JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cell-cell communication induces random spikes of spontaneous calcium oscillations in multi-BV-2 microglial cells.
Biochem. Biophys. Res. Commun.
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
As the first and main form of active immune defense in the central nervous system, microglial cells usually exhibit complicated intracellular calcium (Ca²?) activity that can regulate the downstream components of signaling cascades. In the present work, spontaneous oscillations of the cytosolic calcium concentration ([Ca²?]c) in multi-BV-2 microglial cells were observed by video microscopy. These cells exhibited random spikes of Ca²? oscillations. Cross-correlation analysis of the temporal dependence of the oscillations indicated the existence of cell-cell communication mediated by extracellular messengers. Numerical simulations based on a simple mathematical model suggested that these communications could induce random spikes of spontaneous Ca oscillations in the multi-cell system. Short-time imaging analysis of random spikes in different regions of a single cell showed that spontaneous Ca²? oscillations resulted from Ca²? wave generated by other cells as well as from calcium elevation inside the cell. Taken together, our data demonstrate that cell-cell communication existed between the BV-2 microglial cells in vitro and further resulted in the random spikes of spontaneous Ca²? oscillations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.