JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
?-mannosylceramide activates type I natural killer t cells to induce tumor immunity without inducing long-term functional anergy.
Clin. Cancer Res.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Most studies characterizing antitumor properties of invariant natural killer T (iNKT) cells have used the agonist, ?-galactosylceramide (?-GalCer). However, ?-GalCer induces strong, long-lasting anergy of iNKT cells, which could be a major detriment for clinical therapy. A novel iNKT cell agonist, ?-mannosylceramide (?-ManCer), induces strong antitumor immunity through a mechanism distinct from that of ?-GalCer. The objective of this study was to determine whether ?-ManCer induces anergy of iNKT cells.
Related JoVE Video
Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria.
Nat. Immunol.
PUBLISHED: 07-27-2011
Show Abstract
Hide Abstract
Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.
Related JoVE Video
Peroxisome proliferator-activated receptor ?-regulated cathepsin D is required for lipid antigen presentation by dendritic cells.
J. Immunol.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
It is well established that dendritic cells (DCs) take up, process, and present lipid Ags in complex with CD1d molecules to invariant NKT cells. The lipid-activated transcription factor, peroxisome proliferator-activated receptor ? (PPAR?), has previously been shown to regulate CD1d expression in human monocyte-derived DCs, providing a link between lipid metabolism and lipid Ag presentation. We report that PPAR? regulates the expression of a lysosomal protease, cathepsin D (CatD), in human monocyte-derived DCs. Inhibition of CatD specifically reduced the expansion of invariant NKT cells and furthermore resulted in decreased maturation of saposins, a group of lipid transfer proteins required for lysosomal lipid Ag processing and loading. These results reveal a novel mechanism of lipid Ag presentation and identify CatD as a key component of this machinery and firmly place PPAR? as the transcriptional regulator linking lipid metabolism and lipid Ag processing.
Related JoVE Video
A rapid fluorescence-based assay for classification of iNKT cell activating glycolipids.
J. Am. Chem. Soc.
PUBLISHED: 03-22-2011
Show Abstract
Hide Abstract
Structural variants of ?-galactosylceramide (?GC) that activate invariant natural killer T cells (iNKT cells) are being developed as potential immunomodulatory agents for a variety of applications. Identification of specific forms of these glycolipids that bias responses to favor production of proinflammatory vs anti-inflammatory cytokines is central to current efforts, but this goal has been hampered by the lack of in vitro screening assays that reliably predict the in vivo biological activity of these compounds. Here we describe a fluorescence-based assay to identify functionally distinct ?GC analogues. Our assay is based on recent findings showing that presentation of glycolipid antigens by CD1d molecules localized to plasma membrane detergent-resistant microdomains (lipid rafts) is correlated with induction of interferon-? secretion and Th1-biased cytokine responses. Using an assay that measures lipid raft residency of CD1d molecules loaded with ?GC, we screened a library of ?200 synthetic ?GC analogues and identified 19 agonists with potential Th1-biasing activity. Analysis of a subset of these novel candidate Th1 type agonists in vivo in mice confirmed their ability to induce systemic cytokine responses consistent with a Th1 type bias. These results demonstrate the predictive value of this novel in vitro assay for assessing the in vivo functionality of glycolipid agonists and provide the basis for a relatively simple high-throughput assay for identification and functional classification of iNKT cell activating glycolipids.
Related JoVE Video
Innate immunity and primary biliary cirrhosis: activated invariant natural killer T cells exacerbate murine autoimmune cholangitis and fibrosis.
Hepatology
PUBLISHED: 03-05-2011
Show Abstract
Hide Abstract
Murine models of autoimmunity allow the study of the earliest events in disease pathogenesis. Our laboratory has developed a xenobiotic induced model of primary biliary cirrhosis (PBC) following immunization of mice with 2-octynoic acid coupled to bovine serum albumin (2-OA-BSA), an antigen selected following quantitative structure-activity relationship analysis of the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the immunodominant autoantigen of PBC. Recent data in humans with PBC has suggested that a major component of liver pathology is due to activation of innate immunity. We took advantage of our 2-OA-BSA model and immunized mice with and without the addition of ?-galactosylceramide (?-GalCer), an invariant natural killer T cell activator. Importantly, we report herein that 2-OA-BSA-immunized mice exposed to ?-GalCer develop a profound exacerbation of their autoimmune cholangitis, including significant increases in CD8(+) T-cell infiltrates, portal inflammation, granuloma formation, and bile duct damage. Furthermore, such mice produce increased levels of antimitochondrial antibodies and have evidence of fibrosis, a feature not previously reported in the murine models of PBC.
Related JoVE Video
A semi-invariant V?10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties.
Nat. Immunol.
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(?)14-J(?)18) T cell antigen receptor (TCR) ?-chain and recognition of the glycolipid ?-galactosylceramide (?-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of ?-GalCer-reactive NKT cells that expressed a canonical V(?)10-J(?)50 TCR ?-chain, which showed a preference for ?-glucosylceramide (?-GlcCer) and bacterial ?-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCR? sequence identity, the V(?)10 TCR-CD1d-?-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-?-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.
Related JoVE Video
Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells.
PLoS Biol.
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Invariant natural killer T (iNKT) cells are an evolutionary conserved T cell population characterized by features of both the innate and adaptive immune response. Studies have shown that iNKT cells are required for protective responses to Gram-positive pathogens such as Streptococcus pneumoniae, and that these cells recognize bacterial diacylglycerol antigens presented by CD1d, a non-classical antigen-presenting molecule. The combination of a lipid backbone containing an unusual fatty acid, vaccenic acid, as well as a glucose sugar that is weaker or not stimulatory when linked to other lipids, is required for iNKT cell stimulation by these antigens. Here we have carried out structural and biophysical studies that illuminate the reasons for the stringent requirement for this unique combination. The data indicate that vaccenic acid bound to the CD1d groove orients the protruding glucose sugar for TCR recognition, and it allows for an additional hydrogen bond of the glucose with CD1d when in complex with the TCR. Furthermore, TCR binding causes an induced fit in both the sugar and CD1d, and we have identified the CD1d amino acids important for iNKT TCR recognition and the stability of the ternary complex. The studies show also how hydrogen bonds formed by the glucose sugar can account for the distinct binding kinetics of the TCR for this CD1d-glycolipid complex. Therefore, our studies illuminate the mechanism of glycolipid recognition for antigens from important pathogens.
Related JoVE Video
A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells.
Immunity
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Natural killer T (NKT) cells respond to a variety of CD1d-restricted antigens (Ags), although the basis for Ag discrimination by the NKT cell receptor (TCR) is unclear. Here we have described NKT TCR fine specificity against several closely related Ags, termed altered glycolipid ligands (AGLs), which differentially stimulate NKT cells. The structures of five ternary complexes all revealed similar docking. Acyl chain modifications did not affect the interaction, but reduced NKT cell proliferation, indicating an affect on Ag processing or presentation. Conversely, truncation of the phytosphingosine chain caused an induced fit mode of TCR binding that affected TCR affinity. Modifications in the glycosyl head group had a direct impact on the TCR interaction and associated cellular response, with ligand potency reflecting the t(1/2) life of the interaction. Accordingly, we have provided a molecular basis for understanding how modifications in AGLs can result in striking alterations in the cellular response of NKT cells.
Related JoVE Video
Mouse and human iNKT cell agonist ?-mannosylceramide reveals a distinct mechanism of tumor immunity.
J. Clin. Invest.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Type 1 or invariant NKT (iNKT) cell agonists, epitomized by ?-galactosylceramide, protect against cancer largely by IFN-?-dependent mechanisms. Here we describe what we believe to be a novel IFN-?-independent mechanism induced by ?-mannosylceramide, which also defines a potentially new class of iNKT cell agonist, with an unusual ?-linked sugar. Like ?-galactosylceramide, ?-mannosylceramide directly activates iNKT cells from both mice and humans. In contrast to ?-galactosylceramide, protection by ?-mannosylceramide was completely dependent on NOS and TNF-?, neither of which was required to achieve protection with ?-galactosylceramide. Moreover, at doses too low for either alone to protect, ?-mannosylceramide synergized with ?-galactosylceramide to protect mice against tumors. These results suggest that treatment with ?-mannosylceramide provides a distinct mechanism of tumor protection that may allow efficacy where other agonists have failed. Furthermore, the ability of ?-mannosylceramide to synergize with ?-galactosylceramide suggests treatment with this class of iNKT agonist may provide protection against tumors in humans.
Related JoVE Video
Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity.
J. Clin. Invest.
PUBLISHED: 08-20-2010
Show Abstract
Hide Abstract
Infection with influenza A virus represents a major public health threat worldwide, particularly in patients with asthma. However, immunity induced by influenza A virus may have beneficial effects, particularly in young children, that might protect against the later development of asthma, as suggested by the hygiene hypothesis. Herein, we show that infection of suckling mice with influenza A virus protected the mice as adults against allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma. The protective effect was associated with the preferential expansion of CD4-CD8-, but not CD4+, NKT cells and required T-bet and TLR7. Adoptive transfer of this cell population into allergen-sensitized adult mice suppressed the development of allergen-induced AHR, an effect associated with expansion of the allergen-specific forkhead box p3+ (Foxp3+) Treg cell population. Influenza-induced protection was mimicked by treating suckling mice with a glycolipid derived from Helicobacter pylori (a bacterium associated with protection against asthma) that activated NKT cells in a CD1d-restricted fashion. These findings suggest what we believe to be a novel pathway that can regulate AHR, and a new therapeutic strategy (treatment with glycolipid activators of this NKT cell population) for asthma.
Related JoVE Video
?-galactosylceramide analogs with weak agonist activity for human iNKT cells define new candidate anti-inflammatory agents.
PLoS ONE
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
CD1d-restricted natural killer T cells with invariant T cell receptor ? chains (iNKT cells) are a unique lymphocyte subset that responds to recognition of specific lipid and glycolipid antigens. They are conserved between mice and humans and exert various immunoregulatory functions through their rapid secretion of a variety of cytokines and secondary activation of dendritic cells, B cells and NK cells. In the current study, we analyzed the range of functional activation states of human iNKT cells using a library of novel analogs of ?-galactosylceramide (?GalCer), the prototypical iNKT cell antigen. Measurement of cytokines secreted by human iNKT cell clones over a wide range of glycolipid concentrations revealed that iNKT cell ligands could be classified into functional groups, correlating with weak versus strong agonistic activity. The findings established a hierarchy for induction of different cytokines, with thresholds for secretion being consistently lowest for IL-13, higher for interferon-? (IFN?), and even higher for IL-4. These findings suggested that human iNKT cells can be intrinsically polarized to selective production of IL-13 by maintaining a low level of activation using weak agonists, whereas selective polarization to IL-4 production cannot be achieved through modulating the strength of the activating ligand. In addition, using a newly designed in vitro system to assess the ability of human iNKT cells to transactivate NK cells, we found that robust secondary induction of interferon-? secretion by NK cells was associated with strong but not weak agonist ligands of iNKT cells. These results indicate that polarization of human iNKT cell responses to Th2-like or anti-inflammatory effects may best be achieved through selective induction of IL-13 and suggest potential discrepancies with findings from mouse models that may be important in designing iNKT cell-based therapies in humans.
Related JoVE Video
Invariant natural killer T cell-natural killer cell interactions dictate transplantation outcome after alpha-galactosylceramide administration.
Blood
PUBLISHED: 04-15-2009
Show Abstract
Hide Abstract
Invariant natural killer T cells (iNKT cells) have pivotal roles in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects. iNKT cells are activated through their T-cell receptors by glycolipid moieties (typically the alpha-galactosylceramide [alpha-GalCer] derivative KRN7000) presented within CD1d. We investigated the ability of modified alpha-GalCer molecules to differentially modulate alloreactivity and GVL. KRN7000 and the N-acyl variant, C20:2, were administered in multiple well-established murine models of allogeneic stem cell transplantation. The highly potent and specific activation of all type I NKT cells with C20:2 failed to exacerbate and in most settings inhibited GVHD late after transplantation, whereas effects on GVL were variable. In contrast, the administration of KRN7000 induced hyperacute GVHD and early mortality in all models tested. Administration of KRN7000, but not C20:2, was found to result in downstream interleukin (IL)-12 and dendritic cell (DC)-dependent natural killer (NK)- and conventional T-cell activation. Specific depletion of host DCs, IL-12, or donor NK cells prevented this pathogenic response and the induction of hyperacute GVHD. These data demonstrate the ability of profound iNKT activation to modulate both the innate and adaptive immune response via the DC-NK-cell interaction and raise concern for the use of alpha-GalCer therapeutically to modulate GVHD and GVL effects.
Related JoVE Video
Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation.
Immunity
PUBLISHED: 03-07-2009
Show Abstract
Hide Abstract
CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type cytokines. We analyzed presentation of NKT cell activating alpha galactosylceramide (alphaGalCer) analogs that give predominantly Th2 cell-type cytokine responses to determine how ligand structure controls the outcome of NKT cell activation. Using a monoclonal antibody specific for alphaGalCer-CD1d complexes to visualize and quantitate glycolipid presentation, we found that Th2 cell-type cytokine-biasing ligands were characterized by rapid and direct loading of cell-surface CD1d proteins. Complexes formed by association of these Th2 cell-type cytokine-biasing alphaGalCer analogs with CD1d showed a distinctive exclusion from ganglioside-enriched, detergent-resistant plasma membrane microdomains of antigen-presenting cells. These findings help to explain how subtle alterations in glycolipid ligand structure can control the balance of proinflammatory and anti-inflammatory activities of NKT cells.
Related JoVE Video
Mincle and human B cell function.
J. Autoimmun.
Show Abstract
Hide Abstract
C-type lectin receptors are pattern recognition receptors that are critical for autoimmunity and the immune response. Mincle is a C-type lectin receptor expressed by a variety of antigen presenting cells including macrophages, neutrophils, dendritic cells and B cells; a variety of stimuli including stress are known to induce the expression of Mincle. Mincle is an FcR?-associated activation receptor that senses damaged cells and upon ligation induces activated macrophages to produce inflammatory cytokines. Recently, while several studies have reported that Mincle plays an important role in macrophage responses to fungal infection its function on B cells remains to be defined. In efforts to elucidate the function of Mincle expressed by B cells, we studied the expression of Mincle on subsets of B cells and analyzed cytokines and synthesized immunoglobulin upon ligation of Mincle. The expression of Mincle on CD27-CD19(+) naïve B cells is significantly higher than CD27 + CD19(+) memory B cells. The stimulation of TLR9 ligand induced Mincle expression on B cells. Furthermore, co-stimulation of TLR9 and Mincle ligand reduced IgG and IgA production from B cells without a significant change in the inflammatory cytokines TNF-?, IL-6, IL-8 and IL-10. Our data identifies Mincle as a potentially critical player in human B cell responses.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.