JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Calcium homeostasis and signaling is essential for numerous biological processes and also influences A. fumigatus pathogenicity. The presented study characterized the function of the A. fumigatus homologues of three Saccharomyces cerevisiae calcium channels, voltage-gated Cch1, stretch-activated Mid1 and vacuolar Yvc1. The A. fumigatus calcium channels cchA, midA and yvcA were regulated at transcriptional level by increased calcium levels. The YvcA::GFP fusion protein localized to the vacuoles. Both ?cchA and ?midA mutant strains showed reduced radial growth rate in nutrient-poor minimal media. Interestingly, this growth defect in the ?cchA strain was rescued by the exogenous addition of CaCl2. The ?cchA, ?midA, and ?cchA ?midA strains were also sensitive to the oxidative stress inducer, paraquat. Restriction of external Ca(2+) through the addition of the Ca(2+)-chelator EGTA impacted upon the growth of the ?cchA and ?midA strains. All the A. fumigatus ?cchA, ?midA, and ?yvcA strains demonstrated attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Infection with the parental strain resulted in a 100% mortality rate at 15 days post-infection, while the mortality rate of the ?cchA, ?midA, and ?yvcA strains after 15 days post-infection was only 25%. Collectively, this investigation strongly indicates that CchA, MidA, and YvcA play a role in A. fumigatus calcium homeostasis and virulence.
Related JoVE Video
The sugarcane defense protein SUGARWIN2 causes cell death in Colletotrichum falcatum but not in non-pathogenic fungi.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Plants respond to pathogens and insect attacks by inducing and accumulating a large set of defense-related proteins. Two homologues of a barley wound-inducible protein (BARWIN) have been characterized in sugarcane, SUGARWIN1 and SUGARWIN2 (sugarcane wound-inducible proteins). Induction of SUGARWINs occurs in response to Diatraea saccharalis damage but not to pathogen infection. In addition, the protein itself does not show any effect on insect development; instead, it has antimicrobial activities toward Fusarium verticillioides, an opportunistic fungus that usually occurs after D. saccharalis borer attacks on sugarcane. In this study, we sought to evaluate the specificity of SUGARWIN2 to better understand its mechanism of action against phytopathogens and the associations between fungi and insects that affect plants. We used Colletotrichum falcatum, a fungus that causes red rot disease in sugarcane fields infested by D. saccharalis, and Ceratocystis paradoxa, which causes pineapple disease in sugarcane. We also tested whether SUGARWIN2 is able to cause cell death in Aspergillus nidulans, a fungus that does not infect sugarcane, and in the model yeast Saccharomyces cerevisiae, which is used for bioethanol production. Recombinant SUGARWIN2 altered C. falcatum morphology by increasing vacuolization, points of fractures and a leak of intracellular material, leading to germling apoptosis. In C. paradoxa, SUGARWIN2 showed increased vacuolization in hyphae but did not kill the fungi. Neither the non-pathogenic fungus A. nidulans nor the yeast S. cerevisiae was affected by recombinant SUGARWIN2, suggesting that the protein is specific to sugarcane opportunistic fungal pathogens.
Related JoVE Video
Identification of the cell targets important for propolis-induced cell death in Candida albicans.
Fungal Genet. Biol.
PUBLISHED: 03-30-2013
Show Abstract
Hide Abstract
Candida albicans is the most common fungal pathogen of humans, forming both commensal and opportunistic pathogenic interactions, causing a variety of skin and soft tissue infections in healthy people. In immunocompromised patients C. albicans can result in invasive, systemic infections that are associated with a high incidence of mortality. Propolis is a complex mixture of several resinous substances which are collected from plants by bees. Here, we demonstrated the fungicidal activity of propolis against all three morphogenetic types of C. albicans and that propolis-induced cell death was mediated via metacaspase and Ras signaling. To identify genes that were involved in propolis tolerance, we screened ~800 C. albicans homozygous deletion mutants for decreased tolerance to propolis. Fifty-one mutant strains were identified as being hypersensitive to propolis including seventeen genes involved in cell adhesion, biofilm formation, filamentous growth, phenotypic switching and pathogenesis (HST7, GIN4, VPS34, HOG1, ISW2, SUV3, MDS3, HDA2, KAR3, YHB1, NUP85, CDC10, MNN9, ACE2, FKH2, and SNF5). We validated these results by showing that propolis inhibited the transition from yeast-like to hyphal growth. Propolis was shown to contain compounds that conferred fluorescent properties to C. albicans cells. Moreover, we have shown that a topical pharmaceutical preparation, based upon propolis, was able to control C. albicans infections in a mouse model for vulvovaginal candidiasis. Our results strongly indicate that propolis could be used as a strategy for controlling candidiasis.
Related JoVE Video
Evaluation of Mucoadhesive Gels with Propolis (EPP-AF) in Preclinical Treatment of Candidiasis Vulvovaginal Infection.
Evid Based Complement Alternat Med
PUBLISHED: 03-29-2013
Show Abstract
Hide Abstract
Vulvovaginal candidiasis is the second cause of vaginal infection in the USA. Clinical treatment of C. albicans infections is routinely performed with polyenes and azole derivatives. However, these drugs are responsible for undesirable side effects and toxicity. In addition, C. albicans azole and echinocandin resistance has been described. Propolis is a bee product traditionally used due to its antimicrobial, anti-inflammatory, and other properties. Therefore, the present work aimed to evaluate different propolis presentations in order to evaluate their in vitro and in vivo efficacy. The methodologies involved antifungal evaluation, chemical analysis, and the effects of the rheological and mucoadhesive properties of propolis based gels. The obtained results demonstrated the fungicide action of propolis extracts against all three morphotypes (yeast, pseudohyphae, and hyphae) studied. The highest level of fungal cytotoxicity was reached at 6-8 hours of propolis cell incubation. Among the based gel formulations developed, the rheological and mucoadhesive results suggest that propolis based carbopol (CP1%) and chitosan gels were the most pseudoplastic ones. CP1% was the most mucoadhesive preparation, and all of them presented low thixotropy. Results of in vivo efficacy demonstrated that propolis based gels present antifungal action similar to clotrimazole cream, suggesting that future clinical studies should be performed.
Related JoVE Video
Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae.
Eukaryotic Cell
PUBLISHED: 12-30-2010
Show Abstract
Hide Abstract
Propolis, a natural product of plant resins, is used by the bees to seal holes in their honeycombs and protect the hive entrance. However, propolis has also been used in folk medicine for centuries. Here, we apply the power of Saccharomyces cerevisiae as a model organism for studies of genetics, cell biology, and genomics to determine how propolis affects fungi at the cellular level. Propolis is able to induce an apoptosis cell death response. However, increased exposure to propolis provides a corresponding increase in the necrosis response. We showed that cytochrome c but not endonuclease G (Nuc1p) is involved in propolis-mediated cell death in S. cerevisiae. We also observed that the metacaspase YCA1 gene is important for propolis-mediated cell death. To elucidate the gene functions that may be required for propolis sensitivity in eukaryotes, the full collection of about 4,800 haploid S. cerevisiae deletion strains was screened for propolis sensitivity. We were able to identify 138 deletion strains that have different degrees of propolis sensitivity compared to the corresponding wild-type strains. Systems biology revealed enrichment for genes involved in the mitochondrial electron transport chain, vacuolar acidification, negative regulation of transcription from RNA polymerase II promoter, regulation of macroautophagy associated with protein targeting to vacuoles, and cellular response to starvation. Validation studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis.
Related JoVE Video
The Aspergillus nidulans nucA(EndoG) homologue is not involved in cell death.
Eukaryotic Cell
PUBLISHED: 12-03-2010
Show Abstract
Hide Abstract
Upon apoptosis induction, translocation of mammalian mitochondrial endonuclease G (EndoG) to the nucleus coincides with large-scale DNA fragmentation. Here, we describe for the first time a homologue of EndoG in filamentous fungi by investigating if the Aspergillus nidulans homologue of the EndoG gene, named nucA(EndoG), is being activated during farnesol-induced cell death. Our results suggest that NucA is not involved in cell death, but it plays a role in the DNA-damaging response in A. nidulans.
Related JoVE Video
Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response.
Mol. Microbiol.
PUBLISHED: 10-14-2010
Show Abstract
Hide Abstract
Previously, we demonstrated that the Aspergillus nidulans calC2 mutation in protein kinase C pkcA was able to confer tolerance to farnesol (FOH), an isoprenoid that has been shown to inhibit proliferation and induce apoptosis. Here, we investigate in more detail the role played by A. nidulans pkcA in FOH tolerance. We demonstrate that pkcA overexpression during FOH exposure causes increased cell death. FOH is also able to activate several markers of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Our results suggest an intense cross-talk between PkcA and the UPR during FOH-induced cell death. Furthermore, the overexpression of pkcA increases both mRNA accumulation and metacaspases activity, and there is a genetic interaction between PkcA and the caspase-like protein CasA. Mutant analyses imply that MAP kinases are involved in the signal transduction in response to the effects caused by FOH.
Related JoVE Video
Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis.
BMC Complement Altern Med
Show Abstract
Hide Abstract
Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis.
Related JoVE Video
Aspergillus fumigatus calcineurin interacts with a nucleoside diphosphate kinase.
Microbes Infect.
Show Abstract
Hide Abstract
The Ca(2+)-calcineurin pathway affects virulence and morphogenesis in filamentous fungi. Here, we identified 37 CalA-interacting proteins that interact with the catalytic subunit of calcineurin (CalA) in Aspergillus fumigatus, including the nucleoside diphosphate kinase (SwoH). The in vivo interaction between CalA and SwoH was validated by bimolecular fluorescence complementation. A. fumigatus swoH is an essential gene. Therefore, a temperature-sensitive conditional mutant strain with a point mutation in the active site, SwoH(V83F), was constructed, which demonstrated reduced growth and increased sensitivity to elevated temperatures. The SwoH(V83F) mutation did not cause a loss in virulence in the Galleria mellonella infection model. Taken together these results imply that CalA interacts with SwoH.
Related JoVE Video
Molecular characterization of the putative transcription factor SebA involved in virulence in Aspergillus fumigatus.
Eukaryotic Cell
Show Abstract
Hide Abstract
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Nutrient sensing and acquisition mechanisms, as well as the capability to cope with different stressing conditions, are essential for A. fumigatus virulence and survival in the mammalian host. This study characterized the A. fumigatus SebA transcription factor, which is the putative homologue of the factor encoded by Trichoderma atroviride seb1. The ?sebA mutant demonstrated reduced growth in the presence of paraquat, hydrogen peroxide, CaCl2, and poor nutritional conditions, while viability associated with sebA was also affected by heat shock exposure. Accordingly, SebA::GFP (SebA::green fluorescent protein) was shown to accumulate in the nucleus upon exposure to oxidative stress and heat shock conditions. In addition, genes involved in either the oxidative stress or heat shock response had reduced transcription in the ?sebA mutant. The A. fumigatus ?sebA strain was attenuated in virulence in a murine model of invasive pulmonary aspergillosis. Furthermore, killing of the ?sebA mutant by murine alveolar macrophages was increased compared to killing of the wild-type strain. A. fumigatus SebA plays a complex role, contributing to several stress tolerance pathways and growth under poor nutritional conditions, and seems to be integrated into different stress responses.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.