JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ex Vivo Response to Histone Deacetylase (HDAC) Inhibitors of the HIV Long Terminal Repeat (LTR) Derived from HIV-Infected Patients on Antiretroviral Therapy.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Histone deacetylase inhibitors (HDACi) can induce human immunodeficiency virus (HIV) transcription from the HIV long terminal repeat (LTR). However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+) isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART). We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.
Related JoVE Video
Identifying recombination hotspots in the HIV-1 genome.
J. Virol.
PUBLISHED: 12-26-2013
Show Abstract
Hide Abstract
HIV-1 infection is characterised by the rapid generation of genetic diversity that facilitates viral escape from immune selection and antiretroviral therapy. Despite recombinations crucial role in viral diversity and evolution, little is known about the genomic factors that influence recombination between highly similar genomes. In this study, we use a minimally modified full length HIV-1 genome and high throughput sequence analysis to study recombination in gag and pol in T cells. We find that recombination is favoured at a number of recombination hotspots, where recombination occurs six times more frequently than at corresponding coldspots. Interestingly, these hotspots occur near important features of the HIV-1 genome, but do not occur at sites immediately around protease inhibitor or reverse transcriptase inhibitor drug resistance mutations. We show that the recombination hot and cold spots are consistent across five blood donors and are independent of co-receptor mediated entry. Finally, we check common experimental confounders and find that these are not driving the location of recombination hotspots. This is the first study to identify the location of recombination hotspots, between two similar viral genomes with great statistical power and under conditions that closely reflect natural recombination events amongst HIV-1 quasispecies.
Related JoVE Video
Myeloid Dendritic Cells Induce HIV-1 Latency in Non-proliferating CD4(+) T Cells.
PLoS Pathog.
PUBLISHED: 12-01-2013
Show Abstract
Hide Abstract
Latently infected resting CD4(+) T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4(+) T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4(+) T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4(+) T cells. Gene expression in non-proliferating CD4(+) T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-?B and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4(+) T cells, which is predominantly mediated through signalling during DC-T cell contact.
Related JoVE Video
Intracellular Dynamics of HIV Infection.
J. Virol.
PUBLISHED: 11-06-2013
Show Abstract
Hide Abstract
Early studies of HIV infection dynamics suggested that virus-producing HIV-infected cells had an average half-life of approximately 1 day. However, whether this average behavior is reflective of the dynamics of individual infected cells is unclear. Here, we use HIV-enhanced green fluorescent protein (EGFP) constructs and flow cytometry sorting to explore the dynamics of cell infection, viral protein production, and cell death in vitro. By following the numbers of productively infected cells expressing EGFP over time, we show that infected cell death slows down over time. Although infected cell death in vivo could be very different, our results suggest that the constant decay of cell numbers observed in vivo during antiretroviral treatment could reflect a balance of cell death and delayed viral protein production. We observe no correlation between viral protein production and death rate of productively infected cells, showing that viral protein production is not likely to be the sole determinant of the death of HIV-infected cells. Finally, we show that all observed features can be reproduced by a simple model in which infected cells have broad distributions of productive life spans, times to start viral protein production, and viral protein production rates. This broad spectrum of the level and timing of viral protein production provides new insights into the behavior and characteristics of HIV-infected cells.
Related JoVE Video
HDAC inhibitors in HIV.
Immunol. Cell Biol.
PUBLISHED: 11-15-2011
Show Abstract
Hide Abstract
Combination antiretroviral therapy (cART) has led to a very substantial reduction in morbidity and mortality in HIV-infected patients; however, cART alone is unable to cure HIV and therapy is lifelong. Therefore, a new strategy to cure HIV is urgently needed. There is now a concerted effort from scientists, clinicians and funding agencies to identify ways to achieve either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells). Multiple strategies aiming at achieving a cure for HIV are currently being investigated, including both pharmacotherapy and gene therapy. In this review, we will review the rationale as well as in vitro and clinical trial data that support the role of histone deacetylase inhibitors as one approach to cure HIV.
Related JoVE Video
Differential effect of acute and persistent Junin virus infections on the nucleo-cytoplasmic trafficking and expression of heterogeneous nuclear ribonucleoproteins type A and B.
J. Gen. Virol.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
Heterogeneous nuclear ribonucleoproteins A and B (hnRNPs A/B), cellular RNA-binding proteins that participate in splicing, trafficking, translation and turnover of mRNAs, have been implicated in the life cycles of several cytoplasmic RNA viruses. Here, we demonstrate that silencing of hnRNPs A1 and A2 significantly reduces the replication of the arenavirus Junín virus (JUNV), the aetiological agent of Argentine haemorrhagic fever. While acute JUNV infection did not modify total levels of expression of hnRNPs A/B in comparison with uninfected cells, non-cytopathic persistent infection exhibited low levels of these cell proteins. Furthermore, acutely infected cells showed a cytoplasmic relocalization of overexpressed hnRNP A1, probably related to the involvement of this protein in virus replicative cycle. This cytoplasmic accumulation was also observed in cells expressing viral nucleoprotein (N), and co-immunoprecipitation studies revealed the interaction between hnRNP A1 and N protein. By contrast, a predominantly nuclear distribution of overexpressed hnRNP A1 was found during persistent infection, even in the presence of endogenous or overexpressed N protein, indicating a differential modulation of nucleo-cytoplasmic trafficking in acute and persistent JUNV infections.
Related JoVE Video
Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system.
PLoS ONE
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.
Related JoVE Video
Inhibition of Junín virus replication by small interfering RNAs.
Antiviral Res.
PUBLISHED: 03-02-2009
Show Abstract
Hide Abstract
Junín virus (JUNV), the etiological agent of the Argentine hemorrhagic fever, has a single-stranded RNA genome with ambisense expression which encodes for five proteins. In previous works we have demonstrated that the Z arenavirus matrix protein represents an attractive target for antiviral therapy. With the aim of studying a new alternative therapeutic mechanism, four Z-specific siRNAs (Z1- to Z4-siRNAs) were tested showing variable efficacy. The most effective inhibitor was Z2-siRNA targeted at the region encompassed by nt 179-197 of Z gene. The efficacy of this Z2-siRNA against JUNV was also demonstrated in virus-infected cells, by testing infectious virus plaque formation (92.8% JUNV yield reduction), viral RNA level or antigen expression, as well as in cells transfected with Z-specific reporter plasmids (91% reduction in expression of Z-EGFP fusion protein). Furthermore, the lack of effect of this Z-siRNA on the expression of other JUNV proteins, such as N and GPC, confirmed the specificity of action exerted by Z2-siRNA on Z transcript. Thus, the present study represents the first report of virus inhibition mediated by RNA interference for a New World arenavirus.
Related JoVE Video
Characterization of Junín virus particles inactivated by a zinc finger-reactive compound.
Virus Res.
PUBLISHED: 01-05-2009
Show Abstract
Hide Abstract
Our previous studies reported the inhibitory action against arenaviruses of antiretroviral zinc finger-reactive compounds provided by the National Cancer Institute (USA). These compounds were able to inactivate virions as well as to reduce virus yields from infected cells. Here, the inactivation of the arenavirus Junín (JUNV), agent of Argentine hemorrhagic fever, by the aromatic disulfide NSC20625 was analyzed. The treatment of purified JUNV with this compound eliminated infectivity apparently through irreversible modifications in the matrix Z protein detected by: (a) alterations in the electrophoretic migration profile of Z under non-reducing conditions; (b) an electrodense labeling in the internal layer beneath the envelope and around the matrix Z protein, in negatively stained preparations; (c) changes in the subcellular localization of Z in cells transfected with a recombinant fusion protein JUNVZ-eGFP. The infection of Vero cells with JUNV inactivated particles was blocked at the uncoating of viral nucleocapsid from endosomes, providing new evidence for a functional role of Z in this stage of arenavirus cycle. Furthermore, the inactivated JUNV particles retained the immunoreactivity of the surface glycoprotein GP1 suggesting that this disulfide may be useful in the pursuit of an inactivating agent to obtain a vaccine antigen or diagnostic tool.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.