin of its neutralizing effect of the LPS segregated into the bloodstream. We aim at understanding the molecular bases of rBPI(21) bactericidal and LPS neutralization actions, using biomembrane model systems. Using dynamic light scattering spectroscopy we demonstrate that rBPI(21) promotes aggregation of negatively charged large unilamellar vesicles (LUV), even in the absence of LPS, and LPS aggregates, while for zwitterionic phosphatidylcholine (POPC) LUV the size remains unchanged. The peptide also promotes the fusion (or hemifusion) of membranes containing phosphatidylglycerol (POPG). The aggregation and fusion of negatively charged LUV are peptide concentration-dependent until massive aggregation is reached, followed by sample flocculation/precipitation. Concomitantly, there is a progressive change in the zeta-potential of the LUV systems and LPS aggregates. LUV systems composed of phosphatidylglycerol (POPG) and lipid mixtures with POPG have higher zeta-potential variations than in the absence of POPG. The interaction of rBPI(21) with lipid vesicles is followed by leakage, with higher effect in POPG-containing membranes. LPS aggregation can be related with a decreased toxicity, possibly by facilitating its clearance by macrophage phagocytosis and/or blocking of LPS specific receptor recognition. Our data indicate that rBPI(21) mechanism of action at the molecular level involves the interaction with the LPS of the outer membrane of Gram-negative bacteria, followed by internalization and leakage induction through the (hemi)fusion of the bacterial outer and inner membranes, both enriched in phosphatidylglycerol.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.