JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis.
Brain
PUBLISHED: 10-27-2014
Show Abstract
Hide Abstract
Mutations in the skeletal muscle channel (SCN4A), encoding the Nav1.4 voltage-gated sodium channel, are causative of a variety of muscle channelopathies, including non-dystrophic myotonias and periodic paralysis. The effects of many of these mutations on channel function have been characterized both in vitro and in vivo. However, little is known about the consequences of SCN4A mutations downstream from their impact on the electrophysiology of the Nav1.4 channel. Here we report the discovery of a novel SCN4A mutation (c.1762A>G; p.I588V) in a patient with myotonia and periodic paralysis, located within the S1 segment of the second domain of the Nav1.4 channel. Using N-ethyl-N-nitrosourea mutagenesis, we generated and characterized a mouse model (named draggen), carrying the equivalent point mutation (c.1744A>G; p.I582V) to that found in the patient with periodic paralysis and myotonia. Draggen mice have myotonia and suffer from intermittent hind-limb immobility attacks. In-depth characterization of draggen mice uncovered novel systemic metabolic abnormalities in Scn4a mouse models and provided novel insights into disease mechanisms. We discovered metabolic alterations leading to lean mice, as well as abnormal AMP-activated protein kinase activation, which were associated with the immobility attacks and may provide a novel potential therapeutic target.
Related JoVE Video
Recent advances in bulbar syndromes: genetic causes and disease mechanisms.
Curr. Opin. Neurol.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
With advances in next-generation gene sequencing, progress in deep phenotyping and a greater understanding of the pathogenesis of motor neuron disease, our knowledge of the progressive bulbar syndromes has significantly increased in recent years. This group of heterogeneous conditions, in which the primary disorder is focused around degeneration of the lower cranial nerves, can occur in children or adults and form a spectrum of severity, based around the common feature of bulbar dysfunction. Early genetic diagnosis may allow treatment in some bulbar syndromes.
Related JoVE Video
C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins.
Science
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question, we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats, but not stop codon-interrupted "RNA-only" repeats in Drosophila caused adult-onset neurodegeneration. Thus, expanded repeats promoted neurodegeneration through dipeptide repeat proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence revealed that both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration.
Related JoVE Video
Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion.
Neurobiol. Aging
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Although 0-30 hexanucleotide repeats are present in the general population, expansions >500 repeats are associated with C9ALS/FTD. Large C9ALS/FTD expansions share a common haplotype and whether these expansions derive from a single founder or occur more frequently on a predisposing haplotype is yet to be determined and is relevant to disease pathomechanisms. Furthermore, although cases carrying 50-200 repeats have been described, their role and the pathogenic threshold of the expansions remain to be identified and carry importance for diagnostics and genetic counseling. We present clinical and genetic data from a UK ALS cohort and report the detailed molecular study of an atypical somatically unstable expansion of 90 repeats. Our results across different tissues provide evidence for the pathogenicity of this repeat number by showing they can somatically expand in the central nervous system to the well characterized pathogenic range. Our results support the occurrence of multiple expansion events for C9ALS/FTD.
Related JoVE Video
Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study.
J. Neurol. Neurosurg. Psychiatr.
PUBLISHED: 07-11-2014
Show Abstract
Hide Abstract
To investigate the role of longitudinal plasma neurofilament heavy chain protein (NfH) levels as an indicator of clinical progression and survival in amyotrophic lateral sclerosis (ALS).
Related JoVE Video
Novel CLN3 mutation causing autophagic vacuolar myopathy.
Neurology
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
To identify the genetic cause of a complex syndrome characterized by autophagic vacuolar myopathy (AVM), hypertrophic cardiomyopathy, pigmentary retinal degeneration, and epilepsy.
Related JoVE Video
Correlation of clinical and molecular features in spinal bulbar muscular atrophy.
Neurology
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
To characterize the clinical and genetic features of spinal bulbar muscular atrophy (SBMA), a rare neurodegenerative disorder caused by the expansion of a CAG repeat in the first exon of the androgen receptor gene, in the United Kingdom.
Related JoVE Video
Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis.
Nat. Neurosci.
PUBLISHED: 03-05-2014
Show Abstract
Hide Abstract
MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.
Related JoVE Video
Widespread RNA metabolism impairment in sporadic inclusion body myositis TDP43-proteinopathy.
Neurobiol. Aging
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
TDP43 protein mislocalization is a hallmark of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia, and mutations in the gene encoding TDP43 cause both disorders, further highlighting its role in disease pathogenesis. TDP43 is a heterogenous ribonucleoprotein, therefore suggesting that alterations in RNA metabolism play a role in these disorders, although direct evidence in patients is lacking. Sporadic inclusion body myositis (sIBM) is the most common acquired myopathy occurring in adults aged older than 50 years and abnormal cytoplasmic accumulations of TDP43 have been consistently described in sIBM myofibers. Here, we exploit high quality RNA from frozen sIBM muscle biopsies for transcriptomic studies on TDP43-proteinopathy patient tissue. Surprisingly, we found widespread sIBM-specific changes in the RNA metabolism pathways themselves. Consistent with this finding, we describe novel RNA binding proteins to mislocalize in the cytoplasm of sIBM myofibers and splicing changes in MAPT, a gene previously shown to play a role in sIBM. Our data indicate widespread alterations of RNA metabolism are a novel aspect of disease pathogenesis in sIBM. These findings also document an association, in TDP43-proteinopathy patients, between heterogenous ribonucleoprotein pathology and RNA metabolism alterations and carry importance for neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal dementia.
Related JoVE Video
A nonsense mutation in mouse Tardbp affects TDP43 alternative splicing activity and causes limb-clasping and body tone defects.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised Tardbp(Q101X) mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the Tardbp(Q101X) mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp(+/Q101X) ) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp(+/Q101X) mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp(+/Q101X) mice were crossed with the SOD1(G93Adl) transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the Tardbp(Q101X) mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are freely available to the community.
Related JoVE Video
Profilin1 E117G is a moderate risk factor for amyotrophic lateral sclerosis.
J. Neurol. Neurosurg. Psychiatr.
PUBLISHED: 12-05-2013
Show Abstract
Hide Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurodegenerative disorders that share significant clinical, pathological and genetic overlap and are considered to represent different ends of a common disease spectrum. Mutations in Profilin1 have recently been described as a rare cause of familial ALS. The PFN1 E117G missense variant has been described in familial and sporadic cases, and also found in controls, casting doubt on its pathogenicity. Interpretation of such variants represents a significant clinical-genetics challenge.
Related JoVE Video
C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci.
Acta Neuropathol.
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
An expanded GGGGCC repeat in a non-coding region of the C9orf72 gene is a common cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis. Non-coding repeat expansions may cause disease by reducing the expression level of the gene they reside in, by producing toxic aggregates of repeat RNA termed RNA foci, or by producing toxic proteins generated by repeat-associated non-ATG translation. We present the first definitive report of C9orf72 repeat sense and antisense RNA foci using a series of C9FTLD cases, and neurodegenerative disease and normal controls. A sensitive and specific fluorescence in situ hybridisation protocol was combined with protein immunostaining to show that both sense and antisense foci were frequent, specific to C9FTLD, and present in neurons of the frontal cortex, hippocampus and cerebellum. High-resolution imaging also allowed accurate analyses of foci number and subcellular localisation. RNA foci were most abundant in the frontal cortex, where 51 % of neurons contained foci. RNA foci also occurred in astrocytes, microglia and oligodendrocytes but to a lesser degree than in neurons. RNA foci were observed in both TDP-43- and p62-inclusion bearing neurons, but not at a greater frequency than expected by chance. RNA foci abundance in the frontal cortex showed a significant inverse correlation with age at onset of disease. These data establish that sense and antisense C9orf72 repeat RNA foci are a consistent and specific feature of C9FTLD, providing new insight into the pathogenesis of C9FTLD.
Related JoVE Video
Sequencing analysis of the spinal bulbar muscular atrophy CAG expansion reveals absence of repeat interruptions.
Neurobiol. Aging
PUBLISHED: 07-09-2013
Show Abstract
Hide Abstract
Trinucleotide repeat disorders are a heterogeneous group of diseases caused by the expansion, beyond a pathogenic threshold, of unstable DNA tracts in different genes. Sequence interruptions in the repeats have been described in the majority of these disorders and may influence disease phenotype and heritability. Spinal bulbar muscular atrophy (SBMA) is a motor neuron disease caused by a CAG trinucleotide expansion in the androgen receptor (AR) gene. Diagnostic testing and previous research have relied on fragment analysis polymerase chain reaction to determine the AR CAG repeat size, and have therefore not been able to assess the presence of interruptions. We here report a sequencing study of the AR CAG repeat in a cohort of SBMA patients and control subjects in the United Kingdom. We found no repeat interruptions to be present, and we describe differences between sequencing and traditional sizing methods.
Related JoVE Video
Is SOD1 loss of function involved in amyotrophic lateral sclerosis?
Brain
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
Mutations in the gene superoxide dismutase 1 (SOD1) are causative for familial forms of the neurodegenerative disease amyotrophic lateral sclerosis. When the first SOD1 mutations were identified they were postulated to give rise to amyotrophic lateral sclerosis through a loss of function mechanism, but experimental data soon showed that the disease arises from a--still unknown--toxic gain of function, and the possibility that loss of function plays a role in amyotrophic lateral sclerosis pathogenesis was abandoned. Although loss of function is not causative for amyotrophic lateral sclerosis, here we re-examine two decades of evidence regarding whether loss of function may play a modifying role in SOD1-amyotrophic lateral sclerosis. From analysing published data from patients with SOD1-amyotrophic lateral sclerosis, we find a marked loss of SOD1 enzyme activity arising from almost all mutations. We continue to examine functional data from all Sod1 knockout mice and we find obvious detrimental effects within the nervous system with, interestingly, some specificity for the motor system. Here, we bring together historical and recent experimental findings to conclude that there is a possibility that SOD1 loss of function may play a modifying role in amyotrophic lateral sclerosis. This likelihood has implications for some current therapies aimed at knocking down the level of mutant protein in patients with SOD1-amyotrophic lateral sclerosis. Finally, the wide-ranging phenotypes that result from loss of function indicate that SOD1 gene sequences should be screened in diseases other than amyotrophic lateral sclerosis.
Related JoVE Video
Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia.
Acta Neuropathol.
PUBLISHED: 05-11-2013
Show Abstract
Hide Abstract
An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). We now report the first description of a homozygous patient and compare it to a series of heterozygous cases. The patient developed early-onset frontotemporal dementia without additional features. Neuropathological analysis showed c9FTD/ALS characteristics, with abundant p62-positive inclusions in the frontal and temporal cortices, hippocampus and cerebellum, as well as less abundant TDP-43-positive inclusions. Overall, the clinical and pathological features were severe, but did not fall outside the usual disease spectrum. Quantification of C9orf72 transcript levels in post-mortem brain demonstrated expression of all known C9orf72 transcript variants, but at a reduced level. The pathogenic mechanisms by which the hexanucleotide repeat expansion causes disease are unclear and both gain- and loss-of-function mechanisms may play a role. Our data support a gain-of-function mechanism as pure homozygous loss of function would be expected to lead to a more severe, or completely different clinical phenotype to the one described here, which falls within the usual range. Our findings have implications for genetic counselling, highlighting the need to use genetic tests that distinguish C9orf72 homozygosity.
Related JoVE Video
Graphical modelling of molecular networks underlying sporadic inclusion body myositis.
Mol Biosyst
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
Here we present a novel statistical methodology that allows us to analyze gene expression data that have been collected from a number of different cases or conditions in a unified framework. Using a Bayesian nonparametric framework we develop a hierarchical model wherein genes can maintain a shared set of interactions between different cases, whilst also exhibiting behaviour that is unique to specific cases, sets of conditions, or groups of data points. By doing so we are able to not only combine data from different cases but also to discern the unique regulatory interactions that differentiate the cases. We apply our method to clinical data collected from patients suffering from sporadic Inclusion Body Myositis (sIBM), as well as control samples, and demonstrate the ability of our method to infer regulatory interactions that are unique to the disease cases of interest. The method thus balances the statistical need to include as many patients and controls as possible, and the clinical need to maintain potentially cryptic differences among patients and between patients and controls at the regulatory level.
Related JoVE Video
Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population.
Am. J. Hum. Genet.
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Hexanucleotide repeat expansions in C9orf72 are a major cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Understanding the disease mechanisms and a method for clinical diagnostic genotyping have been hindered because of the difficulty in estimating the expansion size. We found 96 repeat-primed PCR expansions: 85/2,974 in six neurodegenerative diseases cohorts (FTLD, ALS, Alzheimer disease, sporadic Creutzfeldt-Jakob disease, Huntington disease-like syndrome, and other nonspecific neurodegenerative disease syndromes) and 11/7,579 (0.15%) in UK 1958 birth cohort (58BC) controls. With the use of a modified Southern blot method, the estimated expansion range (smear maxima) in cases was 800-4,400. Similarly, large expansions were detected in the population controls. Differences in expansion size and morphology were detected between DNA samples from tissue and cell lines. Of those in whom repeat-primed PCR detected expansions, 68/69 were confirmed by blotting, which was specific for greater than 275 repeats. We found that morphology in the expansion smear varied among different individuals and among different brain regions in the same individual. Expansion size correlated with age at clinical onset but did not differ between diagnostic groups. Evidence of instability of repeat size in control families, as well as neighboring SNP and microsatellite analyses, support multiple expansion events on the same haplotype background. Our method of estimating the size of large expansions has potential clinical utility. C9orf72-related disease might mimic several neurodegenerative disorders and, with potentially 90,000 carriers in the United Kingdom, is more common than previously realized.
Related JoVE Video
P0S63del impedes the arrival of wild-type P0 glycoprotein to myelin in CMT1B mice.
Hum. Mol. Genet.
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
More than 120 mutations in the Myelin Protein Zero gene (MPZ, P0) cause various forms of hereditary neuropathy. Two human mutations encoding either P0S63C or P0S63del have been shown to cause demyelination in mice through different gain of function pathomechanisms. P0S63del, for example, is retained in the endoplasmic reticulum (ER) and elicits a pathogenetic unfolded protein response (UPR). As P0 likely forms oligomers, another gain of abnormal function could include a dominant-negative interaction between P0S63del and normal P0 (P0wt). To test this idea, we generated a transgenic mouse that expressed a form of P0wt with a myc epitope tag at the C terminus (P0ct-myc). We show that P0ct-myc is trafficked and functions like P0wt, thus providing a new tool to study P0 in vivo. In mice that express both P0ct-myc and P0S63del, P0S63del specifically delays the transit of P0ct-myc through the ER and reduces the level of P0wt in the myelin sheath by half-a level previously shown to cause demyelination in mice and humans. Surprisingly, P0ct-myc does not co-immunoprecipitate with P0S63del, suggesting an indirect interaction. Thus, P0S63del causes not only a UPR-related toxic mechanism, but also a dominant-negative effect on P0wt that probably contributes to demyelinating neuropathy.
Related JoVE Video
SOD1 and TDP-43 animal models of amyotrophic lateral sclerosis: recent advances in understanding disease toward the development of clinical treatments.
Mamm. Genome
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure. Breakthroughs in understanding ALS pathogenesis came with the discovery of dominant mutations in the superoxide dismutase 1 gene (SOD1) and other genes, including the gene encoding transactivating response element DNA binding protein-43 (TDP-43). This has led to the creation of animal models to further our understanding of the disease and identify a number of ALS-causing mechanisms, including mitochondrial dysfunction, protein misfolding and aggregation, oxidative damage, neuronal excitotoxicity, non-cell autonomous effects and neuroinflammation, axonal transport defects, neurotrophin depletion, effects from extracellular mutant SOD1, and aberrant RNA processing. Here we summarise the SOD1 and TDP-43 animal models created to date, report on recent findings supporting the potential mechanisms of ALS pathogenesis, and correlate this understanding with current developments in the clinic.
Related JoVE Video
Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration.
Brain
PUBLISHED: 05-14-2010
Show Abstract
Hide Abstract
Trans-activation response DNA-binding protein (TDP-43) accumulation is the major component of ubiquitinated protein inclusions found in patients with amyotrophic lateral sclerosis, and frontotemporal lobar degeneration with TDP-43 positive ubiquitinated inclusions, recently relabelled the TDP-43 proteinopathies. TDP-43 is predominantly located in the nucleus, however, in disease it mislocalizes to the cytoplasm where it aggregates to form hallmark pathological inclusions. The identification of TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis cases confirms its pathogenic role; but it is wild-type TDP-43 that is deposited in the vast majority of TDP-43 proteinopathies, implicating other unknown factors for its mislocalization and aggregation. One such mechanism may be defective nuclear import of TDP-43 protein, as a disruption of its nuclear localization signal leads to mislocalization and aggregation of TDP-43 in the cytoplasm. In order to explore the factors that regulate the nuclear import of TDP-43, we used a small interfering RNA library to silence 82 proteins involved in nuclear transport and found that knockdowns of karyopherin-beta1 and cellular apoptosis susceptibility protein resulted in marked cytoplasmic accumulation of TDP-43. In glutathione S-transferase pull-down assays, TDP-43 bound to karyopherin-alphas, thereby confirming the classical nuclear import pathway for the import of TDP-43. Analysis of the expression of chosen nuclear import factors in post-mortem brain samples from patients with TDP-43 positive frontotemporal lobar degeneration, and spinal cord samples from patients with amyotrophic lateral sclerosis, revealed a considerable reduction in expression of cellular apoptosis susceptibility protein in frontotemporal lobar degeneration. We propose that cellular apoptosis susceptibility protein associated defective nuclear transport may play a mechanistic role in the pathogenesis of the TDP-43 positive frontotemporal lobar degeneration.
Related JoVE Video
C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes.
Sci Rep
Show Abstract
Hide Abstract
Large expansions of a non-coding GGGGCC-repeat in the first intron of the C9orf72 gene are a common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). G-rich sequences have a propensity for forming highly stable quadruplex structures in both RNA and DNA termed G-quadruplexes. G-quadruplexes have been shown to be involved in a range of processes including telomere stability and RNA transcription, splicing, translation and transport. Here we show using NMR and CD spectroscopy that the C9orf72 hexanucleotide expansion can form a stable G-quadruplex, which has profound implications for disease mechanism in ALS and FTD.
Related JoVE Video
FUS is not dysregulated by the spinal bulbar muscular atrophy androgen receptor polyglutamine repeat expansion.
Neurobiol. Aging
Show Abstract
Hide Abstract
Spinal bulbar muscular atrophy (SBMA) and amyotrophic lateral sclerosis are two distinct forms of motor neuron disease with different genetic causes, pathology, and clinical course. However, both disorders are characterized by the progressive loss of lower motor neurons and by a similar protective response to growth factors in animal models, therefore raising the possibility of an overlap in the final pathogenic cascade. Mutations in the FUS gene and fused in sarcoma (FUS) protein pathology have now been identified in some amyotrophic lateral sclerosis cases, while a CAG expansion in the androgen receptor gene is known to cause SBMA. Recently, multiple lines of evidence have identified FUS as a major target of the androgen receptor, suggesting that FUS could be dysregulated in SBMA motor neurons. We have investigated this possibility by using a well-established mouse model of SBMA and our analysis of primary motor neuron cultures, spinal cords, and microdissected motor neurons show no evidence for FUS dysregulation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.