JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis.
Hypertension
PUBLISHED: 04-14-2014
Show Abstract
Hide Abstract
Pulmonary endothelial cell apoptosis is a transient, yet defining pathogenic event integral to the onset of many pulmonary vascular diseases such as pulmonary hypertension (PH). However, there is a paucity of information concerning the molecular pathway(s) that control pulmonary arterial endothelial cell apoptosis. Here, we introduce a molecular axis that when functionally active seems to induce pulmonary arterial endothelial cell apoptosis in vitro and PH in vivo. In response to apoptotic stimuli, human pulmonary arterial endothelial cells exhibited robust induction of a programmed cell death 4 (PDCD4)/caspase-3/apoptotic pathway that was reversible by direct PDCD4 silencing. Indirectly, this pathway was also repressed by delivery of a microRNA-21 mimic. In vivo, genetic deletion of microRNA-21 in mice (miR-21(-/-) mice) resulted in functional activation of the PDCD4/caspase-3 axis in the pulmonary tissues, leading to the onset of progressive PH. Conversely, microRNA-21-overexpressing mice (CAG-microRNA-21 mice) exhibited reduced PDCD4 expression in pulmonary tissues and were partially resistant to PH in response to chronic hypoxia plus SU 5416 injury. Furthermore, direct PDCD4 knockout in mice (PDCD4(-/-) mice) potently blocked pulmonary caspase-3 activation and the development of chronic hypoxia plus SU 5416 PH, confirming its importance in disease onset. Broadly, these findings support the existence of a microRNA-21-responsive PDCD4/caspase-3 pathway in the pulmonary tissues that when active serves to promote endothelial apoptosis in vitro and PH in vivo.
Related JoVE Video
Proteomic analysis implicates translationally controlled tumor protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension.
Circulation
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Pulmonary arterial hypertension (PAH) is a lethal disease characterized by excessive proliferation of pulmonary vascular endothelial cells (ECs). Hereditary PAH (HPAH) is often caused by mutations in the bone morphogenetic protein receptor type 2 gene (BMPR2). However, the mechanisms by which these mutations cause PAH remain unclear. Therefore, we screened for dysregulated proteins in blood-outgrowth ECs of HPAH patients with BMPR2 mutations compared with healthy control subjects.
Related JoVE Video
Novel class of benzoic acid ester derivatives as potent PDE4 inhibitors for inhaled administration in the treatment of respiratory diseases.
J. Med. Chem.
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
The first steps in the selection process of a new anti-inflammatory drug for the inhaled treatment of asthma and chronic obstructive pulmonary disease are herein described. A series of novel ester derivatives of 1-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3,5-dichloropyridin-4-yl) ethanol have been synthesized and evaluated for inhibitory activity toward cAMP-specific phosphodiesterase-4 (PDE4). In particular, esters of variously substituted benzoic acids were extensively explored, and structural modification of the alcoholic and benzoic moieties were performed to maximize the inhibitory potency. Several compounds with high activity in cell-free and cell-based assays were obtained. Through the evaluation of opportune in vitro ADME properties, a potential candidate suitable for inhaled administration in respiratory diseases was identified and tested in an in vivo model of pulmonary inflammation, proving its efficacy.
Related JoVE Video
Transcript analysis reveals a specific HOX signature associated with positional identity of human endothelial cells.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity.
Related JoVE Video
The FANC pathway is activated by adenovirus infection and promotes viral replication-dependent recombination.
Nucleic Acids Res.
PUBLISHED: 03-17-2011
Show Abstract
Hide Abstract
Deciphering the crosstalk between a host cell and a virus during infection is important not only to better define viral biology but also to improve our understanding of cellular processes. We identified the FANC pathway as a helper of viral replication and recombination by searching for cellular targets that are modified by adenovirus (Ad) infection and are involved in its outcome. This pathway, which is involved in the DNA damage response and checkpoint control, is altered in Fanconi anaemia, a rare cancer predisposition syndrome. We show here that Ad5 infection activates the FANC pathway independent of the classical DNA damage response. Infection with a non-replicating Ad shows that the presence of viral DNA is not sufficient to induce the monoubiquitination of FANCD2 but still activates the DNA damage response coordinated by phospho-NBS1 and phospho-CHK1. E1A expression alone fails to induce FANCD2 monoubiquitination, indicating that a productive viral infection and/or replication is required for FANC pathway activation. Our data indicate that Ad5 infection induces FANCD2 activation to promote its own replication. Specifically, we show that FANCD2 is involved in the recombination process that accompanies viral DNA replication. This study provides evidence of a DNA damage-independent function of the FANC pathway and identifies a cellular system involved in Ad5 recombination.
Related JoVE Video
Functionalized pyrazoles and pyrazolo[3,4-d]pyridazinones: Synthesis and evaluation of their phosphodiesterase 4 inhibitory activity.
Bioorg. Med. Chem.
PUBLISHED: 02-02-2010
Show Abstract
Hide Abstract
A series of pyrazoles and pyrazolo[3,4-d]pyridazinones were synthesized and evaluated for their PDE4 inhibitory activity. All the pyrazoles were found devoid of activity, whereas some of the novel pyrazolo[3,4-d]pyridazinones showed good activity as PDE4 inhibitors. The most potent compounds in this series showed an IC(50) in the nanomolar range. The ability to inhibit TNF-alpha release in human PBMCs was determined for two representative compounds, finding values in the sub-micromolar range. SARs studies demonstrated that the best arranged groups around the heterocyclic core are 2-chloro-, 2-methyl- and 3-nitrophenyl at position 2, an ethyl ester at position 4 and a small alkyl group at position 6. Molecular modeling studies performed on a representative compound allowed to define its binding mode to the PDE4B isoform.
Related JoVE Video
Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 01-28-2010
Show Abstract
Hide Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that have the capacity to control protein production through binding "seed" sequences within a target mRNA. Each miRNA is capable of potentially controlling hundreds of genes. The regulation of miRNAs in the lung during the development of pulmonary arterial hypertension (PAH) is unknown.
Related JoVE Video
Prion expression is activated by Adenovirus 5 infection and affects the adenoviral cycle in human cells.
Virology
PUBLISHED: 01-12-2009
Show Abstract
Hide Abstract
The prion protein is a cell surface glycoprotein whose physiological role remains elusive, while its implication in transmissible spongiform encephalopathies (TSEs) has been demonstrated. Multiple interactions between the prion protein and viruses have been described: viruses can act as co-factors in TSEs and life cycles of different viruses have been found to be controlled by prion modulation. We present data showing that human Adenovirus 5 induces prion expression. Inactivated Adenovirus did not alter prion transcription, while variants encoding for early products did, suggesting that the prion is stimulated by an early adenoviral function. Down-regulation of the prion through RNA interference showed that the prion controls adenovirus replication and expression. These data suggest that the prion protein could play a role in the defense strategy mounted by the host during viral infection, in a cell autonomous manner. These results have implications for the study of the prion protein and of associated TSEs.
Related JoVE Video
A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples.
Circ. Res.
Show Abstract
Hide Abstract
Despite improved understanding of the underlying genetics, pulmonary arterial hypertension (PAH) remains a severe disease. Extensive remodeling of small pulmonary arteries, including proliferation of pulmonary artery smooth muscle cells (PASMCs), characterizes PAH. MicroRNAs (miRNAs) are noncoding RNAs that have been shown to play a role in vascular remodeling. Objective: We assessed the role of miR-145 in PAH.
Related JoVE Video
Gene therapy by targeted adenovirus-mediated knockdown of pulmonary endothelial Tph1 attenuates hypoxia-induced pulmonary hypertension.
Mol. Ther.
Show Abstract
Hide Abstract
Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.