JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A doubled haploid rye linkage map with a QTL affecting ?-amylase activity.
J. Appl. Genet.
PUBLISHED: 01-14-2011
Show Abstract
Hide Abstract
A rye doubled haploid (DH) mapping population (Amilo × Voima) segregating for pre-harvest sprouting (PHS) was generated through anther culture of F(1) plants. A linkage map was constructed using DHs, to our knowledge, for the first time in rye. The map was composed of 289 loci: amplified fragment length polymorphism (AFLP), microsatellite, random amplified polymorphic DNA (RAPD), retrotransposon-microsatellite amplified polymorphism (REMAP), inter-retrotransposon amplified polymorphism (IRAP), inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers, and extended altogether 732 cM (one locus in every 2.5 cM). All of the seven rye chromosomes and four unplaced groups were formed. Distorted segregation of markers (P???0.05) was detected on all chromosomes. One major quantitative trait locus (QTL) affecting ?-amylase activity was found, which explained 16.1% of phenotypic variation. The QTL was localized on the long arm of chromosome 5R. Microsatellites SCM74, RMS1115, and SCM77, nearest to the QTL, can be used for marker-assisted selection as a part of a rye breeding program to decrease sprouting damage.
Related JoVE Video
QTLs for important breeding characteristics in the doubled haploid oat progeny.
Genome
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
A homozygous mapping population, consisting of doubled haploid (DH) oat (Avena sativa L.) plants generated through anther culture of F1 plants from the cross between the Finnish cultivar Aslak and the Swedish cultivar Matilda, was used to construct an oat linkage map. Ten agronomic and quality traits were analyzed in the DH plants from field trials in 2005 and 2006. Leaf blotch (caused by Pyrenophora avenae) resistance was also evaluated in a greenhouse test with 2 different isolates. One to 8 quantitative trait loci (QTLs) were found to be associated with each trait studied. Some chromosomal regions affected more than 1 trait; for example, 4 regions affected both protein and oil content. This study gives valuable information to oat breeders concerning the inheritance of important traits, and it provides potential tools to assist breeding.
Related JoVE Video
An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials.
Genome
Show Abstract
Hide Abstract
The first doubled haploid oat linkage map constructed at MTT Agrifood Research Finland was supplemented with additional microsatellites and Diversity Array Technology (DArT) markers to produce a map containing 1058 DNA markers and 34 linkage groups. The map was used to locate quantitative trait loci (QTLs) for 11 important breeding traits analyzed from Finnish and Canadian field trials. The new markers enabled most of the linkage groups to be anchored to the Kanota × Ogle oat ( Avena sativa L.) reference map and allowed comparison of the QTLs located in this study with those found previously. Two to 12 QTLs for each trait were discovered, of which several were expressed consistently across several environments.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.