JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Individual karyotypes at the origins of cervical carcinomas.
Mol Cytogenet
PUBLISHED: 09-21-2013
Show Abstract
Hide Abstract
In 1952 Papanicolaou et al. first diagnosed and graded cervical carcinomas based on individual "abnormal DNA contents" and cellular phenotypes. Surprisingly current papilloma virus and mutation theories of carcinomas do not mention these individualities. The viral theory holds that randomly integrated, defective genomes of papilloma viruses, which are often untranscribed, cause cervical carcinomas with unknown cofactors 20-50 years after infection. Virus-free carcinomas are attributed to mutations of a few tumor-suppressor genes, especially the p53 gene. But the paradox of how a few mutations or latent defective viral DNAs would generate carcinomas with endless individual DNA contents, degrees of malignancies and cellular phenotypes is unsolved. Since speciation predicts individuality, we test here the theory that cancers are autonomous species with individual clonal karyotypes and phenotypes. This theory postulates that carcinogens induce aneuploidy. By unbalancing mitosis genes aneuploidy catalyzes chain reactions of karyotypic evolutions. Most such evolutions end with non-viable karyotypes but a few become new cancer karyotypes. Despite congenitally unbalanced mitosis genes cancer karyotypes are stabilized by clonal selections for cancer-specific autonomy.
Related JoVE Video
Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy.
Cell Cycle
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
Immortality is a common characteristic of cancers, but its origin and purpose are still unclear. Here we advance a karyotypic theory of immortality based on the theory that carcinogenesis is a form of speciation. Accordingly, cancers are generated from normal cells by random karyotypic rearrangements and selection for cancer-specific reproductive autonomy. Since such rearrangements unbalance long-established mitosis genes, cancer karyotypes vary spontaneously but are stabilized perpetually by clonal selections for autonomy. To test this theory we have analyzed neoplastic clones, presumably immortalized by transfection with overexpressed telomerase or with SV40 tumor virus, for the predicted clonal yet flexible karyotypes. The following results were obtained: (1) All immortal tumorigenic lines from cells transfected with overexpressed telomerase had clonal and flexible karyotypes; (2) Searching for the origin of such karyotypes, we found spontaneously increasing, random aneuploidy in human fibroblasts early after transfection with overexpressed telomerase; (3) Late after transfection, new immortal tumorigenic clones with new clonal and flexible karyotypes were found; (4) Testing immortality of one clone during 848 unselected generations showed the chromosome number was stable, but the copy numbers of 36% of chromosomes drifted ± 1; (5) Independent immortal tumorigenic clones with individual, flexible karyotypes arose after individual latencies; (6) Immortal tumorigenic clones with new flexible karyotypes also arose late from cells of a telomerase-deficient mouse rendered aneuploid by SV40 virus. Because immortality and tumorigenicity: (1) correlated exactly with individual clonal but flexible karyotypes; (2) originated simultaneously with such karyotypes; and (3) arose in the absence of telomerase, we conclude that clonal and flexible karyotypes generate the immortality of cancers.
Related JoVE Video
AIDS since 1984: no evidence for a new, viral epidemic--not even in Africa.
Ital J Anat Embryol
PUBLISHED: 08-11-2011
Show Abstract
Hide Abstract
Since the discoveries of a putative AIDS virus in 1984 and of millions of asymptomatic carriers in subsequent years, no general AIDS epidemic has occurred by 2011. In 2008, however, it has been proposed that between 2000 and 2005 the new AIDS virus, now called HIV, had killed 1.8 million South Africans at a steady rate of 300,000 per year and that anti-HIV drugs could have saved 330,000 of those. Here we investigate these claims in view of the paradoxes that HIV would cause a general epidemic in Africa but not in other continents, and a steady rather than a classical bell-shaped epidemic like all other new pathogenic viruses. Surprisingly, we found that South Africa attributed only about 10,000 deaths per year to HIV between 2000 and 2005 and that the South African population had increased by 3 million between 2000 and 2005 at a steady rate of 500,000 per year. This gain was part of a monotonic growth trajectory spanning from 29 million in 1980 to 49 million in 2008. During the same time Uganda increased from 12 to 31 million, and Sub-Saharan Africa as a whole doubled from 400 to 800 million, despite high prevalence HIV. We deduce from this demographic evidence that HIV is not a new killer virus. Based on a review of the known toxicities of antiretroviral drugs we like to draw the attention of scientists, who work in basic and clinical medical fields, including embryologists, to the need of rethinking the risk-and-benefit balance of antiretroviral drugs for pregnant women, newborn babies and all others who carry antibodies against HIV.
Related JoVE Video
Is carcinogenesis a form of speciation?
Cell Cycle
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
Since cancers have individual clonal karyotypes, are immortal and evolve from normal cells treated by carcinogens only after exceedingly long latencies of many months to decades-we deduce that carcinogenesis may be a form of speciation. This theory proposes that carcinogens initiate carcinogenesis by causing aneuploidy, i.e., losses or gains of chromosomes. Aneuploidy destabilizes the karyotype, because it unbalances thousands of collaborating genes including those that synthesize, segregate and repair chromosomes. Driven by this inherent instability aneuploid cells evolve ever-more random karyotypes automatically. Most of these perish, but a very small minority acquires reproductive autonomy-the primary characteristic of cancer cells and species. Selection for autonomy stabilizes new cancer species against the inherent instability of aneuploidy within specific margins of variation. The speciation theory explains five common characteristics of cancers: (1) species-specific autonomy; (2) karyotypic and phenotypic individuality; (3) flexibility by karyotypic variations within stable margins of autonomy; (4) immortality by replacing defective karyotypes from constitutive pools of competent variants or subspecies generated by this flexibility; and (5) long neoplastic latencies by the low probability that random karyotypic alterations generate new autonomous species. Moreover, the theory explains phylogenetic relations between cancers of the same tissue, because carcinogenesis is restricted by tissue-specific transcriptomes. The theory also solves paradoxes of other cancer theories. For example, "aneuploidy" of cancers is now said to be a "paradox" or "cancers fatal flaw," because aneuploidy impairs normal growth and development. But if the "aneuploidies" of cancers are in effect the karyotypes of new species, this paradox is solved.
Related JoVE Video
Detection of centrosome aberrations in disease-unrelated cells from patients with tumor treated with tyrosine kinase inhibitors.
Eur. J. Haematol.
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
Tyrosine kinase inhibitors (TKIs) target various pathways associated with proliferation of aberrant clones in malignant diseases. Despite good response and acceptable tolerability, little is known concerning long-term toxicity. Furthermore, the influence of these inhibitors on disease-unrelated cells is not investigated yet.
Related JoVE Video
Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes.
Cancer Genet. Cytogenet.
PUBLISHED: 02-11-2010
Show Abstract
Hide Abstract
Cancers are clones of autonomous cells defined by individual karyotypes, much like species. Despite such karyotypic evidence for causality, three to six synergistic mutations, termed oncogenes, are generally thought to cause cancer. To test single oncogenes, they are artificially activated with heterologous promoters and spliced into the germ line of mice to initiate cancers with collaborating spontaneous oncogenes. Because such cancers are studied as models for the treatment of natural cancers with related oncogenes, the following must be answered: 1) which oncogenes collaborate with the transgenes in cancers; 2) how do single transgenic oncogenes induce diverse cancers and hyperplasias; 3) what maintains cancers that lose initiating transgenes; 4) why are cancers aneuploid, over- and underexpressing thousands of normal genes? Here we try to answer these questions with the theory that carcinogenesis is a form of speciation. We postulate that transgenic oncogenes initiate carcinogenesis by inducing aneuploidy. Aneuploidy destabilizes the karyotype by unbalancing teams of mitosis genes. This instability thus catalyzes the evolution of new cancer species with individual karyotypes. Depending on their degree of aneuploidy, these cancers then evolve new subspecies. To test this theory, we have analyzed the karyotypes and phenotypes of mammary carcinomas of mice with transgenic SV40 tumor virus- and hepatitis B virus-derived oncogenes. We found that (1) a given transgene induced diverse carcinomas with individual karyotypes and phenotypes; (2) these karyotypes coevolved with newly acquired phenotypes such as drug resistance; (3) 8 of 12 carcinomas were transgene negative. Having found one-to-one correlations between individual karyotypes and phenotypes and consistent coevolutions of karyotypes and phenotypes, we conclude that carcinogenesis is a form of speciation and that individual karyotypes maintain cancers as they maintain species. Because activated oncogenes destabilize karyotypes and are dispensable in cancers, we conclude that they function indirectly, like carcinogens. Such oncogenes would thus not be valid models for the treatment of cancers.
Related JoVE Video
WITHDRAWN: HIV-AIDS hypothesis out of touch with South African AIDS - A new perspective.
Med. Hypotheses
PUBLISHED: 06-09-2009
Show Abstract
Hide Abstract
This Article-in-Press has been permanently withdrawn. The editorial policy of Medical Hypotheses makes it clear that the journal considers "radical, speculative, and non-mainstream scientific ideas", and articles will only be acceptable if they are "coherent and clearly expressed." However, we received serious expressions of concern about the quality of this article, which contains highly controversial opinions about the causes of AIDS, opinions that could potentially be damaging to global public health. Given these important signals of concern, we commissioned an external expert panel to investigate the circumstances in which this article came to be published online. The panel recommended that the article should be externally peer-reviewed. Following a peer-review process managed by The Lancet editorial team, all five external reviewers recommended rejection, as a result of which the expert panel recommended permanent withdrawal. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Related JoVE Video
On the karyotypic origin and evolution of cancer cells.
Cancer Genet. Cytogenet.
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
Cancers have clonal, aneuploid karyotypes that evolve ever more malignant phenotypes spontaneously. Because these facts are hard to explain by conventional mutation theory, we propose here a karyotypic cancer theory. According to this theory, carcinogens initiate carcinogenesis by inducing random aneuploidy. Aneuploidy then catalyzes karyotypic evolutions, because it destabilizes the karyotype by unbalancing teams of proteins that segregate, synthesize, and repair chromosomes. Sporadically, such evolutions generate new cancer-causing karyotypes, which are stabilized within narrow limits against the inherent instability of aneuploidy by selection for oncogenic function. Here we have tested this theory prospectively by analyzing the karyotypes of distinct tumorigenic clones, which arose from mass cultures of human cells within a few months after transfection with artificially activated oncogenes. All clones from the same parental cells had individual, "near-clonal" karyotypes and phenotypes, although the parental oncogenes were identical. The karyotypes of distinct tumors formed by a given clone in immunodeficient mice were variants of those of the input clones. The karyotypes of tumorigenic clones also evolved on passages in vitro, in which they acquired either enhanced tumorigenicity spontaneously or resistance against methotrexate upon selection. We conclude that activated oncogenes initiate carcinogenesis indirectly by inducing random aneuploidy, much like conventional carcinogens, but more effectively because the oncogenes are integrated into the genome. Since aneuploidy destabilizes the karyotype, such cells evolve new, cancer-specific karyotypes spontaneously, much like new species. Because individual karyotypes of tumorigenic clones correlate and coevolve with individual phenotypes, we conclude that specific karyotypes as a whole are the genomes of cancer cells. Owing to the flexibility of their aneuploid karyotypes, cancers evolve at rates that are roughly proportional to their degrees of aneuploidy. In sum, genomes consisting of individual and flexible karyotypes explain the characteristic individuality, stability, and flexibility of cancers.
Related JoVE Video
Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function.
Cancer Genet. Cytogenet.
PUBLISHED: 01-06-2009
Show Abstract
Hide Abstract
The chromosomes of cancer cells are unstable, because of aneuploidy. Despite chromosomal instability, however, cancer karyotypes are individual and quasi-stable, as is evident especially from clonal chromosome copy numbers and marker chromosomes. This paradox would be resolved if the karyotypes in cancers represent chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function. To test this hypothesis, we analyzed the initial and long-term karyotypes of seven clones of newly transformed human epithelial, mammary, and muscle cells. Approximately 1 in 100,000 such cells generates transformed clones at 2-3 months after introduction of retrovirus-activated cellular genes or the tumor virus SV40. These frequencies are too low for direct transformation, so we postulated that virus-activated genes initiate transformation indirectly, via specific karyotypes. Using multicolor fluorescence in situ hybridization with chromosome-specific DNA probes, we found individual clonal karyotypes that were stable for at least 34 cell generations-within limits, as follows. Depending on the karyotype, average clonal chromosome numbers were stable within +/- 3%, and chromosome-specific copy numbers were stable in 70-100% cells. At any one time, however, relative to clonal means, per-cell chromosome numbers varied +/-18% and chromosome-specific copy numbers varied +/-1 in 0-30% of cells; unstable nonclonal markers were found within karyotype-specific quotas of <1% to 20% of the total chromosome number. For two clones, karyotypic ploidies also varied. With these rates of variation, the karyotypes of transformed clones would randomize in a few generations unless selection occurs. We conclude that individual aneuploid karyotypes initiate and maintain cancers, much like new species. These cancer-causing karyotypes are in flexible equilibrium between destabilizing aneuploidy and stabilizing selection for transforming function. Karyotypes as a whole, rather than specific mutations, explain the individuality, fluidity, and phenotypic complexity of cancers.
Related JoVE Video
Origin of metastases: subspecies of cancers generated by intrinsic karyotypic variations.
Cell Cycle
Show Abstract
Hide Abstract
Conventional mutation theories do not explain (1) why the karyotypes of metastases are related to those of parental cancers but not to those of metastases of other cancers and (2) why cancers metastasize at rates that often far exceed those of conventional mutations. To answer these questions, we advance here the theory that metastases are autonomous subspecies of cancers, rather than mutations. Since cancers are species with intrinsically flexible karyotypes, they can generate new subspecies by spontaneous karyotypic rearrangements. This phylogenetic theory predicts that metastases are karyotypically related to parental cancers but not to others. Testing these predictions on metastases from two pancreatic cancers, we found: (1) Metastases had individual karyotypes and phenotypes. The karyotypes of metastases were related to, but different from, those of parental cancers in 11 out of 37 and 26 out of 49 parental chromosomal units. Chromosomal units are defined as intact chromosomes with cancer-specific copy numbers and marker chromosomes that are > 50% clonal. (2) Metastases from the two different cancers did not share chromosomal units. Testing the view that multi-chromosomal rearrangements occur simultaneously in cancers, as opposed to sequentially, we found spontaneous non-clonal rearrangements with as many new chromosomal units as in authentic metastases. We conclude that metastases are individual autonomous species differing from each other and parental cancers in species-specific karyotypes and phenotypes. They are generated from parental cancers by multiple simultaneous karyotypic rearrangements, much like new species. The species-specific individualities of metastases explain why so many searches for commonalities have been unsuccessful.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.