JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A complex distribution of elongation family GTPases EF1A and EFL in basal alveolate lineages.
Genome Biol Evol
PUBLISHED: 09-03-2014
Show Abstract
Hide Abstract
Translation elongation factor-1 alpha (EF1A) and the related GTPase EF-like (EFL) are two proteins with a complex mutually exclusive distribution across the tree of eukaryotes. Recent surveys revealed that the distribution of the two GTPases in even closely related taxa is frequently at odds with their phylogenetic relationships. Here, we investigate the distribution of EF1A and EFL in the alveolate supergroup. Alveolates comprise three major lineages: ciliates and apicomplexans encode EF1A, whereas dinoflagellates encode EFL. We searched transcriptome databases for seven early-diverging alveolate taxa that do not belong to any of these groups: colpodellids, chromerids, and colponemids. Current data suggest all seven are expected to encode EF1A, but we find three genera encode EFL: Colpodella, Voromonas, and the photosynthetic Chromera. Comparing this distribution with the phylogeny of alveolates suggests that EF1A and EFL evolution in alveolates cannot be explained by a simple horizontal gene transfer event or lineage sorting.
Related JoVE Video
Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts.
Genome Biol Evol
PUBLISHED: 08-31-2014
Show Abstract
Hide Abstract
Dinoflagellates harboring diatom endosymbionts (termed "dinotoms") have undergone a process often referred to as "tertiary endosymbiosis"--the uptake of algae containing secondary plastids and integration of those plastids into the new host. In contrast to other tertiary plastids, and most secondary plastids, the endosymbiont of dinotoms is distinctly less reduced, retaining a number of cellular features, such as their nucleus and mitochondria and others, in addition to their plastid. This has resulted in redundancy between host and endosymbiont, at least between some mitochondrial and cytosolic metabolism, where this has been investigated. The question of plastidial redundancy is particularly interesting as the fate of the host dinoflagellate plastid is unclear. The host cytosol possesses an eyespot that has been postulated to be a remnant of the ancestral peridinin plastid, but this has not been tested, nor has its possible retention of plastid functions. To investigate this possibility, we searched for plastid-associated pathways and functions in transcriptomic data sets from three dinotom species. We show that the dinoflagellate host has indeed retained genes for plastid-associated pathways and that these genes encode targeting peptides similar to those of other dinoflagellate plastid-targeted proteins. Moreover, we also identified one gene encoding an essential component of the dinoflagellate plastid protein import machinery, altogether suggesting the presence of a functioning plastid import system in the host, and by extension a relict plastid. The presence of the same plastid-associated pathways in the endosymbiont also extends the known functional redundancy in dinotoms, further confirming the unusual state of plastid integration in this group of dinoflagellates.
Related JoVE Video
The Phylogenetic Position of Kofoidia loriculata (Parabasalia) and its Implications for the Evolution of the Cristamonadea.
J. Eukaryot. Microbiol.
PUBLISHED: 08-23-2014
Show Abstract
Hide Abstract
Kofoidia loriculata is a parabasalid symbiont inhabiting the hindgut of the lower termite Paraneotermes simplicicornis. It was initially described as a lophomonad due to its apical tuft of multiple flagella that disintegrate during cell division, but its phylogenetic relationships have not been investigated using molecular evidence. From single cell isolations, we sequenced the small subunit rRNA gene and determined that K. loriculata falls within the Cristamonadea, but is unrelated to other lophomonads. This analysis further demonstrates the polyphyly of the lophomonads and the necessity to re-assess the morphological and cellular evolution of the Cristamonadea.
Related JoVE Video
Endosymbiosis: protein targeting further erodes the organelle/symbiont distinction.
Curr. Biol.
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
New work in aphids shows that a nuclear-encoded protein resulting from a horizontal gene transfer is targeted to a bacterial symbiont, further blurring the distinction between organelle and symbiont.
Related JoVE Video
A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium.
PLoS Genet.
PUBLISHED: 05-01-2014
Show Abstract
Hide Abstract
The evolution of an obligate parasitic lifestyle is often associated with genomic reduction, in particular with the loss of functions associated with increasing host-dependence. This is evident in many parasites, but perhaps the most extreme transitions are from free-living autotrophic algae to obligate parasites. The best-known examples of this are the apicomplexans such as Plasmodium, which evolved from algae with red secondary plastids. However, an analogous transition also took place independently in the Helicosporidia, where an obligate parasite of animals with an intracellular infection mechanism evolved from algae with green primary plastids. We characterised the nuclear genome of Helicosporidium to compare its transition to parasitism with that of apicomplexans. The Helicosporidium genome is small and compact, even by comparison with the relatively small genomes of the closely related green algae Chlorella and Coccomyxa, but at the functional level we find almost no evidence for reduction. Nearly all ancestral metabolic functions are retained, with the single major exception of photosynthesis, and even here reduction is not complete. The great majority of genes for light-harvesting complexes, photosystems, and pigment biosynthesis have been lost, but those for other photosynthesis-related functions, such as Calvin cycle, are retained. Rather than loss of whole function categories, the predominant reductive force in the Helicosporidium genome is a contraction of gene family complexity, but even here most losses affect families associated with genome maintenance and expression, not functions associated with host-dependence. Other gene families appear to have expanded in response to parasitism, in particular chitinases, including those predicted to digest the chitinous barriers of the insect host or remodel the cell wall of Helicosporidium. Overall, the Helicosporidium genome presents a fascinating picture of the early stages of a transition from free-living autotroph to parasitic heterotroph where host-independence has been unexpectedly preserved.
Related JoVE Video
The others: our biased perspective of eukaryotic genomes.
Trends Ecol. Evol. (Amst.)
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Understanding the origin and evolution of the eukaryotic cell and the full diversity of eukaryotes is relevant to many biological disciplines. However, our current understanding of eukaryotic genomes is extremely biased, leading to a skewed view of eukaryotic biology. We argue that a phylogeny-driven initiative to cover the full eukaryotic diversity is needed to overcome this bias. We encourage the community: (i) to sequence a representative of the neglected groups available at public culture collections, (ii) to increase our culturing efforts, and (iii) to embrace single cell genomics to access organisms refractory to propagation in culture. We hope that the community will welcome this proposal, explore the approaches suggested, and join efforts to sequence the full diversity of eukaryotes.
Related JoVE Video
Overexpression of molecular chaperone genes in nucleomorph genomes.
Mol. Biol. Evol.
PUBLISHED: 03-06-2014
Show Abstract
Hide Abstract
Chlorarachniophytes and cryptophytes possess complex plastids that were acquired by the ingestion of a green and red algal endosymbiont, respectively. The plastids are surrounded by four membranes, and a relict nucleus, called the nucleomorph, remains in the periplastidal compartment, which corresponds to the remnant cytoplasm of the endosymbiont. Nucleomorphs contain a greatly reduced genome that possesses only several hundred genes with high evolutionary rates. We examined the relative transcription levels of the genes of all proteins encoded by the nucleomorph genomes of two chlorarachniophytes and three cryptophytes using an RNA-seq transcriptomic approach. The genes of two heat shock proteins, Hsp70 and Hsp90, were highly expressed under normal conditions. It has been shown that molecular chaperone overexpression allows an accumulation of genetic mutations in bacteria. Our results suggest that overexpression of heat shock proteins in nucleomorph genomes may play a role in buffering the mutational destabilization of proteins, which might allow the high evolutionary rates of nucleomorph-encoded proteins.
Related JoVE Video
Rhizaria.
Curr. Biol.
PUBLISHED: 02-08-2014
Show Abstract
Hide Abstract
Have you ever stumbled across Ernst Haeckel's stunning 19th century art prints representing complex symmetrical forms that look like snowflakes, armored knights, or even futuristic space stations? Or maybe walking down an indo-pacific beach, you have taken a closer look at the warm sand only to realize that the 'sand' is really countless, minute earthly stars? Chances are you did not realize it, but in both cases you were looking at the skeletons of single-celled organisms belonging to Rhizaria, a large group, or 'supergroup', of eukaryotes. Various kinds of rhizarians have long been known to biologists, as evidenced by the fame and frequency with which Haeckel's illustrations have been reproduced, but the idea that these organisms are all related to one another emerged only recently. And this means that Rhizaria, as a whole, is one of the most poorly understood supergroups of eukaryotes.
Related JoVE Video
Analysis of EST data of the marine protist Oxyrrhis marina, an emerging model for alveolate biology and evolution.
BMC Genomics
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
The alveolates include a large number of important lineages of protists and algae, among which are three major eukaryotic groups: ciliates, apicomplexans and dinoflagellates. Collectively alveolates are present in virtually every environment and include a vast diversity of cell shapes, molecular and cellular features and feeding modes including lifestyles such as phototrophy, phagotrophy/predation and intracellular parasitism, in addition to a variety of symbiotic associations. Oxyrrhis marina is a well-known model for heterotrophic protist biology, and is now emerging as a useful organism to explore the many changes that occurred during the origin and diversification of dinoflagellates by virtue of its phylogenetic position at the base of the dinoflagellate tree.
Related JoVE Video
The impact of history on our perception of evolutionary events: endosymbiosis and the origin of eukaryotic complexity.
Cold Spring Harb Perspect Biol
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Evolutionary hypotheses are correctly interpreted as products of the data they set out to explain, but they are less often recognized as being heavily influenced by other factors. One of these is the history of preceding thought, and here I look back on historically important changes in our thinking about the role of endosymbiosis in the origin of eukaryotic cells. Specifically, the modern emphasis on endosymbiotic explanations for numerous eukaryotic features, including the cell itself (the so-called chimeric hypotheses), can be seen not only as resulting from the advent of molecular and genomic data, but also from the intellectual acceptance of the endosymbiotic origin of mitochondria and plastids. This transformative idea may have unduly affected how other aspects of the eukaryotic cell are explained, in effect priming us to accept endosymbiotic explanations for endogenous processes. Molecular and genomic data, which were originally harnessed to answer questions about cell evolution, now so dominate our thinking that they largely define the question, and the original questions about how eukaryotic cellular architecture evolved have been neglected. This is unfortunate because, as Roger Stanier pointed out, these cellular changes represent life's "greatest single evolutionary discontinuity," and on this basis I advocate a return to emphasizing evolutionary cell biology when thinking about the origin of eukaryotes, and suggest that endogenous explanations will prevail when we refocus on the evolution of the cell.
Related JoVE Video
Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms.
Genome Biol Evol
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
A tertiary endosymbiosis between a dinoflagellate host and diatom endosymbiont gave rise to "dinotoms," cells with a unique nuclear and mitochondrial redundancy derived from two evolutionarily distinct eukaryotic lineages. To examine how this unique redundancy might have affected the evolution of metabolic systems, we investigated the transcription of genes involved in biosynthesis of the amino acid tryptophan in three species, Durinskia baltica, Kryptoperidinium foliaceum, and Glenodinium foliaceum. From transcriptome sequence data, we recovered two distinct sets of protein-coding transcripts covering the entire tryptophan biosynthetic pathway. Phylogenetic analyses suggest a diatom origin for one set of the proteins, which we infer to be expressed in the endosymbiont, and that the other arose from multiple horizontal gene transfer events to the dinoflagellate ancestor of the host lineage. This is the first indication that these cells retain redundant sets of transcripts and likely metabolic pathways for the biosynthesis of small molecules and extend their redundancy to their two distinct nuclear genomes.
Related JoVE Video
Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The evolutionary and ecological importance of predatory flagellates are too often overlooked. This is not only a gap in our understanding of microbial diversity, but also impacts how we interpret their better-studied relatives. A prime example of these problems is found in the alveolates. All well-studied species belong to three large clades (apicomplexans, dinoflagellates, and ciliates), but the predatory colponemid flagellates are also alveolates that are rare in nature and seldom cultured, but potentially important to our understanding of alveolate evolution. Recently we reported the first cultivation and molecular analysis of several colponemid-like organisms representing two novel clades in molecular trees. Here we provide ultrastructural analysis and formal species descriptions for both new species, Colponema vietnamica n. sp. and Acavomonas peruviana n. gen. n. sp. Morphological and feeding characteristics concur with molecular data that both species are distinct members of alveolates, with Acavomonas lacking the longitudinal phagocytotic groove, a defining feature of Colponema. Based on ultrastructure and molecular phylogenies, which both provide concrete rationale for a taxonomic reclassification of Alveolata, we establish the new phyla Colponemidia nom. nov. for the genus Colponema and its close relatives, and Acavomonidia nom. nov. for the genus Acavomonas and its close relatives. The morphological data presented here suggests that colponemids are central to our understanding of early alveolate evolution, and suggest they also retain features of the common ancestor of all eukaryotes.
Related JoVE Video
The 3D structure of the apical complex and association with the flagellar apparatus revealed by serial TEM tomography in Psammosa pacifica, a distant relative of the Apicomplexa.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The apical complex is one of the defining features of apicomplexan parasites, including the malaria parasite Plasmodium, where it mediates host penetration and invasion. The apical complex is also known in a few related lineages, including several non-parasitic heterotrophs, where it mediates feeding behaviour. The origin of the apical complex is unclear, and one reason for this is that in apicomplexans it exists in only part of the life cycle, and never simultaneously with other major cytoskeletal structures like flagella and basal bodies. Here, we used conventional TEM and serial TEM tomography to reconstruct the three dimensional structure of the apical complex in Psammosa pacifica, a predatory relative of apicomplexans and dinoflagellates that retains the archetype apical complex and the flagellar apparatus simultaneously. The P. pacifica apical complex is associated with the gullet and consists of the pseudoconoid, micronemes, and electron dense vesicles. The pseudoconoid is a convex sheet consisting of eight short microtubules, plus a band made up of microtubules that originate from the flagellar apparatus. The flagellar apparatus consists of three microtubular roots. One of the microtubular roots attached to the posterior basal body is connected to bypassing microtubular strands, which are themselves connected to the extension of the pseudoconoid. These complex connections where the apical complex is an extension of the flagellar apparatus, reflect the ancestral state of both, dating back to the common ancestor of apicaomplexans and dinoflagellates.
Related JoVE Video
Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates.
Eukaryotic Cell
PUBLISHED: 12-02-2013
Show Abstract
Hide Abstract
Plastid establishment involves the transfer of endosymbiotic genes to the host nucleus, a process known as endosymbiotic gene transfer (EGT). Large amounts of EGT have been shown in several photosynthetic lineages but also in present-day plastid-lacking organisms, supporting the notion that endosymbiotic genes leave a substantial genetic footprint in the host nucleus. Yet, the extent of this genetic relocation remains debated, largely because the long period of time that has passed since most plastids originated has erased many of the clues to how this process unfolded. Among the dinoflagellates, however, the ancestral peridinin-containing plastid has been replaced by tertiary plastids on several more recent occasions, giving us a less ancient window to examine plastid origins. Here, we evaluated the endosymbiotic contribution to the host genome in two dinoflagellate lineages with tertiary plastids. We generated the first nuclear transcriptome datasets for the dinotoms, which harbor diatom-derived plastids, and analyzed these data in combination with the available transcriptomes for kareniaceans, which harbor haptophyte-derived plastids. We found low level of detectable EGT in both dinoflagellate lineages, with only 9 genes and 90 genes of possible tertiary endosymbiotic origin in dinotoms and kareniaceans, respectively, suggesting that tertiary endosymbioses did not heavily impact the host dinoflagellate genomes.
Related JoVE Video
Correlated SEM, FIB-SEM, TEM, and NanoSIMS imaging of microbes from the hindgut of a lower termite: methods for in situ functional and ecological studies of uncultivable microbes.
Microsc. Microanal.
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
The hindguts of lower termites harbor highly diverse, endemic communities of symbiotic protists, bacteria, and archaea essential to the termites ability to digest wood. Despite over a century of experimental studies, ecological roles of many of these microbes are unknown, partly because almost none can be cultivated. Many of the protists associate with bacterial symbionts, but hypotheses for their respective roles in nutrient exchange are based on genomes of only two such bacteria. To show how the ecological roles of protists and nutrient transfer with symbiotic bacteria can be elucidated by direct imaging, we combined stable isotope labeling (13C-cellulose) of live termites with analysis of fixed hindgut microbes using correlated scanning electron microscopy, focused ion beam-scanning electron microscopy (FIB-SEM), transmission electron microscopy, and high resolution imaging mass spectrometry (NanoSIMS). We developed methods to prepare whole labeled cells on solid substrates, whole labeled cells milled with a FIB-SEM instrument to reveal cell interiors, and ultramicrotome sections of labeled cells for NanoSIMS imaging of 13C enrichment in protists and associated bacteria. Our results show these methods have the potential to provide direct evidence for nutrient flow and suggest the oxymonad protist Oxymonas dimorpha phagocytoses and enzymatically degrades ingested wood fragments, and may transfer carbon derived from this to its surface bacterial symbionts.
Related JoVE Video
Colponemids represent multiple ancient alveolate lineages.
Curr. Biol.
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
The alveolates comprise three well-studied protist lineages of significant environmental, medical, and economical importance: apicomplexans (e.g., Plasmodium), dinoflagellates (e.g., Symbiodinium), and ciliates (e.g., Tetrahymena). These major lineages have evolved distinct and unusual characteristics, the origins of which have proved to be difficult evolutionary puzzles. Mitochondrial genomes are a prime example: all three groups depart from canonical form and content, but in different ways. Reconstructing such ancient transitions is difficult without deep-branching lineages that retain ancestral characteristics. Here we describe two such lineages and how they illuminate the ancestral state of alveolate mitochondrial genomes. We established five clonal cultures of colponemids, predatory alveolates without cultured representatives and molecular data. Colponemids represent at least two independent lineages at the phylum level in multilocus phylogenetic analysis; one sister to apicomplexans and dinoflagellates, and the other at a deeper position. A genome survey from one strain showed that ancestral state of the mitochondrial genomes in the three major alveolate lineages consisted of an unusual linear chromosome with telomeres and a substantially larger gene set than known alveolates. Colponemid sequences also identified several environmental lineages as colponemids, altogether suggesting an untapped potential for understanding the origin and evolution of apicomplexans, dinoflagellates, and ciliates.
Related JoVE Video
Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of Chromera velia.
Mol. Biol. Evol.
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function.
Related JoVE Video
Trichonympha burlesquei n. sp. from Reticulitermes virginicus and evidence against a cosmopolitan distribution of Trichonympha agilis in many termite hosts.
Int. J. Syst. Evol. Microbiol.
PUBLISHED: 08-05-2013
Show Abstract
Hide Abstract
Historically, symbiotic protists in termite hindguts have been considered to be the same species if they are morphologically similar, even if they are found in different host species. For example, the first-described hindgut and hypermastigote parabasalian, Trichonympha agilis (Leidy, 1877) has since been documented in six species of Reticulitermes, in addition to the original discovery in Reticulitermes flavipes. Here we revisit one of these, Reticulitermes virginicus, using molecular phylogenetic analysis from single-cell isolates and show that the Trichonympha in R. virginicus is distinct from isolates in the type host and describe this novel species as Trichonympha burlesquei n. sp. We also show the molecular diversity of Trichonympha from the type host R. flavipes is greater than supposed, itself probably representing more than one species. All of this is consistent with recent data suggesting a major underestimate of termite symbiont diversity.
Related JoVE Video
Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in rhizaria.
Curr. Biol.
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
Mikrocytos mackini is an intracellular protistan parasite of oysters whose position in the phylogenetic tree of eukaryotes has been a mystery for many years [1,2]. M. mackini is difficult to isolate, has not been cultured, and has no defining morphological feature. Furthermore, its only phylogenetic marker that has been successfully sequenced to date (the small subunit ribosomal RNA) is highly divergent and has failed to resolve its evolutionary position [2]. M. mackini is also one of the few eukaryotes that lacks mitochondria [1], making both its phylogenetic position and comparative analysis of mitochondrial function particularly important. Here, we have obtained transcriptomic data for M. mackini from enriched isolates and constructed a 119-gene phylogenomic data set. M. mackini proved to be among the fastest-evolving eukaryote lineages known to date, but, nevertheless, our analysis robustly placed it within Rhizaria. Searching the transcriptome for genetic evidence of a mitochondrion-related organelle (MRO) revealed only four mitochondrion-derived genes: IscS, IscU, mtHsp70, and FdxR. Interestingly, all four genes are involved in iron-sulfur cluster formation, a biochemical pathway common to other highly reduced "mitosomes" in unrelated MRO-containing lineages [7]. This is the first evidence of MRO in Rhizaria, and it suggests the parallel evolution of mitochondria to mitosomes in this supergroup.
Related JoVE Video
Gene conversion shapes linear mitochondrial genome architecture.
Genome Biol Evol
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Recently, it was shown that gene conversion between the ends of linear mitochondrial chromosomes can cause telomere expansion and the duplication of subtelomeric loci. However, it is not yet known how widespread this phenomenon is and how significantly it has impacted organelle genome architecture. Using linear mitochondrial DNAs and mitochondrial plasmids from diverse eukaryotes, we argue that telomeric recombination has played a major role in fashioning linear organelle chromosomes. We find that mitochondrial telomeres frequently expand into subtelomeric regions, resulting in gene duplications, homogenizations, and/or fragmentations. We suggest that these features are a product of subtelomeric gene conversion, provide a hypothetical model for this process, and employ genetic diversity data to support the idea that the greater the effective population size the greater the potential for gene conversion between subtelomeric loci.
Related JoVE Video
Termite hindguts and the ecology of microbial communities in the sequencing age.
J. Eukaryot. Microbiol.
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Advances in high-throughput nucleic acid sequencing have improved our understanding of microbial communities in a number of ways. Deeper sequence coverage provides the means to assess diversity at the resolution necessary to recover ecological and biogeographic patterns, and at the same time single-cell genomics provides detailed information about the interactions between members of a microbial community. Given the vastness and complexity of microbial ecosystems, such analyses remain challenging for most environments, so greater insight can also be drawn from analysing less dynamic ecosystems. Here, we outline the advantages of one such environment, the wood-digesting hindgut communities of termites and cockroaches, and how it is a model to examine and compare both protist and bacterial communities. Beyond the analysis of diversity, our understanding of protist community ecology will depend on using statistically sound sampling regimes at biologically relevant scales, transitioning from discovery-based to experimental ecology, incorporating single-cell microbiology and other data sources, and continued development of analytical tools.
Related JoVE Video
The number, speed, and impact of plastid endosymbioses in eukaryotic evolution.
Annu Rev Plant Biol
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Plastids (chloroplasts) have long been recognized to have originated by endosymbiosis of a cyanobacterium, but their subsequent evolutionary history has proved complex because they have also moved between eukaryotes during additional rounds of secondary and tertiary endosymbioses. Much of this history has been revealed by genomic analyses, but some debates remain unresolved, in particular those relating to secondary red plastids of the chromalveolates, especially cryptomonads. Here, I examine several fundamental questions and assumptions about endosymbiosis and plastid evolution, including the number of endosymbiotic events needed to explain plastid diversity, whether the genetic contribution of the endosymbionts to the host genome goes far beyond plastid-targeted genes, and whether organelle origins are best viewed as a singular transition involving one symbiont or as a gradual transition involving a long line of transient food/symbionts. I also discuss a possible link between transporters and the evolution of protein targeting in organelle integration.
Related JoVE Video
Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation.
BMC Genomics
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees).
Related JoVE Video
Morphology and molecular phylogeny of Staurojoenina mulleri sp. nov. (Trichonymphida, Parabasalia) from the hindgut of the kalotermitid Neotermes jouteli.
J. Eukaryot. Microbiol.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
Staurojoenina is a large and structurally complex genus of hypermastigont parabasalians found in the hindgut of lower termites. Although several species of Staurojoenina have been described worldwide, all Staurojoenina observed to date in different species of North American termites have been treated as the same species, S. assimilis. Here, we characterize Staurojoenina from the North American termite Neotermes jouteli using light microscopy, scanning electron microscopy, and phylogenetic analysis of small subunit ribosomal RNA, and compare it with S. assimilis from its type host, Incisitermes minor. The basic morphological characteristics of the N. jouteli symbiont, including its abundant bacterial epibionts, are similar as far as they may be compared with existing data from S. assimilis, although not consistently identical. In contrast, we find that they are extremely distantly related at the molecular level, sharing a pairwise similarity of SSU rRNA genes comparable to that seen between different genera or even families of other parabasalians. Based on their evolutionary distance and habitat in different termite genera, we consider the N. jouteli Staurojoenina to be distinct from S. assimilis, and describe a new species, Staurojoenina mulleri, in honor of the pioneering parabasalian researcher, Miklos Muller.
Related JoVE Video
Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.
PLoS ONE
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase - a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.
Related JoVE Video
Single-Cell DNA barcoding using sequences from the small subunit rRNA and internal transcribed spacer region identifies new species of Trichonympha and Trichomitopsis from the hindgut of the termite Zootermopsis angusticollis.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
To aid in their digestion of wood, lower termites are known to harbour a diverse community of prokaryotes as well as parabasalid and oxymonad protist symbionts. One of the best-studied lower termite gut communities is that of Zootermopsis angusticollis which has been known for almost 100 years to possess 3 species of Trichonympha (T. campanula, T. collaris, and T. sphaerica), 1 species of Trichomitopsis (T. termopsidis), as well as smaller flagellates. We have re-assessed this community by sequencing the small subunit (SSU) rRNA gene and the internal transcribed spacer (ITS) region from a large number of single Trichonympha and Trichomitopsis cells for which morphology was also documented. Based on phylogenetic clustering and sequence divergence, we identify 3 new species: Trichonympha postcylindrica, Trichomitopsis minor, and Trichomitopsis parvus spp. nov. Once identified by sequencing, the morphology of the isolated cells for all 3 new species was re-examined and found to be distinct from the previously described species: Trichonympha postcylindrica can be morphologically distinguished from the other Trichonympha species by an extension on its posterior end, whereas Trichomitopsis minor and T. parvus are smaller than T. termopsidis but similar in size to each other and cannot be distinguished based on morphology using light microscopy. Given that Z. angusticollis has one of the best characterized hindgut communities, the near doubling of the number of the largest and most easily identifiable symbiont species suggests that the diversity of hindgut symbionts is substantially underestimated in other termites as well. Accurate descriptions of the diversity of these microbial communities are essential for understanding hindgut ecology and disentangling the interactions among the symbionts, and molecular barcoding should be a priority for these systems.
Related JoVE Video
Cthulhu Macrofasciculumque n. g., n. sp. and Cthylla Microfasciculumque n. g., n. sp., a newly identified lineage of parabasalian termite symbionts.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
The parabasalian symbionts of lower termite hindgut communities are well-known for their large size and structural complexity. The most complex forms evolved multiple times independently from smaller and simpler flagellates, but we know little of the diversity of these small flagellates or their phylogenetic relationships to more complex lineages. To understand the true diversity of Parabasalia and how their unique cellular complexity arose, more data from smaller and simpler flagellates are needed. Here, we describe two new genera of small-to-intermediate size and complexity, represented by the type species Cthulhu macrofasciculumque and Cthylla microfasciculumque from Prorhinotermes simplex and Reticulitermes virginicus, respectively (both hosts confirmed by DNA barcoding). Both genera have a single anterior nucleus embeded in a robust protruding axostyle, and an anterior bundle flagella (and likely a single posterior flagellum) that emerge slightly subanteriorly and have a distinctive beat pattern. Cthulhu is relatively large and has a distinctive bundle of over 20 flagella whereas Cthylla is smaller, has only 5 anterior flagella and closely resembles several other parababsalian genera. Molecular phylogenies based on small subunit ribosomal RNA (SSU rRNA) show both genera are related to previously unidentified environmental sequences from other termites (possibly from members of the Tricercomitidae), which all branch as sisters to the Hexamastigitae. Altogether, Cthulhu likely represents another independent origin of relatively high cellular complexity within parabasalia, and points to the need for molecular characterization of other key taxa, such as Tricercomitus.
Related JoVE Video
Molecular characterization of parabasalian symbionts Coronympha clevelandii and Trichonympha subquasilla from the Hawaiian lowland tree termite Incisitermes immigrans.
J. Eukaryot. Microbiol.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
An important and undervalued challenge in characterizing symbiotic protists is the accurate identification of their host species. Here, we use DNA barcoding to resolve one confusing case involving parabasalian symbionts in the hindgut of the Hawaiian lowland tree termite, Incisitermes immigrans, which is host to several parabasalians, including the type species for the genus Coronympha, C. clevelandii. We collected I. immigrans from its type locality (Hawaii), confirmed its identity by DNA barcoding, and characterized the phylogenetic position of two symbionts, C. clevelandii and Trichonympha subquasilla. These data show that previous molecular surveys of "I. immigrans" are, in fact, mainly derived from the Caribbean termite I. schwarzi, and perhaps also another related species. These results emphasize the need for host barcoding, clarify the relationship between morphologically distinct Coronympha species, and also suggest some interesting distribution patterns of nonendemic termite species and their symbionts.
Related JoVE Video
Organelle genome complexity scales positively with organism size in volvocine green algae.
Mol. Biol. Evol.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
It has been argued that for certain lineages, noncoding DNA expansion is a consequence of the increased random genetic drift associated with long-term escalations in organism size. But a lack of data has prevented the investigation of this hypothesis in most plastid-bearing protists. Here, using newly sequenced mitochondrial and plastid genomes, we explore the relationship between organelle DNA noncoding content and organism size within volvocine green algae. By looking at unicellular, colonial, and differentiated multicellular algae, we show that organelle DNA complexity scales positively with species size and cell number across the volvocine lineage. Moreover, silent-site genetic diversity data suggest that the volvocine species with the largest cell numbers and most bloated organelle genomes have the smallest effective population sizes. Together, these findings support the view that nonadaptive processes, like random genetic drift, promote the expansion of noncoding regions in organelle genomes.
Related JoVE Video
Complete genome sequences from three genetically distinct strains reveal high intraspecies genetic diversity in the microsporidian Encephalitozoon cuniculi.
Eukaryotic Cell
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
Microsporidia from the Encephalitozoonidae are obligate intracellular parasites with highly conserved and compacted nuclear genomes: they have few introns, short intergenic regions, and almost identical gene complements and chromosome arrangements. Comparative genomics of Encephalitozoon and microsporidia in general have focused largely on the genomic diversity between different species, and we know very little about the levels of genetic diversity within species. Polymorphism studies with Encephalitozoon are so far restricted to a small number of genes, and a few genetically distinct strains have been identified; most notably, three genotypes (ECI, ECII, and ECIII) of the model species E. cuniculi have been identified based on variable repeats in the rRNA internal transcribed spacer (ITS). To determine if E. cuniculi genotypes are genetically distinct lineages across the entire genome and at the same time to examine the question of intraspecies genetic diversity in microsporidia in general, we sequenced de novo genomes from each of the three genotypes and analyzed patterns of single nucleotide polymorphisms (SNPs) and insertions/deletions across the genomes. Although the strains have almost identical gene contents, they harbor large numbers of SNPs, including numerous nonsynonymous changes, indicating massive intraspecies variation within the Encephalitozoonidae. Based on this diversity, we conclude that the recognized genotypes are genetically distinct and propose new molecular markers for microsporidian genotyping.
Related JoVE Video
First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution.
Genome Biol Evol
PUBLISHED: 11-24-2011
Show Abstract
Hide Abstract
Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5 end of nad2), providing evidence for a gene conversion-based model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination.
Related JoVE Video
Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites.
Plant Cell
PUBLISHED: 09-30-2011
Show Abstract
Hide Abstract
Most photosynthetic eukaryotes synthesize both heme and chlorophyll via a common tetrapyrrole biosynthetic pathway starting from glutamate. This pathway was derived mainly from cyanobacterial predecessor of the plastid and differs from the heme synthesis of the plastid-lacking eukaryotes. Here, we show that the coral-associated alveolate Chromera velia, the closest known photosynthetic relative to Apicomplexa, possesses a tetrapyrrole pathway that is homologous to the unusual pathway of apicomplexan parasites. We also demonstrate that, unlike other eukaryotic phototrophs, Chromera synthesizes chlorophyll from glycine and succinyl-CoA rather than glutamate. Our data shed light on the evolution of the heme biosynthesis in parasitic Apicomplexa and photosynthesis-related biochemical processes in their ancestors.
Related JoVE Video
Morphology and molecular phylogeny of Pseudotrichonympha hertwigi and Pseudotrichonympha paulistana (Trichonymphea, parabasalia) from neotropical rhinotermitids.
J. Eukaryot. Microbiol.
PUBLISHED: 09-07-2011
Show Abstract
Hide Abstract
Pseudotrichonympha is a large hypermastigote parabasalian found in the hindgut of several species of rhinotermitid termites. The genus was discovered more than 100 years ago, and although over a dozen species have since been described, this represents only a small fraction of its likely diversity: the termite genera from which Pseudotrichonympha is known are all species rich, and in most cases their hindgut symbionts have not been examined. Even formally described species are mostly lacking in detailed microscopic data and/or sequence data. Using small subunit ribosomal RNA gene sequences and light and scanning electron microscopy we describe here the morphology and molecular phylogenetic position of two Pseudotrichonympha species: the type species for the genus, Pseudotrichonympha hertwigi from Coptotermes testaceus (described previously in line drawing only), and Pseudotrichonympha paulistana from Heterotermes tenuis (described previously based on light microscopy only).
Related JoVE Video
Endosymbiosis: bacteria sharing the load.
Curr. Biol.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
A nested set of bacterial endosymbionts within mealybug cells collectively provides amino acids to their host, but their genomes show that some pathways are distributed between both endosymbionts, while other essential proteins are missing altogether. The possibility that additional functions are shared between partners warrants comparisons with organelles.
Related JoVE Video
A new vesicular compartment in Encephalitozoon cuniculi.
Microbes Infect.
PUBLISHED: 08-03-2011
Show Abstract
Hide Abstract
The microsporidia are emerging human and veterinary pathogens known to infect every tissue type and organ system. Their infectious spore possesses a number of peculiar organelles, including the diagnostic polar tube. In a proteomics-driven effort to find novel components of this organelle in the human-pathogenic species Encephalitozoon cuniculi, we unexpectedly discovered a protein which localizes to punctate structures consistent with the appearance of relic mitochondria, or mitosomes. However, this novel protein did not colocalize with ferredoxin, a mitochondrial iron-sulfur cluster protein which shows a similar localization pattern by light microscopy. The distribution pattern of this protein thus suggests either a novel vesicular compartment that is similar to mitosomes in size and distribution, the presence of subdomains or branching architecture within mitosomes, or heterogeneity in the protein composition of E. cuniculi mitosomes.
Related JoVE Video
The search for the missing link: a relic plastid in Perkinsus?
Int. J. Parasitol.
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
Perkinsus marinus (Phylum Perkinsozoa) is a protozoan parasite that has devastated natural and farmed oyster populations in the USA, significantly affecting the shellfish industry and the estuarine environment. The other two genera in the phylum, Parvilucifera and Rastrimonas, are parasites of microeukaryotes. The Perkinsozoa occupies a key position at the base of the dinoflagellate branch, close to its divergence from the Apicomplexa, a clade that includes parasitic protista, many harbouring a relic plastid. Thus, as a taxon that has also evolved toward parasitism, the Perkinsozoa has attracted the attention of biologists interested in the evolution of this organelle, both in its ultrastructure and the conservation, loss or transfer of its genes. A review of the recent literature reveals mounting evidence in support of the presence of a relic plastid in P. marinus, including the presence of multimembrane structures, characteristic metabolic pathways and proteins with a bipartite N-terminal extension. Further, these findings raise intriguing questions regarding the potential functions and unique adaptation of the putative plastid and/or plastid genes in the Perkinsozoa. In this review we analyse the above-mentioned evidence and evaluate the potential future directions and expected benefits of addressing such questions. Given the rapidly expanding molecular/genetic resources and methodological toolbox for Perkinsus spp., these organisms should complement the currently established models for investigating plastid evolution within the Chromalveolata.
Related JoVE Video
Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites.
J. Biol. Chem.
PUBLISHED: 06-28-2011
Show Abstract
Hide Abstract
Apicomplexa are protist parasites that include Plasmodium spp., the causative agents of malaria, and Toxoplasma gondii, responsible for toxoplasmosis. Most Apicomplexa possess a relict plastid, the apicoplast, which was acquired by secondary endosymbiosis of a red alga. Despite being nonphotosynthetic, the apicoplast is otherwise metabolically similar to algal and plant plastids and is essential for parasite survival. Previous studies of Toxoplasma gondii identified membrane lipids with some structural features of plastid galactolipids, the major plastid lipid class. However, direct evidence for the plant-like enzymes responsible for galactolipid synthesis in Apicomplexan parasites has not been obtained. Chromera velia is an Apicomplexan relative recently discovered in Australian corals. C. velia retains a photosynthetic plastid, providing a unique model to study the evolution of the apicoplast. Here, we report the unambiguous presence of plant-like monogalactosyldiacylglycerol and digalactosyldiacylglycerol in C. velia and localize digalactosyldiacylglycerol to the plastid. We also provide evidence for a plant-like biosynthesis pathway and identify candidate galactosyltranferases responsible for galactolipid synthesis. Our study provides new insights in the evolution of these important enzymes in plastid-containing eukaryotes and will help reconstruct the evolution of glycerolipid metabolism in important parasites such as Plasmodium and Toxoplasma.
Related JoVE Video
How a neutral evolutionary ratchet can build cellular complexity.
IUBMB Life
PUBLISHED: 06-24-2011
Show Abstract
Hide Abstract
Complex cellular machines and processes are commonly believed to be products of selection, and it is typically understood to be the job of evolutionary biologists to show how selective advantage can account for each step in their origin and subsequent growth in complexity. Here, we describe how complex machines might instead evolve in the absence of positive selection through a process of "presuppression," first termed constructive neutral evolution (CNE) more than a decade ago. If an autonomously functioning cellular component acquires mutations that make it dependent for function on another, pre-existing component or process, and if there are multiple ways in which such dependence may arise, then dependence inevitably will arise and reversal to independence is unlikely. Thus, CNE is a unidirectional evolutionary ratchet leading to complexity, if complexity is equated with the number of components or steps necessary to carry out a cellular process. CNE can explain "functions" that seem to make little sense in terms of cellular economy, like RNA editing or splicing, but it may also contribute to the complexity of machines with clear benefit to the cell, like the ribosome, and to organismal complexity overall. We suggest that CNE-based evolutionary scenarios are in these and other cases less forced than the selectionist or adaptationist narratives that are generally told.
Related JoVE Video
Symbiosis, morphology, and phylogeny of Hoplonymphidae (Parabasalia) of the wood-feeding roach Cryptocercus punctulatus.
J. Eukaryot. Microbiol.
PUBLISHED: 06-23-2011
Show Abstract
Hide Abstract
Anaerobic cellulolytic flagellate protists of the hindguts of lower termites and the wood-feeding cockroach Cryptocercus are essential to their hosts ability to digest lignocellulose. Many have bacteria associated with their surfaces and within cytoplasmic vesicles-likely important symbioses as suggested by molecular and other data. Some of the most striking examples of these symbioses are in the parabasalid family Hoplonymphidae, but little or no data exist on the structural aspects of their symbioses, their relationships with bacteria through different life-cycle stages, or their diversity and phylogenetic relationships in Cryptocercus. We investigated these areas in the hoplonymphid genera Barbulanympha and Urinympha from Cryptocercus punctulatus using light and electron microscopy, and analysis of small subunit rRNA. Microscopy reveals variation in density of bacterial surface symbionts related to life-cycle stage, a glyococalyx possibly important in bacterial adhesion and/or metabolite exchange, and putative viruses associated with bacterial surface symbionts. Patterning of surface bacteria suggests protists emerging from the resistant (dormant) stage are colonized by a small population of bacterial cells, which then divide to cover their surface. Additionally, cytoplasmic protrusions from the protist are covered by bacteria. Phylogenetic analysis rejects the monophyly of Hoplonymphidae, suggesting multiple origins or losses of these bacterial symbioses.
Related JoVE Video
The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape.
PLoS ONE
PUBLISHED: 05-13-2011
Show Abstract
Hide Abstract
Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.
Related JoVE Video
Morphological diversity between culture strains of a chlorarachniophyte, Lotharella globosa.
PLoS ONE
PUBLISHED: 05-12-2011
Show Abstract
Hide Abstract
Chlorarachniophytes are marine unicellular algae that possess secondary plastids of green algal origin. Although chlorarachniophytes are a small group (the phylum of Chlorarachniophyta contains 14 species in 8 genera), they have variable and complex life cycles that include amoeboid, coccoid, and/or flagellate cells. The majority of chlorarachniophytes possess two or more cell types in their life cycles, and which cell types are found is one of the principle morphological criteria used for species descriptions. Here we describe an unidentified chlorarachniophyte that was isolated from an artificial coral reef that calls this criterion into question. The life cycle of the new strain includes all three major cell types, but DNA barcoding based on the established nucleomorph ITS sequences showed it to share 100% sequence identity with Lotharella globosa. The type strain of L. globosa was also isolated from a coral reef, but is defined as completely lacking an amoeboid stage throughout its life cycle. We conclude that L. globosa possesses morphological diversity between culture strains, and that the new strain is a variety of L. globosa, which we describe as Lotharella globosa var. fortis var. nov. to include the amoeboid stage in the formal description of L. globosa. This intraspecies variation suggest that gross morphological stages maybe lost rather rapidly, and specifically that the type strain of L. globosa has lost the ability to form the amoeboid stage, perhaps recently. This in turn suggests that even major morphological characters used for taxonomy of this group may be variable in natural populations, and therefore misleading.
Related JoVE Video
Nucleus- and nucleomorph-targeted histone proteins in a chlorarachniophyte alga.
Mol. Microbiol.
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
The plastid of chlorarachniophytes is distinguished by the retention of a relict nucleus (nucleomorph) derived from a green algal endosymbiont, which is located in the periplastidal compartment (PPC). The nucleomorph genome of a chlorarachniophyte, Bigelowiella natans, encodes several plastid-targeted proteins and hundreds of housekeeping proteins, but it lacks many fundamental genes to maintain itself. Here we report the first two host nucleus-encoded genes for proteins targeted to the nucleomorph, histone H2A and H2B. We identified 20 histone genes from the host nuclear genome, and based on phylogenetic analyses predicted that most of these are derived from the host, but that two histone genes are symbiont-derived. The genes both encode N-terminal extensions resembling PPC targeting signals, further suggesting they function in the nucleomorph. Using green fluorescent protein (GFP) fusion proteins expressed in transformed cells, we confirmed that the putative symbiont H2A and H2B were targeted into the nucleomorph, whereas putative host proteins were localized to the host nucleus. Furthermore, we have developed a method to temporarily synchronize B. natans cells, and confirmed that both host and symbiont histone expression is controlled during the cell cycle. Our findings provide the first evidence of how the nucleomorph may be regulated by host-encoded gene products.
Related JoVE Video
Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis.
Environ. Microbiol.
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
The coral reef benthos is primarily colonized by corals and algae, which are often in direct competition with one another for space. Numerous studies have shown that coral-associated Bacteria are different from the surrounding seawater and are at least partially species specific (i.e. the same bacterial species on the same coral species). Here we extend these microbial studies to four of the major ecological functional groups of algae found on coral reefs: upright and encrusting calcifying algae, fleshy algae, and turf algae, and compare the results to the communities found on the reef-building coral Montastraea annularis. It was found using 16S rDNA tag pyrosequencing that the different algal genera harbour characteristic bacterial communities, and these communities were generally more diverse than those found on corals. While the majority of coral-associated Bacteria were related to known heterotrophs, primarily consuming carbon-rich coral mucus, algal-associated communities harboured a high percentage of autotrophs. The majority of algal-associated autotrophic Bacteria were Cyanobacteria and may be important for nitrogen cycling on the algae. There was also a rich diversity of photosynthetic eukaryotes associated with the algae, including protists, diatoms, and other groups of microalgae. Together, these observations support the hypothesis that coral reefs are a vast landscape of distinctive microbial communities and extend the holobiont concept to benthic algae.
Related JoVE Video
A bacterial proteorhodopsin proton pump in marine eukaryotes.
Nat Commun
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
Proteorhodopsins are light-driven proton pumps involved in widespread phototrophy. Discovered in marine proteobacteria just 10 years ago, proteorhodopsins are now known to have been spread by lateral gene transfer across diverse prokaryotes, but are curiously absent from eukaryotes. In this study, we show that proteorhodopsins have been acquired by horizontal gene transfer from bacteria at least twice independently in dinoflagellate protists. We find that in the marine predator Oxyrrhis marina, proteorhodopsin is indeed the most abundantly expressed nuclear gene and its product localizes to discrete cytoplasmic structures suggestive of the endomembrane system. To date, photosystems I and II have been the only known mechanism for transducing solar energy in eukaryotes; however, it now appears that some abundant zooplankton use this alternative pathway to harness light to power biological functions.
Related JoVE Video
Branching network of proteinaceous filaments within the parasitophorous vacuole of Encephalitozoon cuniculi and Encephalitozoon hellem.
Infect. Immun.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
The microsporidia are a diverse phylum of obligate intracellular parasites that infect all major animal groups and have been recognized as emerging human pathogens for which few chemotherapeutic options currently exist. These organisms infect every tissue and organ system, causing significant pathology, especially in immune-compromised populations. The microsporidian spore employs a unique infection strategy in which its contents are delivered into a host cell via the polar tube, an organelle that lies coiled within the resting spore but erupts with a force sufficient to pierce the plasma membrane of its host cell. Using biochemical and molecular approaches, we have previously identified components of the polar tube and spore wall of the Encephalitozoonidae. In this study, we employed a shotgun proteomic strategy to identify novel structural components of these organelles in Encephalitozoon cuniculi. As a result, a new component of the E. cuniculi developing spore wall was identified. Surprisingly, using the same approach, a heretofore undescribed filamentous network within the lumen of the parasitophorous vacuole was discovered. This network was also present in the parasitophorous vacuole of Encephalitozoon hellem. Thus, in addition to further elucidating the molecular composition of seminal organelles and revealing novel diagnostic and therapeutic targets, proteomic analysis-driven approaches exploring the spore may also uncover unknown facets of microsporidian biology.
Related JoVE Video
Shrink it or lose it: balancing loss of function with shrinking genomes in the microsporidia.
Virulence
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
Microsporidia are obligate intracellular parasites that have evolved an elaborate mechanism for invading animal host cells, but which have otherwise greatly reduced biological complexity. In particular, microsporidia possess the smallest autonomous nuclear genomes known (as opposed to nucleus derived organelles, or nucleomorphs), and their anaerobic core carbon metabolism is severely limited. Here we compare the extremes to which these two characteristics have evolved, and contrast how their reduction has either proceeded within the constraints of an unchanging set of functions, or has reduced the functional capabilities of the cell. Specifically, we review how the smallest known nuclear genome, the 2.3 Mbp genome of Encephalitozoon intestinalis, has arrived at this diminutive form without significantly affecting its protein-coding complexity in comparison with closely related, larger genomes. In contrast to this, Enterocytozoon bieneusi has a relatively large genome, and yet has lost all enzymes necessary to synthesize ATP from sugar - imposing a major limitation on the functional capabilities of the cell. The extremity of this reduction demands a re-evaluation of metabolic processes in other microsporidia: although pathways such as glycolysis are present, comparative genomic data suggest they may not play the cellular role that they are generally assumed to play.
Related JoVE Video
Molecular and morphological analysis of the family Calonymphidae with a description of Calonympha chia sp. nov., Snyderella kirbyi sp. nov., Snyderella swezyae sp. nov. and Snyderella yamini sp. nov.
Int. J. Syst. Evol. Microbiol.
PUBLISHED: 11-26-2010
Show Abstract
Hide Abstract
Calonymphids are a group of multinucleate, multiflagellate protists belonging to the order Cristamonadida (Parabasalia) that are found exclusively in the hindgut of termites from the family Kalotermitidae. Despite their impressive morphological complexity and diversity, few species have been formally described and fewer still have been characterized at the molecular level. In this study, four novel species of calonymphids were isolated and characterized: Calonympha chia and Snyderella yamini spp. nov., from Neotermes castaneus and Calcaritermes nearcticus from Florida, USA, and Snyderella kirbyi and Snyderella swezyae, spp. nov., from Calcaritermes nigriceps and Cryptotermes cylindroceps from Colombia. Each of these species was distinguished from its congeners by residing in a distinct host and by differences at the molecular level. Phylogenetic analyses of small subunit (SSU) rDNA indicated that the genera Calonympha and Stephanonympha were probably not monophyletic, though the genus Snyderella, previously only represented by one sequence in molecular analyses, appeared with these new data to be monophyletic. This was in keeping with the traditional evolutionary view of the group in which the morphology of the genus Snyderella is considered to be derived, while that of the genus Stephanonympha is ancestral and therefore probably plesiomorphic.
Related JoVE Video
The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism.
Genome Biol Evol
PUBLISHED: 07-14-2010
Show Abstract
Hide Abstract
Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its hosts physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.
Related JoVE Video
Complex phylogenetic distribution of a non-canonical genetic code in green algae.
BMC Evol. Biol.
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
A non-canonical nuclear genetic code, in which TAG and TAA have been reassigned from stop codons to glutamine, has evolved independently in several eukaryotic lineages, including the ulvophycean green algal orders Dasycladales and Cladophorales. To study the phylogenetic distribution of the standard and non-canonical genetic codes, we generated sequence data of a representative set of ulvophycean green algae and used a robust green algal phylogeny to evaluate different evolutionary scenarios that may account for the origin of the non-canonical code.
Related JoVE Video
The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis.
Nat Commun
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
The genome of the microsporidia Encephalitozoon cuniculi is widely recognized as a model for extreme reduction and compaction. At only 2.9?Mbp, the genome encodes approximately 2,000 densely packed genes and little else. However, the nuclear genome of its sister, Encephalitozoon intestinalis, is even more reduced; at 2.3?Mbp, it represents a 20% reduction from an already severely compacted genome, raising the question, what else can be lost? In this paper, we describe the complete sequence of the E. intestinalis genome and its comparison with that of E. cuniculi. The two species share a conserved gene content, order and density over most of their genomes. The exceptions are the subtelomeric regions, where E. intestinalis chromosomes are missing large gene blocks of sequence found in E. cuniculi. In the remaining gene-dense chromosome cores, the diminutive intergenic sequences and introns are actually more highly conserved than the genes themselves, suggesting that they have reached the limits of reduction for a fully functional genome.
Related JoVE Video
A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).
Related JoVE Video
Environmental barcoding reveals massive dinoflagellate diversity in marine environments.
PLoS ONE
PUBLISHED: 05-29-2010
Show Abstract
Hide Abstract
Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known "species", as a reference to measure the natural diversity in three marine environments.
Related JoVE Video
Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists.
BMC Evol. Biol.
PUBLISHED: 03-04-2010
Show Abstract
Hide Abstract
Recent phylogenomic analyses have revolutionized our view of eukaryote evolution by revealing unexpected relationships between and within the eukaryotic supergroups. However, for several groups of uncultivable protists, only the ribosomal RNA genes and a handful of proteins are available, often leading to unresolved evolutionary relationships. A striking example concerns the supergroup Rhizaria, which comprises several groups of uncultivable free-living protists such as radiolarians, foraminiferans and gromiids, as well as the parasitic plasmodiophorids and haplosporids. Thus far, the relationships within this supergroup have been inferred almost exclusively from rRNA, actin, and polyubiquitin genes, and remain poorly resolved. To address this, we have generated large Expressed Sequence Tag (EST) datasets for 5 species of Rhizaria belonging to 3 important groups: Acantharea (Astrolonche sp., Phyllostaurus sp.), Phytomyxea (Spongospora subterranea, Plasmodiophora brassicae) and Gromiida (Gromia sphaerica).
Related JoVE Video
Evolution of the sex-related locus and genomic features shared in microsporidia and fungi.
PLoS ONE
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes.
Related JoVE Video
Splicing and transcription differ between spore and intracellular life stages in the parasitic microsporidia.
Mol. Biol. Evol.
PUBLISHED: 02-18-2010
Show Abstract
Hide Abstract
Microsporidia are a diverse group of highly derived fungal relatives that are intracellular parasites of many animals. Both transcription and introns have been shown to be unusual in microsporidia: The complete genome of the human parasite Encephalitozoon cuniculi has only a few very short introns, and two distantly related microsporidian spores have been shown to harbor transcripts encoding several genes that overlap on different strands. However, microsporidia alternate between two life stages: the intracellular proliferative stage and the extracellular and largely metabolically dormant infectious spore. To date, most studies have focused on the spore. Here, we have compared transcription profiles for a number of genes from both life stages of microsporidia and found major differences in both the prevalence of overlapping transcription and splicing. Specifically, spore transcripts in E. cuniculi have longer 5 untranslated regions, overlap more frequently with upstream genes, and have a significantly higher number of transcription initiation sites compared with intracellular transcripts from the same species. In addition, we demonstrate that splicing occurs exclusively in the intracellular stage and not in spore messenger RNAs (mRNAs) in both E. cuniculi and the distantly related Antonospora locustae. These differences between the microsporidian life stages raise questions about the functional importance of transcripts in the spore. We hypothesize that at least some transcripts in spores are a product of the cells transition into a dormant state and that these unusual mRNAs could play a structural role rather than an informational one.
Related JoVE Video
The complete plastid genomes of the two dinotoms Durinskia baltica and Kryptoperidinium foliaceum.
PLoS ONE
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
In one small group of dinoflagellates, photosynthesis is carried out by a tertiary endosymbiont derived from a diatom, giving rise to a complex cell that we collectively refer to as a dinotom. The endosymbiont is separated from its host by a single membrane and retains plastids, mitochondria, a large nucleus, and many other eukaryotic organelles and structures, a level of complexity suggesting an early stage of integration. Although the evolution of these endosymbionts has attracted considerable interest, the plastid genome has not been examined in detail, and indeed no tertiary plastid genome has yet been sequenced.
Related JoVE Video
Characterization of periplastidal compartment-targeting signals in chlorarachniophytes.
Mol. Biol. Evol.
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
Secondary plastids are acquired by the engulfment and retention of eukaryotic algae, which results in an additional surrounding membrane or pair of membranes relative to the more familiar primary plastids of land plants. In most cases, the endocytosed alga loses its eukaryotic genome as it becomes integrated, but in two algal groups, the cryptophytes and chlorarachniophytes, the secondary plastids retain a vestigial nucleus in the periplastidal compartment (PPC), the remnant eukaryotic cytoplasm between the inner and the outer membrane pairs. Many essential housekeeping genes are missing from these reduced genomes, suggesting that they are now encoded in the host nucleus and their products are targeted to the PPC. One such nucleus-encoded, PPC-targeted protein, the translation elongation factor like (EFL) was recently identified in chlorarachniophytes. It bears an N-terminal-targeting sequence comprising a signal peptide and a transit peptide-like sequence (TPL) similar to the plastid-targeted proteins of chlorarachniophytes as well as a hydrophilic C-terminal extension rich in lysine and aspartic acid. Here, we characterize the function of the N- and C-terminal extensions of PPC-targeted EFL in transformed chlorarachniophyte cells. Using green fluorescent protein as a reporter molecule, we demonstrate that several negatively charged amino acids within the TPL are essential for accurate targeting to the PPC. Our findings further reveal that the C-terminal extension functions as a PPC retention signal in combination with an N-terminal plastid-targeting peptide, which suggests that plastid and PPC proteins may be sorted in the PPC.
Related JoVE Video
The endosymbiotic origin, diversification and fate of plastids.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
Related JoVE Video
The mitochondrial genome of the entomoparasitic green alga helicosporidium.
PLoS ONE
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi.
Related JoVE Video
A broad distribution of the alternative oxidase in microsporidian parasites.
PLoS Pathog.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of iron-sulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosomes.
Related JoVE Video
Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates.
Genome Biol Evol
PUBLISHED: 07-20-2009
Show Abstract
Hide Abstract
Understanding the early evolution and diversification of eukaryotes relies on a fully resolved phylogenetic tree. In recent years, most eukaryotic diversity has been assigned to six putative supergroups, but the evolutionary origin of a few major "orphan" lineages remains elusive. Two ecologically important orphan groups are the heterotrophic Telonemia and Centroheliozoa. Telonemids have been proposed to be related to the photosynthetic cryptomonads or stramenopiles and centrohelids to haptophytes, but molecular phylogenies have failed to provide strong support for any phylogenetic hypothesis. Here, we investigate the origins of Telonema subtilis (a telonemid) and Raphidiophrys contractilis (a centrohelid) by large-scale 454 pyrosequencing of cDNA libraries and including new genomic data from two cryptomonads (Guillardia theta and Plagioselmis nannoplanctica) and a haptophyte (Imantonia rotunda). We demonstrate that 454 sequencing of cDNA libraries is a powerful and fast method of sampling a high proportion of protist genes, which can yield ample information for phylogenomic studies. Our phylogenetic analyses of 127 genes from 72 species indicate that telonemids and centrohelids are members of an emerging major group of eukaryotes also comprising cryptomonads and haptophytes. Furthermore, this group is possibly closely related to the SAR clade comprising stramenopiles (heterokonts), alveolates, and Rhizaria. Our results link two additional heterotrophic lineages to the predominantly photosynthetic chromalveolate supergroup, providing a new framework for interpreting the evolution of eukaryotic cell structures and the diversification of plastids.
Related JoVE Video
The distribution of Elongation Factor-1 Alpha (EF-1alpha), Elongation Factor-Like (EFL), and a non-canonical genetic code in the ulvophyceae: discrete genetic characters support a consistent phylogenetic framework.
J. Eukaryot. Microbiol.
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
The systematics of the green algal class Ulvophyceae have been difficult to resolve with ultrastructural and molecular phylogenetic analyses. Therefore, we investigated relationships among ulvophycean orders by determining the distribution of two discrete genetic characters previously identified only in the order Dasycladales. First, Acetabularia acetabulum uses the core translation GTPase Elongation Factor 1alpha (EF-1alpha) while most Chlorophyta instead possess the related GTPase Elongation Factor-Like (EFL). Second, the nuclear genomes of dasycladaleans A. acetabulum and Batophora oerstedii use a rare non-canonical genetic code in which the canonical termination codons TAA and TAG instead encode glutamine. Representatives of Ulvales and Ulotrichales were found to encode EFL, while Caulerpales, Dasycladales, Siphonocladales, and Ignatius tetrasporus were found to encode EF-1alpha, in congruence with the two major lineages previously proposed for the Ulvophyceae. The EF-1alpha of I. tetrasporus supports its relationship with Caulerpales/Dasycladales/Siphonocladales, in agreement with ultrastructural evidence, but contrary to certain small subunit rRNA analyses that place it with Ulvales/Ulotrichales. The same non-canonical genetic code previously described in A. acetabulum was observed in EF-1alpha sequences from Parvocaulis pusillus (Dasycladales), Chaetomorpha coliformis, and Cladophora cf. crinalis (Siphonocladales), whereas Caulerpales use the universal code. This supports a sister relationship between Siphonocladales and Dasycladales and further refines our understanding of ulvophycean phylogeny.
Related JoVE Video
The RAB family GTPase Rab1A from Plasmodium falciparum defines a unique paralog shared by chromalveolates and rhizaria.
J. Eukaryot. Microbiol.
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
The RAB GTPases, which are involved in regulation of endomembrane trafficking, exhibit a complex but incompletely understood evolutionary history. We elucidated the evolution of the RAB1 subfamily ancestrally implicated in the endoplasmic reticulum-to-Golgi traffic. We found that RAB1 paralogs have been generated over the course of eukaryotic evolution, with some duplications coinciding with the advent of major eukaryotic lineages (e.g. Metazoa, haptophytes). We also identified a unique, derived RAB1 paralog, orthologous to the Plasmodium Rab1A, that occurs in stramenopiles, alveolates, and Rhizaria, represented by the chlorarachniophyte Gymnochlora stellata. This finding is consistent with the recently documented existence of a major eukaryotic clade ("SAR") comprising these three lineages. We further found a Rab1A-like protein in the cryptophyte Guillardia theta, but it exhibits unusual features among RAB proteins: absence of a C-terminal prenylation motif and an N-terminal extension with two MSP domains; and its phylogenetic relationships could not be established convincingly due to its divergent nature. Our results nevertheless point to a unique membrane trafficking pathway shared by at least some lineages of chromalveolates and Rhizaria, an insight that has implications towards interpreting the early evolution of eukaryotes and the endomembrane system.
Related JoVE Video
Morphology, phylogeny, and diversity of Trichonympha (Parabasalia: Hypermastigida) of the wood-feeding cockroach Cryptocercus punctulatus.
J. Eukaryot. Microbiol.
PUBLISHED: 07-16-2009
Show Abstract
Hide Abstract
Trichonympha is one of the most complex and visually striking of the hypermastigote parabasalids-a group of anaerobic flagellates found exclusively in hindguts of lower termites and the wood-feeding cockroach Cryptocercus-but it is one of only two genera common to both groups of insects. We investigated Trichonympha of Cryptocercus using light and electron microscopy (scanning and transmission), as well as molecular phylogeny, to gain a better understanding of its morphology, diversity, and evolution. Microscopy reveals numerous new features, such as previously undetected bacterial surface symbionts, adhesion of post-rostral flagella, and a distinctive frilled operculum. We also sequenced small subunit rRNA gene from manually isolated species, and carried out an environmental polymerase chain reaction (PCR) survey of Trichonympha diversity, all of which strongly supports monophyly of Trichonympha from Cryptocercus to the exclusion of those sampled from termites. Bayesian and distance methods support a relationship between Trichonympha species from termites and Cryptocercus, although likelihood analysis allies the latter with Eucomonymphidae. A monophyletic Trichonympha is of great interest because recent evidence supports a sister relationship between Cryptocercus and termites, suggesting Trichonympha predates the Cryptocercus-termite divergence. The monophyly of symbiotic bacteria of Trichonympha raises the intriguing possibility of three-way co-speciation among bacteria, Trichonympha, and insect hosts.
Related JoVE Video
Functional and ecological impacts of horizontal gene transfer in eukaryotes.
Curr. Opin. Genet. Dev.
PUBLISHED: 07-13-2009
Show Abstract
Hide Abstract
Horizontal gene transfer (HGT) is known to have contributed to the content of eukaryotic genomes, but the direct effects of HGT on eukaryotic evolution are more obscure because many of the best supported cases involve a new gene replacing a functionally similar homologue. Here, several cases of HGT conferring a plausible adaptive advantage are reviewed to examine emerging trends in such transfer events. In particular, HGT seems to play an important role in adaptation to parasitism and pathogenesis, as well as to other specific environmental conditions such as anaerobiosis or nitrogen and iron limitation in marine environments. Most, but not all, of the functionally significant HGT to eukaryotes comes from bacteria, in part due to chance, but probably also because bacteria have greater metabolic diversity to offer.
Related JoVE Video
Draft genome sequence of the Daphnia pathogen Octosporea bayeri: insights into the gene content of a large microsporidian genome and a model for host-parasite interactions.
Genome Biol.
PUBLISHED: 07-09-2009
Show Abstract
Hide Abstract
The highly compacted 2.9-Mb genome of Encephalitozoon cuniculi placed the microsporidia in the spotlight, encoding a mere 2,000 proteins and a highly reduced suite of biochemical pathways. This extreme level of reduction is not universal across the microsporidia, with genomes known to vary up to sixfold in size, suggesting that some genomes may harbor a gene content that is not as reduced as that of Enc. cuniculi. In this study, we present an in-depth survey of the large genome of Octosporea bayeri, a pathogen of Daphnia magna, with an estimated genome size of 24 Mb, in order to shed light on the organization and content of a large microsporidian genome.
Related JoVE Video
Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-15-2009
Show Abstract
Hide Abstract
The majority of eukaryotic diversity is hidden in protists, yet our current knowledge of processes and structures in the eukaryotic cell is almost exclusively derived from multicellular organisms. The increasing sensitivity of molecular methods and growing interest in microeukaryotes has only recently demonstrated that many features so far considered to be universal for eukaryotes actually exist in strikingly different versions. In other words, during their long evolutionary histories, protists have solved general biological problems in many more ways than previously appreciated. Interestingly, some groups have broken more rules than others, and the Euglenozoa and the Alveolata stand out in this respect. A review of the numerous odd features in these 2 groups allows us to draw attention to the high level of convergent evolution in protists, which perhaps reflects the limits that certain features can be altered. Moreover, the appearance of one deviation in an ancestor can constrain the set of possible downstream deviations in its descendents, so features that might be independent functionally, can still be evolutionarily linked. What functional advantage may be conferred by the excessive complexity of euglenozoan and alveolate gene expression, organellar genome structure, and RNA editing and processing has been thoroughly debated, but we suggest these are more likely the products of constructive neutral evolution, and as such do not necessarily confer any selective advantage at all.
Related JoVE Video
The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont coronympha.
PLoS ONE
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
For the majority of microbial eukaryotes (protists, algae), there is no clearly superior species concept that is consistently applied. In the absence of a practical biological species concept, most species and genus level delineations have historically been based on morphology, which may lead to an underestimate of the diversity of microbial eukaryotes. Indeed, a growing body of molecular evidence, such as barcoding surveys, is beginning to support the conclusion that significant cryptic species diversity exists. This underestimate of diversity appears to be due to a combination of using morphology as the sole basis for assessing diversity and our inability to culture the vast majority of microbial life. Here we have used molecular markers to assess the species delineations in two related but morphologically distinct genera of uncultivated symbionts found in the hindgut of termites.
Related JoVE Video
Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov.
PLoS ONE
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
Photosynthetic eukaryotes with a secondary plastid of red algal origin (cryptophytes, haptophytes, stramenopiles, dinoflagellates, and apicomplexans) are hypothesized to share a single origin of plastid acquisition according to Chromalveolate hypothesis. Recent phylogenomic analyses suggest that photosynthetic "chromalveolates" form a large clade with inclusion of several non-photosynthetic protist lineages. Katablepharids are one such non-photosynthetic lineage closely related to cryptophytes. Despite their evolutionary and ecological importance, katablepharids are poorly investigated.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.