JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia.
PLoS Pathog.
PUBLISHED: 06-01-2014
Show Abstract
Hide Abstract
Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2-/- AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-? (PPAR-?) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2-/- mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs.
Related JoVE Video
Contaminated turmeric is a potential source of lead exposure for children in rural Bangladesh.
J Environ Public Health
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
During the conduct of a cohort study intended to study the associations between mixed metal exposures and child health outcomes, we found that 78% of 309 children aged 20-40 months evaluated in the Munshiganj District of Bangladesh had blood lead concentrations ?5?µg/dL and 27% had concentrations ?10?µg/dL.
Related JoVE Video
Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man.
Cell
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
Obesity and diabetes affect more than half a billion individuals worldwide. Interestingly, the two conditions do not always coincide and the molecular determinants of "healthy" versus "unhealthy" obesity remain ill-defined. Chronic metabolic inflammation (metaflammation) is believed to be pivotal. Here, we tested a hypothesized anti-inflammatory role for heme oxygenase-1 (HO-1) in the development of metabolic disease. Surprisingly, in matched biopsies from "healthy" versus insulin-resistant obese subjects we find HO-1 to be among the strongest positive predictors of metabolic disease in humans. We find that hepatocyte and macrophage conditional HO-1 deletion in mice evokes resistance to diet-induced insulin resistance and inflammation, dramatically reducing secondary disease such as steatosis and liver toxicity. Intriguingly, cellular assays show that HO-1 defines prestimulation thresholds for inflammatory skewing and NF-?B amplification in macrophages and for insulin signaling in hepatocytes. These findings identify HO-1 inhibition as a potential therapeutic strategy for metabolic disease.
Related JoVE Video
WAVE1 mediates suppression of phagocytosis by phospholipid-derived DAMPs.
J. Clin. Invest.
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Clearance of invading pathogens is essential to preventing overwhelming inflammation and sepsis that are symptomatic of bacterial peritonitis. Macrophages participate in this innate immune response by engulfing and digesting pathogens, a process called phagocytosis. Oxidized phospholipids (OxPL) are danger-associated molecular patterns (DAMPs) generated in response to infection that can prevent the phagocytic clearance of bacteria. We investigated the mechanism underlying OxPL action in macrophages. Exposure to OxPL induced alterations in actin polymerization, resulting in spreading of peritoneal macrophages and diminished uptake of E. coli. Pharmacological and cell-based studies showed that an anchored pool of PKA mediates the effects of OxPL. Gene silencing approaches identified the A-kinase anchoring protein (AKAP) WAVE1 as an effector of OxPL action in vitro. Chimeric Wave1(-/-) mice survived significantly longer after infection with E. coli and OxPL treatment in vivo. Moreover, we found that endogenously generated OxPL in human peritoneal dialysis fluid from end-stage renal failure patients inhibited phagocytosis via WAVE1. Collectively, these data uncover an unanticipated role for WAVE1 as a critical modulator of the innate immune response to severe bacterial infections.
Related JoVE Video
Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes.
J. Clin. Invest.
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Macrophages play a key role in responding to pathogens and initiate an inflammatory response to combat microbe multiplication. Deactivation of macrophages facilitates resolution of the inflammatory response. Deactivated macrophages are characterized by an immunosuppressive phenotype, but the lack of unique markers that can reliably identify these cells explains the poorly defined biological role of this macrophage subset. We identified lipocalin 2 (LCN2) as both a marker of deactivated macrophages and a macrophage deactivator. We show that LCN2 attenuated the early inflammatory response and impaired bacterial clearance, leading to impaired survival of mice suffering from pneumococcal pneumonia. LCN2 induced IL-10 formation by macrophages, skewing macrophage polarization in a STAT3-dependent manner. Pulmonary LCN2 levels were tremendously elevated during bacterial pneumonia in humans, and high LCN2 levels were indicative of a detrimental outcome from pneumonia with Gram-positive bacteria. Our data emphasize the importance of macrophage deactivation for the outcome of pneumococcal infections and highlight the role of LCN2 and IL-10 as determinants of macrophage performance in the respiratory tract.
Related JoVE Video
The scavenger receptor CD36 downmodulates the early inflammatory response while enhancing bacterial phagocytosis during pneumococcal pneumonia.
J. Immunol.
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
CD36 is a scavenger receptor that exhibits pleiotropic functions, including adhesion to thrombospondin, inhibition of angiogenesis, transport of long-chain fatty acids, and clearance of apoptotic cells. In addition, it has been implicated in the host immune response because it acts as a coreceptor for TLR2 and plays a role in Staphylococcus aureus infection. However, its role in other Gram-positive bacterial infections is unclear. In this study, using mice deficient in CD36, we sought to examine the role of CD36 in pneumococcal pneumonia, a major cause of morbidity and mortality worldwide. We show that CD36 is expressed on both alveolar macrophages and respiratory epithelial cells. Early in infection, CD36(-/-) mice have an exaggerated inflammatory response compared with wild-type littermate controls. In vitro studies using CD36(-/-) primary cells confirm the enhanced early inflammation in response to S. pneumoniae and its lipoteichoic acid, demonstrate that S. pneumoniae binds to cells via its phosphocholine residues, and suggest a role for CD36 in reducing inflammation induced by the phosphocholine residues of pneumococcal lipoteichoic acid. Later in infection, although CD36(-/-) mice exhibit impaired bacterial clearance, owing to a decreased capacity of CD36(-/-) macrophages to phagocytose S. pneumoniae, minor effects on mortality occur, in comparison with those in wild-type littermate control mice. These data show that CD36 contributes to the pulmonary host response during S. pneumoniae infection by virtue of its ability to act as a phagocytic receptor and as a modulator of the early innate immune response.
Related JoVE Video
Inhaled long-acting ?2 agonists enhance glucocorticoid receptor nuclear translocation and efficacy in sputum macrophages in COPD.
J. Allergy Clin. Immunol.
PUBLISHED: 03-28-2013
Show Abstract
Hide Abstract
Combination inhaled therapy with long-acting ?2 agonists (LABAs) and corticosteroids is beneficial in treating asthma and chronic obstructive pulmonary disease (COPD).
Related JoVE Video
Acute hepatitis B in an urban tertiary care hospital in the United States: a cohort evaluation.
J. Clin. Gastroenterol.
PUBLISHED: 03-09-2013
Show Abstract
Hide Abstract
The incidence of acute hepatitis B virus (HBV) infection in the United States is declining, and precise epidemiology for newly acquired infection remains obscure.
Related JoVE Video
TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo.
J. Immunol.
PUBLISHED: 12-22-2010
Show Abstract
Hide Abstract
The pore-forming toxin Panton-Valentine leukocidin (PVL) is carried by community-acquired methicillin-resistant Staphylococcus aureus and associated with necrotizing pneumonia together with poor prognosis of infected patients. Although the cell-death-inducing properties of PVL have previously been examined, the pulmonary immune response to PVL is largely unknown. Using an unbiased transcriptional profiling approach, we show that PVL induces only 29 genes in mouse alveolar macrophages, which are associated with TLR signaling. Further studies indicate that PVL directly binds to TLR2 and induces immune responses via NF-?B in a TLR2, CD14, MyD88, IL-1R-associated kinase 1, and TNFR-associated factor 6-dependent manner. PVL-mediated inflammation is independent of pore formation but strongly depends on the LukS subunit and is suppressed in CD14/TLR2(-/-) cells. In vivo PVL or LukS induced a robust inflammatory response in lungs, which was diminished in CD14/TLR2(-/-) mice. These results highlight the proinflammatory properties of PVL and identify CD14/TLR2 as an essential receptor complex for PVL-induced lung inflammation.
Related JoVE Video
CD14 is a coreceptor of Toll-like receptors 7 and 9.
J. Exp. Med.
PUBLISHED: 11-15-2010
Show Abstract
Hide Abstract
Recognition of pathogens by the innate immune system requires proteins that detect conserved molecular patterns. Nucleic acids are recognized by cytoplasmic sensors as well as by endosomal Toll-like receptors (TLRs). It has become evident that TLRs require additional proteins to be activated by their respective ligands. In this study, we show that CD14 (cluster of differentiation 14) constitutively interacts with the MyD88-dependent TLR7 and TLR9. CD14 was necessary for TLR7- and TLR9-dependent induction of proinflammatory cytokines in vitro and for TLR9-dependent innate immune responses in mice. CD14 associated with TLR9 stimulatory DNA in precipitation experiments and confocal imaging. The absence of CD14 led to reduced nucleic acid uptake in macrophages. Additionally, CD14 played a role in the stimulation of TLRs by viruses. Using various types of vesicular stomatitis virus, we showed that CD14 is dispensable for viral uptake but is required for the triggering of TLR-dependent cytokine responses. These data show that CD14 has a dual role in nucleic acid-mediated TLR activation: it promotes the selective uptake of nucleic acids, and it acts as a coreceptor for endosomal TLR activation.
Related JoVE Video
The protein tyrosine kinase Tec regulates a CD44highCD62L- Th17 subset.
J. Immunol.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
The generation of Th17 cells has to be tightly controlled during an immune response. In this study, we report an increase in a CD44(high)CD62L(-) Th17 subset in mice deficient for the protein tyrosine kinase Tec. CD44(high)CD62L(-) Tec(-/-) CD4(+) T cells produced enhanced IL-17 upon activation, showed increased expression levels of IL-23R and ROR?t, and IL-23-mediated expansion of Tec(-/-) CD4(+) T cells led to an increased production of IL-17. Tec(-/-) mice immunized with heat-killed Streptococcus pneumoniae displayed increased IL-17 expression levels in the lung postinfection with S. pneumoniae, and this correlated with enhanced pneumococcal clearance and reduced lung inflammation compared with Tec(+/+) mice. Moreover, naive Tec(-/-) OT-II CD4(+) T cells produced higher levels of IL-17 when cultured with OVA peptide-loaded bone marrow-derived dendritic cells that have been previously activated with heat-killed S. pneumoniae. Taken together, our data indicated a critical role for Tec in T cell-intrinsic signaling pathways that regulate the in vivo generation of CD44(high)CD62L(-) effector/memory Th17 populations.
Related JoVE Video
Internalization and coreceptor expression are critical for TLR2-mediated recognition of lipoteichoic acid in human peripheral blood.
J. Immunol.
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
Lipoteichoic acid (LTA), a ubiquitous cell wall component of Gram-positive bacteria, represents a potent immunostimulatory molecule. Because LTA of a mutant Staphylococcus aureus strain lacking lipoproteins (Deltalgt-LTA) has been described to be immunobiologically inactive despite a lack of ascertained structural differences to wild-type LTA (wt-LTA), we investigated the functional requirements for the recognition of Deltalgt-LTA by human peripheral blood cells. In this study, we demonstrate that Deltalgt-LTA-induced immune activation critically depends on the immobilization of LTA and the presence of human serum components, which, to a lesser degree, was also observed for wt-LTA. Under experimental conditions allowing LTA-mediated stimulation, we found no differences between the immunostimulatory capacity of Deltalgt-LTA and wt-LTA in human blood cells, arguing for a limited contribution of possible lipoprotein contaminants to wt-LTA-mediated immune activation. In contrast to human blood cells, TLR2-transfected human embryonic kidney 293 cells could be activated only by wt-LTA, whereas activation of these cells by Deltalgt-LTA required the additional expression of TLR6 and CD14, suggesting that activation of human embryonic kidney 293 cells expressing solely TLR2 is probably mediated by residual lipoproteins in wt-LTA. Notably, in human peripheral blood, LTA-specific IgG Abs are essential for Deltalgt-LTA-mediated immune activation and appear to induce the phagocytic uptake of Deltalgt-LTA via engagement of FcgammaRII. In this study, we have elucidated a novel mechanism of LTA-induced cytokine induction in human peripheral blood cells that involves uptake of LTA and subsequent intracellular recognition driven by TLR2, TLR6, and CD14.
Related JoVE Video
Tyrosine kinase 2 controls IL-1ß production at the translational level.
J. Immunol.
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
IL-1beta is an important proinflammatory cytokine with a major role in several inflammatory diseases. Expression of IL-1beta is tightly regulated at the level of transcription, mRNA stability, and proteolytic processing. In this study, we report that IL-1beta expression in response to LPS is also regulated at the translational level. LPS-induced IL-1beta protein levels in macrophages derived from murine bone marrow are markedly increased in the absence of tyrosine kinase 2 (Tyk2). Increased IL-1beta is found intra- and extracellularly, irrespective of the efficiency of IL-1beta processing. We show that the absence of Tyk2 results both in higher translational rates and in enhanced association of IL-1beta mRNA with polysomes. Induction and stability of IL-1beta mRNA are not affected by the lack of Tyk2. We show further that the Tyk2-dependent translational inhibition is mediated by autocrine/paracrine type I IFN signaling and requires signal transducer and activator of transcription 1. Enhanced IL-1beta production in Tyk2- and IFN receptor 1-deficient macrophages is also observed following Listeria monocytogenes infection. Taken together, the data describe a novel mechanism for the control of IL-1beta synthesis.
Related JoVE Video
TREM-1 activation alters the dynamics of pulmonary IRAK-M expression in vivo and improves host defense during pneumococcal pneumonia.
J. Immunol.
PUBLISHED: 07-13-2009
Show Abstract
Hide Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is an amplifier of TLR-mediated inflammation during bacterial infections. Thus far, TREM-1 is primarily associated with unwanted signs of overwhelming inflammation, rendering it an attractive target for conditions such as sepsis. Respiratory tract infections are the leading cause of sepsis, but the biological role of TREM-1 therein is poorly understood. To determine the function of TREM-1 in pneumococcal pneumonia, we first established TREM-1 up-regulation in infected lungs and human plasma together with augmented alveolar macrophage responsiveness toward Streptococcus pneumoniae. Mice treated with an agonistic TREM-1 Ab and infected with S. pneumoniae exhibited an enhanced early induction of the inflammatory response that was indirectly associated with lower levels of negative regulators of TLR signaling in lung tissue in vivo. Later in infection, TREM-1 engagement altered S. pneumoniae-induced IRAK-M (IL-1R-associated kinase-M) kinetics so as to promote the resolution of pneumonia and remarkably led to an accelerated elimination of bacteria and consequently improved survival. These data show that TREM-1 exerts a protective role in the innate immune response to a common bacterial infection and suggest that caution should be exerted in modulating TREM-1 activity during certain clinically relevant bacterial infections.
Related JoVE Video
Mesalamine protects against colorectal cancer in inflammatory bowel disease.
Dig. Dis. Sci.
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
Individuals with inflammatory bowel disease (IBD) are at increased risk of developing colorectal cancer (CRC) compared with the general population. Previous studies show this risk is strongly associated with dysplasia, extent of disease, duration of disease, and degree of inflammation, while chemoprevention of CRC has less support.
Related JoVE Video
Evaluation of anti-HBV drug resistant mutations among patients with acute symptomatic hepatitis B in the United States.
J. Hepatol.
Show Abstract
Hide Abstract
Reported HBV drug resistance mutations among previously untreated patients with chronic hepatitis B are variable. Whether resistant HBV strains are transmitted in the acute setting is uncertain. We sought to document the presence of antiviral resistance (AVR) mutations in patients with acute HBV (AHB) infection.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.