JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.
Sci Transl Med
PUBLISHED: 12-06-2013
Show Abstract
Hide Abstract
New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.
Related JoVE Video
Design, Synthesis, and Biological Evaluation of Indole-2-carboxamides: A Promising Class of Antituberculosis Agents.
J. Med. Chem.
PUBLISHED: 10-22-2013
Show Abstract
Hide Abstract
Indole-2-carboxamides have been identified as a promising class of antituberculosis agents from phenotypic screening against mycobacteria. One of the hits, indole-2-carboxamide analog (1), had low micromolar potency against Mycobacterium tuberculosis (Mtb), high mouse liver microsomal clearance, and low aqueous solubility. Structure-activity relationship studies revealed that attaching alkyl groups to the cyclohexyl ring significantly improved Mtb activity but reduced solubility. Furthermore, chloro, fluoro, or cyano substitutions on the 4- and 6-positions of the indole ring as well as methyl substitution on the cyclohexyl ring significantly improved metabolic stability. 39 and 41, the lead candidates, displayed improved in vitro activity compared to most of the current standard TB drugs. The low aqueous solubility could not be mitigated because of the positive correlation of lipophilicity with Mtb potency. However, both compounds displayed favorable oral pharmacokinetic properties in rodents and demonstrated in vivo efficacy. Thus, indole-2-carboxamides represent a promising new class of antituberculosis agents.
Related JoVE Video
para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis.
J. Biol. Chem.
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
para-Aminosalicylic acid (PAS) is one of the antimycobacterial drugs currently used for multidrug-resistant tuberculosis. Although it has been in clinical use for over 60 years, its mechanism(s) of action remains elusive. Here we report that PAS is a prodrug targeting dihydrofolate reductase (DHFR) through an unusual and novel mechanism of action. We provide evidences that PAS is incorporated into the folate pathway by dihydropteroate synthase (DHPS) and dihydrofolate synthase (DHFS) to generate a hydroxyl dihydrofolate antimetabolite, which in turn inhibits DHFR enzymatic activity. Interestingly, PAS is recognized by DHPS as efficiently as its natural substrate para-amino benzoic acid. Chemical inhibition of DHPS or mutation in DHFS prevents the formation of the antimetabolite, thereby conferring resistance to PAS. In addition, we identified a bifunctional enzyme (riboflavin biosynthesis protein (RibD)), a putative functional analog of DHFR in a knock-out strain. This finding is further supported by the identification of PAS-resistant clinical isolates encoding a RibD overexpression mutation displaying cross-resistance to genuine DHFR inhibitors. Our findings reveal that a metabolite of PAS inhibits DHFR in the folate pathway. RibD was shown to act as a functional analog of DHFR, and as for DHFS, both were shown to be associated in PAS resistance in laboratory strains and clinical isolates.
Related JoVE Video
Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis.
Nat. Med.
PUBLISHED: 03-28-2013
Show Abstract
Hide Abstract
New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis.
Related JoVE Video
Exploring the mode of action of bioactive compounds by microfluidic transcriptional profiling in mycobacteria.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Most candidate anti-bacterials are identified on the basis of their whole cell anti-bacterial activity. A critical bottleneck in the early discovery of novel anti-bacterials is tracking the structure activity relationship (SAR) of the novel compounds synthesized during the hit to lead and lead optimization stage. It is often very difficult for medicinal chemists to visualize if the novel compounds synthesized for understanding SAR of a particular scaffold have similar molecular mechanism of action (MoA) as that of the initial hit. The elucidation of the molecular MoA of bioactive inhibitors is critical. Here, a new strategy and routine assay for MoA de-convolution, using a microfluidic platform for transcriptional profiling of bacterial response to inhibitors with whole cell activity has been presented. First a reference transcriptome compendium of Mycobacterial response to various clinical and investigational drugs was built. Using feature reduction, it was demonstrated that subsets of biomarker genes representative of the whole genome are sufficient for MoA classification and deconvolution in a medium-throughput microfluidic format ultimately leading to a cost effective and rapid tool for routine antibacterial drug-discovery programs.
Related JoVE Video
BCG induces protection against Mycobacterium tuberculosis infection in the Wistar rat model.
PLoS ONE
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
Our understanding of the correlation of Mycobacterium bovis Bacille Calmette-Guerin (BCG)-mediated immune responses and protection against Mycobacterium tuberculosis (Mtb) infection is still limited. We have recently characterized a Wistar rat model of experimental tuberculosis (TB). In the present study, we evaluated the efficacy of BCG vaccination in this model. Upon Mtb challenge, BCG vaccinated rats controlled growth of the bacilli earlier than unvaccinated rats. Histopathology analysis of infected lungs demonstrated a reduced number of granulomatous lesions and lower parenchymal inflammation in vaccinated animals. Vaccine-mediated protection correlated with the rapid accumulation of antigen specific CD4(+) and CD8(+) T cells in the infected lungs. Immunohistochemistry further revealed higher number of CD8(+) cells in the pulmonary granulomas of vaccinated animals. Evaluation of pulmonary immune responses in vaccinated and Mtb infected rats by real time PCR at day 15 post-challenge showed reduced expression of genes responsible for negative regulation of Th1 immune responses. Thus, early protection observed in BCG vaccinated rats correlated with a similarly timed shift of immunity towards the Th1 type response. Our data support the importance of (i) the Th1-Th2 balance in the control of mycobacterial infection and (ii) the value of the Wistar rats in understanding the biology of TB.
Related JoVE Video
T cell monitoring of chemotherapy in experimental rat tuberculosis.
Antimicrob. Agents Chemother.
PUBLISHED: 05-31-2011
Show Abstract
Hide Abstract
Mycobacterium tuberculosis is the causative agent of a pulmonary epidemic that is estimated to infect one-third of the worlds population and that has an increased incidence of multidrug resistance. The evaluation of new chemical entities against M. tuberculosis is hampered by the lack of biological tools to help predict efficacy, from early drug development to clinical trials. As the rat is the animal species of choice in the pharmaceutical industry, we have developed a rat model of acute and chronic phases of M. tuberculosis infection for drug efficacy testing. In this model, we have evaluated the impact of tuberculosis drugs on T cell response using the enzyme-linked immunospot assay methodology. Infected rats treated with isoniazid (INH) or rifampin (RIF) responded to therapy, the potency of which was comparable to that seen in the mouse. Peripheral blood mononuclear cells from infected rats produced gamma interferon (IFN-?) in response to RD-1 antigens, such as the 6-kDa early secretory antigen target (ESAT-6) and the 10-kDa culture filtrate protein (CFP-10). A decrease in IFN-? spot-forming cells (SFCs) was consistently observed in response to drug treatment. In both the acute- and chronic-phase models, the T cell response was more sensitive to ESAT-6 than to CFP-10. The SFC count in response to ESAT-6 appears to be an indicator of bacterial killing in the rat. Collectively, our data suggest that the ESAT-6 response could be used as a potential surrogate of drug efficacy in the rat and that such a readout could help shorten drug testing during preclinical development.
Related JoVE Video
Mycobacterium tuberculosis infection induces hypoxic lung lesions in the rat.
Tuberculosis (Edinb)
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
Hypoxia is believed to influence the metabolic state of Mycobacterium tuberculosis and cause phenotypic drug resistance. Using pimonidazole adduct staining, we show that lung lesions of infected rats contain regions of low oxygen tension. Our results support the use of the rat model for evaluating anaerobic drug activity in vivo.
Related JoVE Video
Experimental tuberculosis in the Wistar rat: a model for protective immunity and control of infection.
PLoS ONE
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
Despite the availability of many animal models for tuberculosis (TB) research, there still exists a need for better understanding of the quiescent stage of disease observed in many humans. Here, we explored the use of the Wistar rat model for the study of protective immunity and control of Mycobacterium tuberculosis (Mtb) infection.
Related JoVE Video
Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.
PLoS ONE
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R) genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes.
Related JoVE Video
Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG.
Microbiology (Reading, Engl.)
PUBLISHED: 12-02-2010
Show Abstract
Hide Abstract
Pathogenic mycobacteria possess two homologous chaperones encoded by cpn60.1 and cpn60.2. Cpn60.2 is essential for survival, providing the basic chaperone function, while Cpn60.1 is not. In the present study, we show that inactivation of the Mycobacterium bovis BCG cpn60.1 (Mb3451c) gene does not significantly affect bacterial growth in 7H9 broth, but that this knockout mutant (?cpn60.1) forms smaller colonies on solid 7H11 medium than the parental and complemented strains. When growing on Sauton medium, the ?cpn60.1 mutant exhibits a thinner surface pellicle and is associated with higher culture filtrate protein content and, coincidentally, with less protein in its outermost cell envelope in comparison with the parental and complemented strains. Interestingly, in this culture condition, the ?cpn60.1 mutant is devoid of phthiocerol dimycocerosates, and its mycolates are two carbon atoms longer than those of the wild-type, a phenotype that is fully reversed by complementation. In addition, ?cpn60.1 bacteria are more sensitive to stress induced by H(2)O(2) but not by SDS, high temperature or acidic pH. Taken together, these data indicate that the cell wall of the ?cpn60.1 mutant is impaired. Analysis by 2D gel electrophoresis and MS reveals the upregulation of a few proteins such as FadA2 and isocitrate lyase in the cell extract of the mutant, whereas more profound differences are found in the composition of the mycobacterial culture filtrate, e.g. the well-known Hsp65 chaperonin Cpn60.2 is particularly abundant and increases about 200-fold in the filtrate of the ?cpn60.1 mutant. In mice, the ?cpn60.1 mutant is less persistent in lungs and, to a lesser extent, in spleen, but it induces a comparable mycobacteria-specific gamma interferon production and protection against Mycobacterium tuberculosis H37Rv challenge as do the parental and complemented BCG strains. Thus, by inactivating the cpn60.1 gene in M. bovis BCG we show that Cpn60.1 is necessary for the integrity of the bacterial cell wall, is involved in resistance to H(2)O(2)-induced stress but is not essential for its vaccine potential.
Related JoVE Video
A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy.
Nat Commun
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
Candidate antibacterials are usually identified on the basis of their in vitro activity. However, the apparent inhibitory activity of new leads can be misleading because most culture media do not reproduce an environment relevant to infection in vivo. In this study, while screening for novel anti-tuberculars, we uncovered how carbon metabolism can affect antimicrobial activity. Novel pyrimidine-imidazoles (PIs) were identified in a whole-cell screen against Mycobacterium tuberculosis. Lead optimization generated in vitro potent derivatives with desirable pharmacokinetic properties, yet without in vivo efficacy. Mechanism of action studies linked the PI activity to glycerol metabolism, which is not relevant for M. tuberculosis during infection. PIs induced self-poisoning of M. tuberculosis by promoting the accumulation of glycerol phosphate and rapid ATP depletion. This study underlines the importance of understanding central bacterial metabolism in vivo and of developing predictive in vitro culture conditions as a prerequisite for the rational discovery of new antibiotics.
Related JoVE Video
Genotyping of Mycobacterium tuberculosis clinical isolates using IS6110-based restriction fragment length polymorphism analysis.
Methods Mol. Biol.
PUBLISHED: 06-13-2009
Show Abstract
Hide Abstract
A number of phylogenetic studies of Mycobacterium tuberculosis have suggested a highly clonal population structure. Despite the extreme homogeneity of M. tuberculosis strains, the genome is punctuated by a number of polymorphic regions that give rise to sufficient diversity, thus forming the basis for molecular epidemiologic studies of tuberculosis. As such, insertion sequence (IS) 6110, which is unique to members of the M. tuberculosis complex and is present in variable numbers and in discrete genomic locales among strains, has been extensively used in molecular epidemiologic studies. Genotyping, using IS6110-based restriction fragment length polymorphism (RFLP), was standardized by the international community, and this has facilitated inter- and intralaboratory comparison, thereby serving as a model system for subspeciation of M. tuberculosis. When IS6110-based RFLP was used in conjunction with conventional epidemiologic data, its utility was realized. In this chapter, we discuss the basic methodology for conducting IS6110-based RFLP and analyzing the resulting hybridization profiles.
Related JoVE Video
Variable-number tandem repeat 3690 polymorphism in Indian clinical isolates of Mycobacterium tuberculosis and its influence on transcription.
J. Med. Microbiol.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Variable-number tandem repeat (VNTRs) occur throughout the chromosome of Mycobacterium tuberculosis. Although these polymorphic VNTRs, also known as mycobacterial interspersed repetitive units (MIRUs), have proved to be useful tools in molecular epidemiology, their biological significance is less well understood. This study investigated the polymorphism of the VNTR 3690 locus located in the intergenic region between rv3304 and rv3303c (encoding the gplD2 and lpdA genes, respectively) and its possible function in the regulation of gene expression. The copy number of VNTR 3690 was found to vary among Indian clinical isolates of M. tuberculosis (one to twelve copies), M. tuberculosis H37Rv TMC102 (four copies), M. tuberculosis H37Ra (two to four copies), Mycobacterium bovis BCG (one copy). The expression of lpdA as measured by quantitative RT-PCR was 12-fold higher in M. tuberculosis H37Rv than in M. bovis BCG. Using a GFP reporter system in which the 5-flanking region of lpdA was fused to the gfp gene, the effect of VNTRs on gene expression was measured in an M. bovis BCG host background by real-time PCR. Compared with one VNTR repeat, a 12.5-fold upregulation of GFP expression was found with a flanking region containing four VNTR 3690 repeats, indicating that there is a good correlation between VNTR copy number and transcription of lpdA.
Related JoVE Video
A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex.
Microbiol. Res.
PUBLISHED: 05-03-2009
Show Abstract
Hide Abstract
Developing improved tuberculosis (TB) diagnostics is one of the international research priorities, as TB remains globally a major health threat. Loop-mediated isothermal amplification (LAMP) is a new nucleic acid detection method that can be used in low-resource settings, because it does not require expensive or complex instruments. Using the repetitive insertion sequence IS6110 as a target gene, we developed an efficient LAMP assay, which specifically detects members of the Mycobacterium tuberculosis complex (MTBC). This assay proved 20 times more sensitive than IS6110-based conventional PCR. Moreover, its sensitivity was, respectively, 50 and 20 times higher than the one obtained with the two previously described LAMP assays for M. tuberculosis, based on gyrB and rrs, respectively. Identical sensitivities were obtained for LAMP and nested PCR, but the LAMP assay was more rapid and cost-effective than the latter. Although, our LAMP assay can successfully be performed using a non-denatured template, this results in a 200-fold reduction in the sensitivity of the assay. Moreover, by performing our LAMP assay on 15 clinical sputum samples from TB patients we were able to detect MTB. Taken together, our preliminary results indicate that IS6110-based MTBC-LAMP assay is a promising new TB-diagnostic test, with high sensitivity and that could easily be applied for the diagnosis of TB in a low-resource setting.
Related JoVE Video
Synthetic EthR inhibitors boost antituberculous activity of ethionamide.
Nat. Med.
PUBLISHED: 03-03-2009
Show Abstract
Hide Abstract
The side effects associated with tuberculosis therapy bring with them the risk of noncompliance and subsequent drug resistance. Increasing the therapeutic index of antituberculosis drugs should thus improve treatment effectiveness. Several antituberculosis compounds require in situ metabolic activation to become inhibitory. Various thiocarbamide-containing drugs, including ethionamide, are activated by the mycobacterial monooxygenase EthA, the production of which is controlled by the transcriptional repressor EthR. Here we identify drug-like inhibitors of EthR that boost the bioactivation of ethionamide. Compounds designed and screened for their capacity to inhibit EthR-DNA interaction were co-crystallized with EthR. We exploited the three-dimensional structures of the complexes for the synthesis of improved analogs that boosted the ethionamide potency in culture more than tenfold. In Mycobacterium tuberculosis-infected mice, one of these analogs, BDM31343, enabled a substantially reduced dose of ethionamide to lessen the mycobacterial load as efficiently as the conventional higher-dose treatment. This provides proof of concept that inhibiting EthR improves the therapeutic index of thiocarbamide derivatives, which should prompt reconsideration of their use as first-line drugs.
Related JoVE Video
Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis.
Antimicrob. Agents Chemother.
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
The emergence of Mycobacterium tuberculosis resistant to first-line antibiotics has renewed interest in second-line antitubercular agents. Here, we aimed to extend our understanding of the mechanisms underlying para-aminosalicylic acid (PAS) resistance by analysis of six genes of the folate metabolic pathway and biosynthesis of thymine nucleotides (thyA, dfrA, folC, folP1, folP2, and thyX) and three N-acetyltransferase genes [nhoA, aac(1), and aac(2)] among PAS-resistant clinical isolates and spontaneous mutants. Mutations in thyA were identified in only 37% of the clinical isolates and spontaneous mutants. Overall, 24 distinct mutations were identified in the thyA gene and 3 in the dfrA coding region. Based on structural bioinformatics techniques, the altered ThyA proteins were predicted to generate an unfolded or dysfunctional polypeptide. The MIC was determined by Bactec/Alert and dilution assay. Sixty-three percent of the PAS-resistant isolates had no mutations in the nine genes considered in this study, revealing that PAS resistance in M. tuberculosis involves mechanisms or targets other than those pertaining to the biosynthesis of thymine nucleotides. The alternative mechanism(s) or pathway(s) associated with PAS resistance appears to be PAS concentration dependent, in marked contrast to thyA-mutated PAS-resistant isolates.
Related JoVE Video
Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis.
Antimicrob. Agents Chemother.
Show Abstract
Hide Abstract
Pyrazinamide (PZA) is a first-line antitubercular drug known for its activity against persistent Mycobacterium tuberculosis bacilli. We set out to systematically determine the PZA susceptibility profiles and mutations in the pyrazinamidase (pncA) gene of a collection of multidrug-resistant tuberculosis (MDR-TB) clinical isolates and PZA-resistant (PZA(r)) spontaneous mutants. The frequency of acquired resistance to PZA was determined to be 10(-5) bacilli in vitro. Selection at a lower concentration of PZA yielded a significantly larger number of spontaneous mutants. The methodical approach employed allowed for determination of the frequency of the PZA(r) phenotype correlated with mutations in the pncA gene, which was 87.5% for the laboratory-selected spontaneous mutants examined in this study. As elucidated by structural analysis, most of the identified mutations were foreseen to affect protein activity through either alteration of an active site residue or destabilization of protein structure, indicating some preferential mutation site rather than random scattering. Twelve percent of the PZA(r) mutants did not have a pncA mutation, strongly indicating the presence of at least one other mechanism(s) of PZA(r).
Related JoVE Video
CC8 MRSA strains harboring SCCmec type IVc are predominant in Colombian hospitals.
PLoS ONE
Show Abstract
Hide Abstract
Recent reports highlight the incursion of community-associated MRSA within healthcare settings. However, knowledge of this phenomenon remains limited in Latin America. The aim of this study was to evaluate the molecular epidemiology of MRSA in three tertiary-care hospitals in Medellín, Colombia.
Related JoVE Video
A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis.
ACS Chem. Biol.
Show Abstract
Hide Abstract
Growing evidence suggests that the presence of a subpopulation of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria is responsible for the prolonged duration of tuberculosis treatment. The discovery of new antitubercular agents active against this subpopulation may help in developing new strategies to shorten the time of tuberculosis therapy. Recently, the maintenance of a low level of bacterial respiration was shown to be a point of metabolic vulnerability in Mycobacterium tuberculosis. Here, we describe the development of a hypoxic model to identify compounds targeting mycobacterial respiratory functions and ATP homeostasis in whole mycobacteria. The model was adapted to 1,536-well plate format and successfully used to screen over 600,000 compounds. Approximately 800 compounds were confirmed to reduce intracellular ATP levels in a dose-dependent manner in Mycobacterium bovis BCG. One hundred and forty non-cytotoxic compounds with activity against hypoxic non-replicating M. tuberculosis were further validated. The resulting collection of compounds that disrupt ATP homeostasis in M. tuberculosis represents a valuable resource to decipher the biology of persistent mycobacteria.
Related JoVE Video
Epidemiologic consequences of microvariation in Mycobacterium tuberculosis.
J. Infect. Dis.
Show Abstract
Hide Abstract
Evidence from genotype-phenotype studies suggests that genetic diversity in pathogens have clinically relevant manifestations that can impact outcome of infection and epidemiologic success. We studied 5 closely related Mycobacterium tuberculosis strains that collectively caused extensive disease (n = 862), particularly among US-born tuberculosis patients.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.