JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Galleria mellonella native and analogue peptides Gm1 and ?Gm1. II) anti-bacterial and anti-endotoxic effects.
Biochim. Biophys. Acta
PUBLISHED: 06-25-2014
Show Abstract
Hide Abstract
Antimicrobial peptides (AMPs) are important components of the innate immune system of animals, plants, fungi and bacteria and are recently under discussion as promising alternatives to conventional antibiotics. We have investigated two cecropin-like synthetic peptides, Gm1, which corresponds to the natural overall uncharged Galleria mellonella native peptide and ?Gm1, a modified overall positively charged Gm1 variant. We have analysed these peptides for their potential to inhibit the endotoxin-induced secretion of tumour necrosis factor-? (TNF-?) from human mononuclear cells. Furthermore, in a conventional microbiological assay, the ability of these peptides to inhibit the growth of the rough mutant bacteria Salmonella enterica Minnesota R60 and the polymyxin B-resistant Proteus mirabilis R45 was investigated and atomic force microscopy (AFM) measurements were performed to characterize the morphology of the bacteria treated by the two peptides. We have also studied their cytotoxic properties in a haemolysis assay to clarify potential toxic effects. Our data revealed for both peptides minor anti-inflammatory (anti-endotoxin) activity, but demonstrated antimicrobial activity with differences depending on the endotoxin composition of the respective bacteria. In accordance with the antimicrobial assay, AFM data revealed a stronger morphology change of the R45 bacteria than for the R60. Furthermore, Gm1 had a stronger effect on the bacteria than ?Gm1, leading to a different morphology regarding indentations and coalescing of bacterial structures. The findings verify the biophysical measurements with the peptides on model systems. Both peptides lack any haemolytic activity up to an amount of 100?g/ml, making them suitable as new anti-infective agents.
Related JoVE Video
Resolving power of dynamic light scattering for protein and polystyrene nanoparticles.
Pharm Dev Technol
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Abstract Dynamic light scattering (DLS) is a non-invasive, label-free technique for the characterization of particles ranging from nanometer to micrometer size. It is widely used for the analysis of proteins to assess association states and the nature of protein aggregates. Despite its frequent use, little quantitative information on its size resolution capabilities, in particular for protein material, is available. This study explores the resolving power of a standard DLS setup for binary mixtures of latex standard particles and mixtures of protein monomer and protein particles made from cross-linked protein material. At constant instrument settings, the resolving power depends on the size ratio and the mass ratio of the species in a mixture as well as on the total concentration and the scattering characteristics of the material. In this study, we provide a summary at which parameter combinations resolution of two species with varying size is possible. These data guide the quantitative evaluation of DLS results for mixtures. We found that a mixture of an antibody monomer and protein particles of an average hydrodynamic diameter of 50?nm can be resolved at a 1-20-fold excess of monomer (by mass). A mixture of monomer and 70?nm particles can be resolved at a 2-30-fold excess, a mixture of monomer and 190?nm particles at a 200-1700-fold excess of monomer. The findings allow to better judge DLS results for protein samples of unknown composition.
Related JoVE Video
Galleria mellonella native and analogue peptides Gm1 and ?Gm1. I) biophysical characterization of the interaction mechanisms with bacterial model membranes.
Biochim. Biophys. Acta
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Natural occurring antimicrobial peptides (AMPs) are important components of the innate immune system of animals and plants. They are considered to be promising alternatives to conventional antibiotics. Here we present a comparative study of two synthetic peptides: Gm1, corresponding to the natural overall uncharged peptide from Galleria mellonella (Gm) and ?Gm1, a modified overall positively charged Gm1 variant. We have studied the interaction of the peptides with lipid membranes composed of different kinds of lipopolysaccharides (LPS) and dimyristoylphosphatidylglycerol (DMPG), in some cases also dimyristoylphosphatidylethanolamine (DMPE) as representative lipid components of Gram-negative bacterial membranes, by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). Gm1 generates a destabilizing effect on the gel to liquid crystalline phase transition of the acyl chains of the lipids, as deduced from a decrease in the phase transition temperature and enthalpy, suggesting a fluidization, whereas ?Gm1 led to the opposite behavior. Further, FTIR analysis of the functional groups of the lipids participating in the interaction with the peptides indicated a shift in the band position and intensity of the asymmetric PO2(-) stretching vibration originating from the lipid phosphate groups, a consequence of the sterical changes in the head group region. Interestingly, FRET spectroscopy showed a similar intercalation of both peptides into the DMPG and LPS, but much less into the DMPE membrane systems. These results are discussed in the light of a possible use of the peptides as antimicrobial and anti-endotoxin drugs.
Related JoVE Video
Prediction of colloidal stability of high concentration protein formulations.
Pharm Dev Technol
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Abstract A major aspect determining the colloidal properties of proteins in solution is the interaction between them and with surrounding molecules. These interactions can be described by the concentration dependency of the protein diffusivity (kD), as derived by dynamic light scattering and was determined for different solutions of monoclonal antibodies varying in pH, ionic strength and presence/absence of co-solute(s). Concerning colloidal stability, protein solutions of different kD values are evaluated, based on their initial solution opalescence, to assess protein association. The current investigation shows that solution conditions with large kD values, indicating high repulsive protein-protein interactions, show lower initial opalescence, compared to solution conditions with low kD values. Upon applying stirring stress, to assess colloidal stability, the trend is such that, the higher kD values are, the more stable the protein solutions are, as long as the thermodynamic and conformational stability is not impaired. Besides, kD allows ranking of solution conditions for highly concentrated immunoglobulin solutions up to concentrations of ?200?mg?mL(-1) with regard to protein self-association and thus opalescent properties. The present study shows that the protein interaction parameter kD can be used as a surrogate parameter for a qualitative prediction of protein association and, thus, colloidal protein stability.
Related JoVE Video
Buffer capacity of biologics--from buffer salts to buffering by antibodies.
Biotechnol. Prog.
PUBLISHED: 03-01-2013
Show Abstract
Hide Abstract
Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ?I=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions.
Related JoVE Video
Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC): impact of cultivation time.
Eur J Pharm Sci
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence on ROC cultivation time and in comparison to native human and rat stratum cornea. In addition, the thermal phase behavior was studied by differential scanning calorimetry (DSC) and barrier properties were checked by measurements of the permeability of tritiated water. The development of the barrier of ROC SC obtained at different cultivation times (7, 14 and 21 days at the air-liquid interface) was connected with an increase in structural order of the SC lipids in SAXS measurements: Already cultivation for 14 days at the air-liquid interface resulted overall in a competent SC permeability barrier and SC lipid organization. Cultivation for 21 days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e.g. slightly smaller than that determined for human SC in the present study (127Å). Moreover, SAXS results also indicate the presence of covalently bound ceramides, which are crucial for a proper SC barrier, although the corresponding thermal transitions were not clearly detectable by DSC. Due to the competent SC barrier properties and high structural and organizational similarity to that of native human SC, ROC presents a promising alternative for in vitro studies, particularly as it can be obtained under overall rather straightforward cell culture conditions and thus low assay costs.
Related JoVE Video
Biophysical mechanisms of the neutralization of endotoxins by lipopolyamines.
Open Biochem J
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Endotoxins (lipopolysaccharides, LPS) are one of the strongest immunostimulators in nature, responsible for beneficial effects at low, and pathophysiological effects at high concentrations, the latter frequently leading to sepsis and septic shock associated with high mortality in critical care settings. There are no drugs specifically targeting the pathophysiology of sepsis, and new therapeutic agents are therefore urgently needed. The lipopolyamines are a novel class of small molecules designed to sequester and neutralize LPS. To understand the mechanisms underlying the binding and neutralization of LPS toxicity, we have performed detailed biophysical analyses of the interactions of LPS with candidate lipopolyamines which differ in their potencies of LPS neutralization. We examined gel-to-liquid crystalline phase behavior of LPS and of its supramolecular aggregate structures in the absence and presence of lipopolyamines, the ability of such compounds to incorporate into different membrane systems, and the thermodynamics of the LPS:lipopolyamine binding. We have found that the mechanisms which govern the inactivation process of LPS obey similar rules as found for other active endotoxin neutralizers such as certain antimicrobial peptides.
Related JoVE Video
Non-ideal mixing and fluid-fluid immiscibility in phosphatidic acid-phosphatidylethanolamine mixed bilayers.
Eur. Biophys. J.
PUBLISHED: 04-27-2011
Show Abstract
Hide Abstract
Differential scanning calorimetry (DSC) was used to study the miscibility of phosphatidic acids (PAs) with phosphatidylethanolamines (PEs) as a function of chain length (n = 14, 16) and degree of ionization of PAs at pH 4, pH 7, and pH 12. Phase diagrams were constructed using temperature data for onset and end of the phase transition obtained from the direct simulation of the heat-capacity curves. The phase diagrams were analyzed by simulations of the coexistence curves utilizing a four-parameter regular solution model. For PA-PE mixtures, the non-ideality parameters are a function of composition indicating non-symmetric non-ideal mixing behavior. At pH 7, where the PA component is negatively charged, the systems DMPA:DMPE and DPPA:DPPE have positive non-ideality parameters ? (1) in both phases, indicating a preferred aggregation of like molecules. In contrast, DMPA:DPPE and DPPA:DMPE mixtures had negative ? (1) values. Measurements at pH 4 showed that mixed pair formation is favored when PA is protonated. At pH 12 where PA is doubly charged, highly positive ? (l1) parameters are obtained for the liquid-crystalline phase except for the system DPPA:DPPE (? (1) < 0). This indicates clustering of like molecules and possibly domain formation in the liquid-crystalline phase. DPPA:DMPE at pH 12 even shows a miscibility gap in the liquid-crystalline phase. Obviously, despite the presence of doubly charged PA a fluid-fluid immiscibility is induced.
Related JoVE Video
Human cells and cell membrane molecular models are affected in vitro by the nonsteroidal anti-inflammatory drug ibuprofen.
Biochim. Biophys. Acta
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
This report presents evidence that ibuprofen interacts with red cell membranes as follows: a) in scanning electron microscopy (SEM) studies on human erythrocytes induced shape changes at a concentration as low as 10?M; b) in isolated unsealed human erythrocyte membranes (IUM) induced mild increase in the water content or in their molecular dynamics at the hydrophobic-hydrophilic interphase, while a corresponding ordering decrease at the deep phospholipids acyl chain level; c) at physiological temperature (37°C), 300?M ibuprofen induced a significant increase in the generalized polarization (GP) of dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles (LUV), an indication that ibuprofen molecules locate in the head polar group region of DMPC; d) X-ray diffraction studies showed that ibuprofen concentrations?300?M induced increasing structural perturbation to DMPC bilayers; e) differential scanning calorimetry (DSC) data showed that ibuprofen was able to alter the cooperativity of DMPC phase transition in a concentration-dependent manner, to destabilize the gel phase and that ibuprofen did not significantly perturb the organization of the lipid hydrocarbon chains. Additionally, the effect on the viability of both human promyelocytic leukemia HL-60 and human cervical carcinoma HeLa cells was studied.
Related JoVE Video
Peptide-based treatment of sepsis.
Appl. Microbiol. Biotechnol.
PUBLISHED: 02-12-2011
Show Abstract
Hide Abstract
Sepsis (blood poisoning) is a severe infectious disease with high mortality, and no effective therapy is actually known. In the case of Gram-negative bacteria, endotoxins (lipopolysaccharides) are known to be responsible for the strong inflammation reaction leading to the systemic infection. Peptides based on endotoxin-binding domains of human or animal proteins represent a promising approach in sepsis research. Although so far no medicament is available, the progress in recent years might lead to a breakthrough in this field. In this review, recent investigations are summarised, which may lead to an understanding of the mechanisms of action of peptides to suppress the inflammation reaction in vitro and in vivo (animal models) and thus may allow the development of effective anti-septic drugs.
Related JoVE Video
Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides.
Biophys. J.
PUBLISHED: 01-15-2011
Show Abstract
Hide Abstract
Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS.
Related JoVE Video
Strategies for the assessment of protein aggregates in pharmaceutical biotech product development.
Pharm. Res.
PUBLISHED: 08-04-2010
Show Abstract
Hide Abstract
Within the European Immunogenicity Platform (EIP) ( http://www.e-i-p.eu ), the Protein Characterization Subcommittee (EIP-PCS) has been established to discuss and exchange experience of protein characterization in relation to unwanted immunogenicity. In this commentary, we, as representatives of EIP-PCS, review the current state of methods for analysis of protein aggregates. Moreover, we elaborate on why these methods should be used during product development and make recommendations to the biotech community with regard to strategies for their application during the development of protein therapeutics.
Related JoVE Video
Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin.
Innate Immun
PUBLISHED: 08-03-2010
Show Abstract
Hide Abstract
Lipopolysaccharides (LPSs) from Gram-negative bacteria are strong elicitors of the human immune systems. There is strong evidence that aggregates and not monomers of LPS play a decisive role at least in the initial stages of cell activation of immune cells such as mononuclear cells. In previous reports, it was shown that the biologically most active part of enterobacterial LPS, hexa-acyl bisphosphorylated lipid A, adopts a particular supramolecular conformation, a cubic aggregate structure. However, little is known about the size and morphology of these aggregates, regarding the fact that LPS may have strong variations in the length of the saccharide chains (various rough mutant and smooth-form LPS). Thus, in the present paper, several techniques for the determination of details of the aggregate morphology such as freeze-fracture and cryo-electron microscopy, analytical ultracentrifugation, laser backscattering analysis, and small-angle X-ray scattering were applied for various endotoxin (lipid A and different LPS) preparations. The data show a variety of different morphologies not only for different endotoxins but also when comparing different applied techniques. The data are interpreted with respect to the suitability of the single techniques, in particular on the basis of available literature data.
Related JoVE Video
The microstructure of the stratum corneum lipid barrier: mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems.
Biophys. Chem.
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
The current mid-infrared spectroscopic study is a systematic investigation of hydrated stratum corneum lipid barrier model systems composed of an equimolar mixture of a ceramide, free palmitic acid and cholesterol. Four different ceramide molecules (CER NS, CER NP, CER NP-18:1, CER AS) were investigated with regard to their microstructure arrangement in a stratum corneum lipid barrier model system. Ceramide molecules were chosen from the sphingosine and phytosphingosine groups. The main differences in the used ceramide molecules result from their polar head group architecture as well as hydrocarbon chain properties. The mixing properties with cholesterol and palmitic acid are considered. This is feasible by using perdeuterated palmitic acid and proteated ceramides. Both molecules can be monitored separately, within the same experiment, using mid-infrared spectroscopy; no external label is necessary. At physiological relevant temperatures, between 30 and 35 degrees C, orthorhombic as well as hexagonal chain packing of the ceramide molecules is observed. The formation of these chain packings are extremely dependent on lipid hydration, with a decrease in ceramide hydration favouring the formation of orthorhombic hydrocarbon chain packing, as well as temperature. The presented data suggest in specific cases phase segregation in ceramide and palmitic acid rich phases. However, other ceramides like CER NP-18:1 show a rather high miscibility with palmitic acid and cholesterol. For all investigated ternary systems, more or less mixing of palmitic acid with cholesterol is observed. The investigated stratum corneum mixtures exhibit a rich polymorphism from crystalline domains with heterogeneous lipid composition to a "fluid" homogeneous phase. Thus, a single gel phase is not evident for the presented stratum corneum model systems. The study shows, that under skin physiological conditions (pH 5.5, hydrated, 30-35 degrees C) ternary systems composed of an equimolar ratio of ceramides, free palmitic acid and cholesterol may form gel-like domains delimitated by a liquid-crystalline phase boundary. The presented results support the microstructural arrangement of the stratum corneum lipids as suggested by the domain mosaic model.
Related JoVE Video
Molecular basis for endotoxin neutralization by amphipathic peptides derived from the alpha-helical cationic core-region of NK-lysin.
Biophys. Chem.
PUBLISHED: 01-21-2010
Show Abstract
Hide Abstract
An analysis of the interaction of the NK-lysin derived peptide NK-2 and of analogs thereof with bacterial lipopolysaccharide (LPS, endotoxin) was performed to determine the most important biophysical parameters for an effective LPS neutralization. We used microcalorimetry, FTIR spectroscopy, Zeta potential measurements, and small-angle X-ray scattering to analyze the peptide:LPS binding enthalpy, the accessible LPS surface charge, the fluidity of the LPS hydrocarbon chains, their phase transition enthalpy change, the aggregate structure of LPS, and how these parameters are modulated by the peptides. We conclude that (i) a high peptide:LPS binding affinity, which is facilitated by electrostatic and hydrophobic interactions and which leads to a positive Zeta potential, (ii) the formation of peptide-enriched domains, which destabilize the lipid packing, demonstrated by a drastic decrease of phase transition enthalpy change of LPS, and (iii) the multilamellarization of the LPS aggregate structure are crucial for an effective endotoxin neutralization by cationic peptides.
Related JoVE Video
A critical evaluation of self-interaction chromatography as a predictive tool for the assessment of protein-protein interactions in protein formulation development: a case study of a therapeutic monoclonal antibody.
Eur J Pharm Biopharm
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
The aim of this study was to establish and evaluate a screening method for the physical characterization of protein-protein interactions of therapeutic proteins based on the determination of the osmotic second virial coefficient (B(22)). B(22) of an IgG1 was measured by self-interaction chromatography (SIC) and was compared to data obtained from static light scattering (SLS). As assessed by Fourier transform infrared spectroscopy (FTIR), the protein coupling to chromatography particles had no relevant influence on the three-dimensional native structure of the IgG1. B(22) variations could be measured for physiological relevant excipient concentrations. Significant positive B(22) values were observed for the following solution conditions of the investigated antibody: (i) acidic pH conditions, (ii) low buffer concentrations, (iii) low salt concentrations and (iv) high amino acid concentrations. B(22) was compared to IgG1 stability data derived from a study conducted for 12weeks at 40 degrees C. A concentration of 5mM histidine, which was the most promising buffer candidate according to B(22), showed a slightly better physical stability (as assessed by turbidity and size exclusion chromatography) compared to the other tested formulations. This is confirmed in a stress study investigating the colloidal stability. Thus, measuring protein-protein interactions with SIC appeared as a promising screening tool for physical characterization of protein formulations for cases in which the protein stability is governed by interparticle interactions.
Related JoVE Video
Effects of the nonsteroidal anti-inflammatory drug naproxen on human erythrocytes and on cell membrane molecular models.
Biophys. Chem.
PUBLISHED: 01-04-2010
Show Abstract
Hide Abstract
Naproxen, a nonsteroidal anti-inflammatory drug (NSAID), has been widely investigated in terms of its pharmacological action, but less is known about its effects on cell membranes and particularly those of human erythrocytes. In the present work, the structural effects on the human erythrocyte membrane and molecular models have been investigated. The latter consisted in bilayers built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), classes of lipids found in the outer and inner moieties of the erythrocyte and most cell membranes, respectively. This report presents evidence that naproxen interacts with red cell membranes as follows: a) in scanning electron microscopy (SEM) studies on human erythrocytes it has been observed that the drug induced shape changes, forming echinocytes at a concentration as low as 10microM; b) X-ray diffraction showed that naproxen strongly interacted with DMPC multilayers; in contrast, no perturbing effects on DMPE multilayers were detected; c) differential scanning calorimetry (DSC) data showed a decrease in the melting temperature (T(m)) of DMPC liposomes, which was attributed to a destabilization of the gel phase, effect that was less pronounced for DMPE. These experimental results were observed at concentrations lower than those reported for plasma after therapeutic administration. This is the first time in which the structural effects of naproxen on the human erythrocyte membrane have been described.
Related JoVE Video
An infrared reflection-absorption spectroscopic (IRRAS) study of the interaction of lipid A and lipopolysaccharide Re with endotoxin-binding proteins.
Med Chem
PUBLISHED: 09-15-2009
Show Abstract
Hide Abstract
Lipopolysaccharides (LPS, endotoxins) are main constituents of the outer membranes of Gram-negative bacteria, with the endotoxic principle lipid A anchoring LPS into the membrane. When LPS is removed from the bacteria by the action of the immune system or simply by cell dividing, it may interact strongly with immunocompetent cells such as mononuclear cells. This interaction may lead, depending on the LPS concentration, to beneficial (at low) or pathophysiological (at high concentrations) reactions, the latter frequently causing the septic shock syndrome. There is a variety of endogenous LPS-binding proteins. To this class belong lactoferrin (LF) and hemoglobin (Hb), which have been shown to suppress and enhance the LPS-induced cytokine secretion in mononuclear cells, respectively. To elucidate the interaction mechanisms of endotoxins with these proteins, we have investigated in an infrared reflection-absorption spectroscopy (IRRAS) study the interaction of LPS or lipid A monolayers at the air/water interface with LF and Hb proteins, injected into the aqueous subphase. The data are clearly indicative of completely different interaction mechanisms of the endotoxins with the proteins, with the LF acting only at the LPS backbone, whereas Hb incorporates into the lipid monolayer. These data allow an understanding of the different reactivities in the biomedicinal systems.
Related JoVE Video
The expression of endotoxic activity in the Limulus test as compared to cytokine production in immune cells.
Curr. Med. Chem.
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
Lipopolysaccharides (LPS, endotoxins) belong to the strongest elicitors of the mammalian immune system due to the induction of a series of cytokines such as tumor-necrosis-factor-alpha (TNFalpha) in immunocompetent cells like mononuclear cells. Since the effects of LPS on human health may be pathologically at too high concentrations (e.g., septic shock syndrome), it is of uttermost importance to have a reliable assay for measuring the concentrations of endotoxins in vitro and in vivo (human body fluids). The activation of the clotting cascade from the horseshoe crab (Limulus polyphemus), the Limulus amoebocyte lysate test (LAL), has been the standard and most sensitive assay to detect bacterial endotoxins. However, there are restrictions with this test. It was found in some clinical trials that the results from the LAL test did not correlate with the presence of bacteremia due to Gram-negative organisms or with the mortality but correlated with the presence of fungal bloodstream infections. This resulted from the fact that the LAL assay does not only respond to bacterial endotoxins but is activated also by (1-->3)-beta-D-glucan. Furthermore, in extensive studies the structural requirements for activation of the LAL test were analyzed, and it was found that the LAL activity correlated with pyrogenicity but not with activation of the complement cascade. Furthermore, there was no correlation of the LAL activity with cytokine expression (for example tumor-necrosis-factor-alpha and interleulkins-1 and 6) in mononuclear cells when the 4/2 acyl chain pattern of enterobacterial lipid A was changed, or when the cytokine production induced by LPS from various different species in the whole blood assay was compared with the response from the LAL test. To clarify the questions raised by the different experimental findings, data from literature are summarized to get a more closer insight where the Limulus test confidentially monitors the endotoxicity of LPS and other compounds and where this is not the case, and which are the decisive epitopes for recognition of the LPS molecules. These data are very crucial for example in clinical tests, whether the LAL assay can reliably describe the effectivity of an antibacterial therapy.
Related JoVE Video
Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.
Biotechnol J
PUBLISHED: 07-07-2009
Show Abstract
Hide Abstract
The purpose of the presented study is to understand the physicochemical properties of proteins in aqueous solutions in order to identify solution conditions with reduced attractive protein-protein interactions, to avoid the formation of protein aggregates and to increase protein solubility. This is assessed by measuring the osmotic second virial coefficient (B(22)), a parameter of solution non-ideality, which is obtained using self-interaction chromatography. The model protein is lysozyme. The influence of various solution conditions on B(22) was investigated: protonation degree, ionic strength, pharmaceutical relevant excipients and combinations thereof. Under acidic solution conditions B(22) is positive, favoring protein repulsion. A similar trend is observed for the variation of the NaCl concentration, showing that with increasing the ionic strength protein attraction is more likely. B(22) decreases and becomes negative. Thus, solution conditions are obtained favoring attractive protein-protein interactions. The B(22) parameter also reflects, in general, the influence of the salts of the Hofmeister series with regard to their salting-in/salting-out effect. It is also shown that B(22) correlates with protein solubility as well as physical protein stability.
Related JoVE Video
A thermodynamic analysis of the binding interaction between polysorbate 20 and 80 with human serum albumins and immunoglobulins: a contribution to understand colloidal protein stabilisation.
Biophys. Chem.
PUBLISHED: 01-26-2009
Show Abstract
Hide Abstract
The development of liquid therapeutic protein drugs imposes the presence of specific stabilisation agents to prevent protein degradation in order to reach shelf-lives of at least 2 years for drugs stored at 2-8 degrees C. Non-ionic detergents are used to avoid protein adsorption and the formation of protein aggregates. Depending on the protein and excipient (detergent) used the stabilisation effect is quite different and cannot be predicted up to now. One reason for this is the inadequate understanding of the principles that govern the stabilisation of proteins in the presence of detergents. One stabilisation mechanism discussed implicates a direct binding of detergent molecules to the hydrophobic surface area(s) of the protein in order to minimise protein-protein interactions and thus protein aggregation. Therefore, the presented study considers the interaction and binding of polysorbate 20 and 80 to various human serum albumins and immunoglobulins of different subtypes. The interaction is analysed by means of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). From ITC the binding constant is derived as well as the thermodynamic parameters. The thermal protein stability is obtained from DSC. The results show that binding of the two detergents to human serum albumin is observed with binding constants of approximately approximately 10(3) M(-1), with 1-3 detergent molecules binding to the albumins. The exact polysorbate-albumin ratio depends on the used albumin fraction. The interaction of the detergent is also obvious from the DSC results, showing an increase of the denaturation temperature. However, the binding of the detergent to the three investigated immunoglobulins is quite low and negligible, thus showing that for immunoglobulins a direct and strong polysorbate binding to the protein is not the reason for the colloidal stabilisation effect of immunoglobulins in solution in the presence of polysorbate 20 or 80.
Related JoVE Video
The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: a physico-chemical study with lecithin phospholipids.
Biochim. Biophys. Acta
PUBLISHED: 01-21-2009
Show Abstract
Hide Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) represent non-specific inhibitors of the cycloxygenase pathway of inflammation, and therefore an understanding of the interaction process of the drugs with membrane phospholipids is of high relevance. We have studied the interaction of the NSAIDs with phospholipid membranes made from dimyristoylphosphatidylcholine (DMPC) by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). FTIR data obtained via attenuated total reflectance (ATR) show that the interaction between DMPC and NSAIDs is limited to a strong interaction of the drugs with the phosphate region of the lipid head group. The FTIR transmission data furthermore are indicative of a strong effect of the drugs on the hydrocarbon chains inducing a reduction of the chain-chain interactions, i.e., a fluidization effect. Parallel to this, from the DSC data beside the decrease of T(m) a reduction of the peak height of the melting endotherm connected with its broadening is observed, but leaving the overall phase transition enthalpy constant. Additionally, phase separation is observed, inducing the formation of a NSAID-rich and a NSAID-poor phase. This is especially pronounced for Diclofenac. Despite the strong influence of the drugs on the acyl chain moiety, FRET data do not reveal any evidence for drug incorporation into the lipid matrix, and ITC measurements performed do not exhibit any heat production due to drug binding. This implies that the interaction process is governed by only entropic reactions at the lipid/water interface.
Related JoVE Video
Insights into protein-polysorbate interactions analysed by means of isothermal titration and differential scanning calorimetry.
Eur. Biophys. J.
PUBLISHED: 01-02-2009
Show Abstract
Hide Abstract
Therapeutic proteins formulated as liquid solutions at high protein concentration are very sensitive to chemical and physical degradation. Especially avoiding the formation of protein aggregates is very crucial for product quality. In order to stabilize the colloidal properties of protein therapeutics various excipient are used. Especially the detergents polysorbate 20 and 80 are common. However, the mechanism upon which the detergents protect the protein from aggregation is not really known. The present study investigates the interaction of polysorbate 20 and 80 with different proteins: lysozyme, bovine serum albumin (BSA) and an immunoglobulin. The interaction and binding of the detergents to the proteins is investigated by isothermal titration calorimetry (ITC). From ITC the thermodynamic parameters (DeltaH: change in enthalpy, DeltaS: entropy and DeltaG: free energy) upon binding are derived as well as the binding constant K (a). The thermal stability of the proteins in the presence of the detergent is assessed by differential scanning calorimetry (DSC). The results show that both detergents bind to BSA with K (a) between 8 and 12 x 10(3) M(-1) with DeltaH -50 to -60 kJ/mol (25 degrees C). One to two detergent molecules bind to BSA. The presence of both detergents induces a weak stabilisation of the thermal denaturation properties of BSA. However, the interaction of polysorbate 20 and 80 with lysozyme and the immunoglobulin is quite negligible. The presence of the detergents up to a concentration of 2 mM has no impact on the heat capacity curve neither a destabilisation nor a stabilisation of the native conformation is observed.
Related JoVE Video
Bacterial cell wall compounds as promising targets of antimicrobial agents II. Immunological and clinical aspects.
Curr Drug Targets
Show Abstract
Hide Abstract
The bacterial cell wall represents the primary target for antimicrobial agents. Microbial destruction is accompanied by the release of potent immunostimulatory membrane constituents. Both Gram-positive and Gram-negative bacteria release a variety of lipoproteins and peptidoglycan fragments. Gram-positive bacteria additionally provide lipoteichoic acids, whereas Gram-negative bacteria also release lipopolysaccharide (LPS, endotoxin), essential component of the outer leaflet of the bacterial cell wall and one of the most potent immunostimulatory molecules known. Immune activation therefore can be considered as an adverse effect of antimicrobial destruction and killing during anti-infective treatment. In contrast to antibiotics, the use of cationic amphiphilic antimicrobial peptides allows both effective bacterial killing and inhibition of the immunostimulatory effect of the released bacterial membrane constituents. The administration of antimicrobial peptides alone or in combination with antibiotic agents thus represents a novel strategy in the antiinfective treatment with potentially important beneficial aspects. Here, data are presented which describe immunological and clinical aspects of the use of antimicrobial peptides (AMPs) as therapeutic agents to treat bacterial infection and neutralize the immunostimulatory activity of released cell wall constituents.
Related JoVE Video
Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines.
Curr Drug Targets
Show Abstract
Hide Abstract
The first barrier that an antimicrobial agent must overcome when interacting with its target is the microbial cell wall. In the case of Gram-negative bacteria, additional to the cytoplasmic membrane and the peptidoglycan layer, an outer membrane (OM) is the outermost barrier. The OM has an asymmetric distribution of the lipids with phospholipids and lipopolysaccharide (LPS) located in the inner and outer leaflets, respectively. In contrast, Gram-positive bacteria lack OM and possess a much thicker peptidoglycan layer compared to their Gram-negative counterparts. An additional class of amphiphiles exists in Gram-positives, the lipoteichoic acids (LTA), which may represent important structural components. These long molecules cross-bridge the entire cell envelope with their lipid component inserting into the outer leaflet of the cytoplasmic membrane and the teichoic acid portion penetrating into the peptidoglycan layer. Furthermore, both classes of bacteria have other important amphiphiles, such as lipoproteins, whose importance has become evident only recently. It is not known yet whether any of these amphiphilic components are able to stimulate the immune system under physiological conditions as constituents of intact bacteria. However, all of them have a very high pro-inflammatory activity when released from the cell. Such a release may take place through the interaction with the immune system, or with antibiotics (particularly with those targeting cell wall components), or simply by the bacterial division. Therefore, a given antimicrobial agent must ideally have a double character, namely, it must overcome the bacterial cell wall barrier, without inducing the liberation of the pro-inflammatory amphiphiles. Here, new data are presented which describe the development and use of membrane-active antimicrobial agents, in particular antimicrobial peptides (AMPs) and lipopolyamines. In this way, essential progress was achieved, in particular with respect to the inhibition of deleterious consequences of bacterial infections such as severe sepsis and septic shock.
Related JoVE Video
Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins, part 2: stability during storage at elevated temperatures.
J Pharm Sci
Show Abstract
Hide Abstract
The objective of this work was to investigate the effect of lyophilizate collapse on the stability of freeze-dried protein pharmaceuticals. In the first part of this study, it was shown that collapse has no negative impact either on the properties of the freeze-dried cake or on protein stability [Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. 2010. J Pharm Sci 99(5):2256-2278]. In order to further investigate the effect of collapse, its impact on lyophilizates long-term stability during storage at various temperatures was evaluated at 2°C-8°C, 25°C, 40°C, and 50°C for up to 6 months. Collapsed and noncollapsed lyophilizates of identical formulation and comparable residual moisture levels containing the following proteins were investigated: (1) a monoclonal immunoglobulin G antibody, (2) tissue-type plasminogen activator, and (3) the sensitive model protein l-lactic dehydrogenase. Protein stability was monitored using a comprehensive set of analytical techniques assessing the formation of soluble and insoluble aggregates, the biological activity, and the protein conformation. The properties of the freeze-dried cake--namely, the glass transition temperature, excipient crystallinity, reconstitution behavior, and the residual moisture content, were analyzed as well. Full protein stability in collapsed cakes was observed, and even enhanced protein stability was detected in collapsed cakes with regard to key stability-indicating parameters.
Related JoVE Video
Viscosity measurements of antibody solutions by photon correlation spectroscopy: an indirect approach - limitations and applicability for high-concentration liquid protein solutions.
Pharm Dev Technol
Show Abstract
Hide Abstract
Photon correlation spectroscopy (PCS) is compared with classic rheological measurements using the cone-and-plate technique for the determination of the viscosity of protein solutions. The potential advantages using PCS are small sample volume and fast determination of zero-shear viscosity. The present study assesses potentials and limitations of the applicability of this method for the determination of viscosity of antibody solutions in protein science development. The principle of the assay is based on the determination of the apparent hydrodynamic radius of commercial available latex beads of known size added to protein solutions. Using the Stokes-Einstein equation, the hydrodynamic radius can be converted to viscosity. Several latex particle sizes and concentrations were evaluated and the assay optimized. The PCS assay for viscosity determination was tested using water/glycerol-mixtures, where the viscosity was measured with rheometer using the cone-and-plate method and also compared with published data. Different protein solutions of bovine serum albumin, lysozyme and monoclonal antibodies were then used and the PCS results were compared with viscosity data obtained by the cone-and-plate method. It could be shown that the PCS assay has limitations for the determination of the viscosity of protein solutions, especially monoclonal antibodies. The main reason is due to protein-latex bead interactions leading to the formation of larger aggregates. The use of surface modification of the latex beads can in principle prevent this interaction.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.