JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Na(+),K(+)-ATPase Isoform Selectivity for Digitalis-Like Compounds Is Determined by Two Amino Acids in the First Extracellular Loop.
Chem. Res. Toxicol.
PUBLISHED: 11-01-2014
Show Abstract
Hide Abstract
Digitalis-like compounds (DLCs) comprise a diverse group of molecules characterized by a cis-trans-cis ring-fused steroid core linked to a lactone. They have been used in the treatment of different medical problems including heart failure, where their inotropic effect on heart muscle is attributed to potent Na(+),K(+)-ATPase inhibition. Their application as drugs, however, has declined in recent past years due to their small safety margin. Since human Na(+),K(+)-ATPase is represented by four different isoforms expressed in a tissue-specific manner, one of the possibilities to improve the therapeutic index of DLCs is to exploit and amend their isoform selectivity. Here, we aimed to reveal the determinants of selectivity of the ubiquitously expressed ?1 isoform and the more restricted ?2 isoform toward several well-known DLCs and their hydrogenated forms. Using baculovirus to express various mutants of the ?2 isoform, we were able to link residues Met(119) and Ser(124) to differences in affinity between the ?1 and ?2 isoforms to ouabain, dihydro-ouabain, digoxin, and dihydro-digoxin. We speculate that the interactions between these amino acids and DLCs affect the initial binding of these DLCs. Also, we observed isoform selectivity for DLCs containing no sugar groups.
Related JoVE Video
S-Palmitoylation and S-Oleoylation of Rabbit and Pig Sarcolipin.
J. Biol. Chem.
PUBLISHED: 10-11-2014
Show Abstract
Hide Abstract
Sarcolipin (SLN) is a regulatory peptide present in sarcoplasmic reticulum (SR) from skeletal muscle of animals. We find that native rabbit SLN is modified by a fatty acid anchor on Cys9 with a palmitic acid in about 60% and, surprisingly, an oleic acid in the remaining 40%. SLN used for co-crystallization with SERCA1a (1) is also palmitoylated/oleoylated, but is not visible in crystal structures, probably due to disorder. Treatment with 1 M hydroxylamine for 1 hour removes the fatty acids from a majority of the SLN pool. This treatment did not modify the SERCA1a affinity for Ca2+ but increased the Ca2+-dependent ATPase activity of SR membranes indicating that the S-acylation of SLN or of other proteins is required for this effect on SERCA1a. Pig SLN is also fully palmitoylated/oleoylated on its Cys9 residue, but in a reverse ratio of about 40/60. An alignment of 67 SLN sequences from the protein databases shows that 19 of them contain a cysteine and the rest a phenylalanine at position 9. Based on a cladogram we postulate that the mutation from phenylalanine to cysteine in some species is the result of an evolutionary convergence. We suggest that, besides phosphorylation, S-acylation/deacylation also regulates SLN activity.
Related JoVE Video
Inhibition of Ubiquitin Proteasome System Rescues the Defective Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA1) Protein Causing Chianina Cattle Pseudomyotonia.
J. Biol. Chem.
PUBLISHED: 10-08-2014
Show Abstract
Hide Abstract
A missense mutation in ATP2A1 gene, encoding SERCA1 protein, causes Chianina cattle congenital pseudomyotonia, an exercise induced impairment of muscle relaxation. Skeletal muscles of affected cattle are characterized by a selective reduction of SERCA1 in sarcoplasmic reticulum membranes. In this paper we provide evidence that the ubiquitin proteasome system is involved in the reduced density of mutated SERCA1. The treatment with MG132, an inhibitor of ubiquitin proteasome system, rescues the expression level and membrane localization of the SERCA1 mutant in a heterologous cellular model. Cells cotransfected with the Ca2+ sensitive probe aequorin, show that the rescued SERCA1 mutant exhibits the same ability of wild-type to maintain Ca2+ homeostasis within cells. These data have been confirmed by those obtained ex vivo on adult skeletal muscle fibers from a biopsy from a pseudomyotonia affected subject. Our data show that the mutation generates a protein most likely corrupted in proper folding but not in catalytic activity. Rescue of mutated SERCA1 to sarcoplasmic reticulum membrane can re-establish resting cytosolic Ca2+ concentration and prevent the appearance of pathological signs of cattle pseudomyotonia.
Related JoVE Video
Comparing crystal structures of Ca(2+) -ATPase in the presence of different lipids.
FEBS J.
PUBLISHED: 09-11-2014
Show Abstract
Hide Abstract
The activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) depends strongly on the lipid composition of the surrounding membrane. Yet, structural information on SERCA-lipid interaction is still relatively scarce, and the influence of different lipids on the enzyme is not well understood. We have analyzed SERCA crystal structures in the presence of four different phosphatidylcholine lipids of different lengths and double-bond compositions, and we find three different binding sites for lipid head groups, which are apparently independent of the acyl moiety of the lipids used. By comparison with other available SERCA structures with bound lipids, we find a total of five recurring sites, two of which are specific to certain conformational states of the enzyme, two others are state-independent, and one is a crucial site for crystal formation. Three of the binding sites overlap with or are in close vicinity to known binding sites for various SERCA-specific inhibitors and regulators, e.g. thapsigargin, sarcolipin/phospholamban and cyclopiazonic acid. Whereas the transient sites are amenable to a transient, regulatory influence of lipid molecules, the state-independent sites probably provide a flexible anchoring of the protein in the fluid bilayer.
Related JoVE Video
Structure and mechanism of Zn2+-transporting P-type ATPases.
Nature
PUBLISHED: 08-17-2014
Show Abstract
Hide Abstract
Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis. In prokaryotes and photosynthetic eukaryotes, Zn(2+)-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn(2+) and related elements. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2·Pi) of ZntA from Shigella sonnei, determined at 3.2 Å and 2.7 Å resolution, respectively. The structures reveal a similar fold to Cu(+)-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn(2+) ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2·Pi state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn(2+) release as a built-in counter ion, as has been proposed for H(+)-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn(2+)-ATPases and PIII-type H(+)-ATPases and at the same time show structural features of the extracellular release pathway that resemble PII-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+), K(+)-ATPase. These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.
Related JoVE Video
Crystals of Na(+)/K(+)-ATPase with bound cisplatin.
Biochem. Pharmacol.
PUBLISHED: 06-06-2014
Show Abstract
Hide Abstract
Cisplatin is the most widely used chemotherapeutics for cancer treatment, however, its administration is connected to inevitable adverse effects. Previous studies suggested that cisplatin is able to inhibit Na(+)/K(+)-ATPase (NKA), the enzyme responsible for maintaining electrochemical potential and sodium gradient across the plasma membrane. Here we report a crystallographic analysis of cisplatin bound to NKA in the ouabain bound E2P form. Despite a moderate resolution (7.4? and 7.9?), the anomalous scattering from platinum and a model representation from a recently published structure enabled localization of seven cisplatin binding sites by anomalous difference Fourier maps. Comparison with NKA structures in the E1P conformation suggested two possible inhibitory mechanisms for cisplatin. Binding to Met151 can block the N-terminal pathway for transported cations, while binding to Met171 can hinder the interaction of cytoplasmic domains during the catalytic cycle.
Related JoVE Video
A mechanism for intracellular release of Na(+) by neurotransmitter/sodium symporters.
Nat. Struct. Mol. Biol.
PUBLISHED: 05-18-2014
Show Abstract
Hide Abstract
Neurotransmitter/sodium symporters (NSSs) terminate synaptic signal transmission by Na(+)-dependent reuptake of released neurotransmitters. Key conformational states have been reported for the bacterial homolog LeuT and an inhibitor-bound Drosophila dopamine transporter. However, a coherent mechanism of Na(+)-driven transport has not been described. Here, we present two crystal structures of MhsT, an NSS member from Bacillus halodurans, in occluded inward-facing states with bound Na(+) ions and L-tryptophan, providing insight into the cytoplasmic release of Na(+). The switch from outward- to inward-oriented states is centered on the partial unwinding of transmembrane helix 5, facilitated by a conserved GlyX9Pro motif that opens an intracellular pathway for water to access the Na2 site. We propose a mechanism, based on our structural and functional findings, in which solvation through the TM5 pathway facilitates Na(+) release from Na2 and the transition to an inward-open state.
Related JoVE Video
Targeting thapsigargin towards tumors.
Steroids
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
The skin irritating principle from Thapsia garganica was isolated, named thapsigargin and the structure elucidated. By inhibiting the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) thapsigargin provokes apoptosis in almost all cells. By conjugating thapsigargin to peptides, which are only substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) prodrugs were created, which selectively affect prostate cancer cells or neovascular tissue in tumors. One of the prodrug is currently tested in clinical phase II. The prodrug under clinical trial has been named mipsagargin.
Related JoVE Video
Revisiting the structure of the Vps10 domain of human sortilin and its interaction with neurotensin.
Protein Sci.
PUBLISHED: 03-18-2014
Show Abstract
Hide Abstract
Sortilin is a multifunctional receptor involved in sorting and apoptosis. We have previously reported a 2.0-Å structure of the Vps10 ectodomain in complex with one of its ligands, the tridecapeptide neurotensin. Here we set out to further characterize the structural properties of sortilin and its interaction with neurotensin. To this end, we have determined a new 2.7 Å structure using a crystal grown with a 10-fold increased concentration of neurotensin. Here a second peptide fragment was observed within the Vps10 ?-propeller, which may in principle either represent a second molecule of neurotensin or the N-terminal part of the molecule bound at the previously identified binding site. However, in vitro binding experiments strongly favor the latter hypothesis. Neurotensin thus appears to bind with a 1:1 stoichiometry, and whereas the N-terminus does not bind on its own, it enhances the affinity in context of full-length neurotensin. We conclude that the N-terminus of neurotensin probably functions as an affinity enhancer for binding to sortilin by engaging the second binding site. Crystal packing differs partly from the previous structure, which may be due to variations in the degree and pattern of glycosylations. Consequently, a notable hydrophobic loop, not modeled previously, could now be traced. A computational analysis suggests that this and a neighboring loop may insert into the membrane and thus restrain movement of the Vps10 domain. We have, furthermore, mapped all N-linked glycosylations of CHO-expressed human sortilin by mass spectrometry and find that their locations are compatible with membrane insertion of the hydrophobic loops.
Related JoVE Video
A high-yield co-expression system for the purification of an intact drs2p-cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ?1-2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1?1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and functional characterization of the Drs2p-Cdc50p lipid transport mechanism.
Related JoVE Video
Large scale identification and categorization of protein sequences using structured logistic regression.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Structured Logistic Regression (SLR) is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem.
Related JoVE Video
Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state.
Science
PUBLISHED: 09-19-2013
Show Abstract
Hide Abstract
The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 Å resolution. Compared with the K(+)-bound form, large conformational changes are observed in the ? subunit whereas the ? and ? subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.
Related JoVE Video
Special issue--signalling. Introduction--Ca2+ signalling and transport in health and disease.
FEBS J.
PUBLISHED: 08-10-2013
Show Abstract
Hide Abstract
This series of articles in the FEBS Journal Special Issue on Signalling is based on the international symposium Ca(2+) Signalling and Transport in Health and Disease, Aarhus, 2012. A mixture of research articles and reviews cover a broad range of calcium signalling and transport-related topics. An accompanying series entitled Frontiers in Cell Signalling is based on the 6th Garvan Signalling Symposium, Sydney, 2012.
Related JoVE Video
SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation.
EMBO J.
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) couples ATP hydrolysis to transport of Ca(2+). This directed energy transfer requires cross-talk between the two Ca(2+) sites and the phosphorylation site over 50?Å distance. We have addressed the mechano-structural basis for this intramolecular signal by analysing the structure and the functional properties of SERCA mutant E309Q. Glu(309) contributes to Ca(2+) coordination at site II, and a consensus has been that E309Q only binds Ca(2+) at site I. The crystal structure of E309Q in the presence of Ca(2+) and an ATP analogue, however, reveals two occupied Ca(2+) sites of a non-catalytic Ca2E1 state. Ca(2+) is bound with micromolar affinity by both Ca(2+) sites in E309Q, but without cooperativity. The Ca(2+)-bound mutant does phosphorylate from ATP, but at a very low maximal rate. Phosphorylation depends on the correct positioning of the A-domain, requiring a shift of transmembrane segment M1 into an up and kinked position. This transition is impaired in the E309Q mutant, most likely due to a lack of charge neutralization and altered hydrogen binding capacities at Ca(2+) site II.
Related JoVE Video
Heterologous expression and purification of an active human TRPV3 ion channel.
FEBS J.
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
The transient receptor potential vanilloid 3 (TRPV3) cation channel is widely expressed in human tissues and has been shown to be activated by mild temperatures or chemical ligands. In spite of great progress in the TRP-channel characterization, very little is known about their structure and interactions with other proteins at the atomic level. This is mainly caused by difficulties in obtaining functionally active samples of high homogeneity. Here, we report on the high-level Escherichia coli expression of the human TRPV3 channel, for which no structural information has been reported to date. We selected a suitable detergent and buffer system using analytical size-exclusion chromatography and a thermal stability assay. We demonstrate that the recombinant purified protein contains high ?-helical content and migrates as dimers and tetramers on native PAGE. Furthermore, the purified channel also retains its current inducing activity, as shown by electrophysiology experiments. The ability to produce the TRPV3 channel heterologously will aid future functional and structural studies.
Related JoVE Video
Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
The Na(+),K(+)-ATPase maintains electrochemical gradients for Na(+) and K(+) that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na(+),K(+)-ATPase. Here we describe a crystal structure of the phosphorylated pig kidney Na(+),K(+)-ATPase in complex with the CTS representative ouabain, extending to 3.4 Å resolution. The structure provides key details on CTS binding, revealing an extensive hydrogen bonding network formed by the ?-surface of the steroid core of ouabain and the side chains of ?M1, ?M2, and ?M6. Furthermore, the structure reveals that cation transport site II is occupied by Mg(2+), and crystallographic studies indicate that Rb(+) and Mn(2+), but not Na(+), bind to this site. Comparison with the low-affinity [K2]E2-MgF(x)-ouabain structure [Ogawa et al. (2009) Proc Natl Acad Sci USA 106(33):13742-13747) shows that the CTS binding pocket of [Mg]E2P allows deep ouabain binding with possible long-range interactions between its polarized five-membered lactone ring and the Mg(2+). K(+) binding at the same site unwinds a turn of ?M4, dragging residues Ile318-Val325 toward the cation site and thereby hindering deep ouabain binding. Thus, the structural data establish a basis for the interpretation of the biochemical evidence pointing at direct K(+)-Mg(2+) competition and explain the well-known antagonistic effect of K(+) on CTS binding.
Related JoVE Video
Copper-transporting P-type ATPases use a unique ion-release pathway.
Nat. Struct. Mol. Biol.
PUBLISHED: 05-23-2013
Show Abstract
Hide Abstract
Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-Å resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support a functional role for the conduit. The structural similarities between the TM domains of the two conformations suggest that Cu(+)-ATPases couple dephosphorylation and ion extrusion differently than do the well-characterized PII-type ATPases. The ion pathway explains why certain Menkes and Wilsons disease mutations impair protein function and points to a site for inhibitors targeting pathogens.
Related JoVE Video
Chloride binding site of neurotransmitter sodium symporters.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.
Related JoVE Video
Water-mediated interactions influence the binding of thapsigargin to sarco/endoplasmic reticulum calcium adenosinetriphosphatase.
J. Med. Chem.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
A crystal structure suggests four water molecules are present in the binding cavity of thapsigargin in sarco/endoplasmic reticulum calcium ATPase (SERCA). Computational chemistry indicates that three of these water molecules mediate an extensive hydrogen-bonding network between thapsigargin and the backbone of SERCA. The orientation of the thapsigargin molecule in SERCA is crucially dependent on these interactions. The hypothesis has been verified by measuring the affinity of newly synthesized model compounds, which are prevented from participating in such water-mediated interactions as hydrogen-bond donors.
Related JoVE Video
Identifying ligand-binding hot spots in proteins using brominated fragments.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
High-quality crystals of Thermus thermophilus EF-Tu in the GTP-bound conformation at 1.7-2.7?Å resolution were used to test 18 small organic molecules, all brominated for confident identification in the anomalous difference maps. From this relatively small collection, it was possible to identify a small molecule bound in the functionally important tRNA CCA-end binding pocket. The antibiotic GE2270 A is known to interact with the same pocket in EF-Tu and to disrupt the association with tRNA. Bromide could be located from peaks in the anomalous map in data truncated to very low resolution without refining the structure. Considering the speed with which diffraction data can be collected today, it is proposed that it is worthwhile to collect the extra data from fragment screens while crystals are at hand to increase the knowledge of biological function and drug binding in an experimental structural context.
Related JoVE Video
Probing determinants of cyclopiazonic acid sensitivity of bacterial Ca2+-ATPases.
FEBS J.
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Cyclopiazonic acid (CPA) is a specific and potent inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase 1a (SERCA1a). Despite high sequence similarity to SERCA1a, Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1) is not inhibited by CPA. To test whether a CPA binding site could be created while maintaining the functionality of the ATPase we targeted four amino acid positions in LMCA1 for mutational studies based on a multiple sequence alignment of SERCA-like Ca(2+)-ATPases and structural analysis of the CPA site. The identification of CPA-sensitive gain-of-function mutants pinpointed key determinants of the CPA binding site. The importance of these determinants was further underscored by the characterization of the CPA sensitivity of two additional bacterial Ca(2+)-ATPases from Lactococcus lactis and Bacillus cereus. The CPA sensitivity was predicted from their sequence compared with the LMCA1 results, and this was experimentally confirmed. Interestingly, a cluster of Lactococcus bacteria applied in the production of fermented cheese display Ca(2+)-ATPases that are predictably CPA insensitive and may originate from their coexistence with CPA-producing Penicillum and Aspergillus fungi in the cheese. The differences between bacterial and mammalian binding pockets encompassing the CPA site suggest that CPA derivatives that are specific for bacteria or other pathogens can be developed.
Related JoVE Video
Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension.
Nat. Genet.
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
At least 5% of individuals with hypertension have adrenal aldosterone-producing adenomas (APAs). Gain-of-function mutations in KCNJ5 and apparent loss-of-function mutations in ATP1A1 and ATP2A3 were reported to occur in APAs. We find that KCNJ5 mutations are common in APAs resembling cortisol-secreting cells of the adrenal zona fasciculata but are absent in a subset of APAs resembling the aldosterone-secreting cells of the adrenal zona glomerulosa. We performed exome sequencing of ten zona glomerulosa-like APAs and identified nine with somatic mutations in either ATP1A1, encoding the Na(+)/K(+) ATPase ?1 subunit, or CACNA1D, encoding Cav1.3. The ATP1A1 mutations all caused inward leak currents under physiological conditions, and the CACNA1D mutations induced a shift of voltage-dependent gating to more negative voltages, suppressed inactivation or increased currents. Many APAs with these mutations were <1 cm in diameter and had been overlooked on conventional adrenal imaging. Recognition of the distinct genotype and phenotype for this subset of APAs could facilitate diagnosis.
Related JoVE Video
Structural diversity of calmodulin binding to its target sites.
FEBS J.
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Calmodulin (CaM) is a ubiquitous, highly conserved, eukaryotic protein that binds to and regulates a number of diverse target proteins involved in different functions such as metabolism, muscle contraction, apoptosis, memory, inflammation and the immune response. In this minireview, we analyze the large number of CaM-complex structures deposited in the Protein Data Bank (i.e. crystal and nuclear magnetic resonance structures) to gain insight into the structural diversity of CaM-binding sites and mechanisms, such as those for CaM-activated protein kinases and phosphatases, voltage-gated Ca(2+)-channels and the plasma membrane Ca(2+)-ATPase.
Related JoVE Video
Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase.
J. Biol. Chem.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) is a transmembrane ion transporter belonging to the P(II)-type ATPase family. It performs the vital task of re-sequestering cytoplasmic Ca(2+) to the sarco/endoplasmic reticulum store, thereby also terminating Ca(2+)-induced signaling such as in muscle contraction. This minireview focuses on the transport pathways of Ca(2+) and H(+) ions across the lipid bilayer through SERCA. The ion-binding sites of SERCA are accessible from either the cytoplasm or the sarco/endoplasmic reticulum lumen, and the Ca(2+) entry and exit channels are both formed mainly by rearrangements of four N-terminal transmembrane ?-helices. Recent improvements in the resolution of the crystal structures of rabbit SERCA1a have revealed a hydrated pathway in the C-terminal transmembrane region leading from the ion-binding sites to the cytosol. A comparison of different SERCA conformations reveals that this C-terminal pathway is exclusive to Ca(2+)-free E2 states, suggesting that it may play a functional role in proton release from the ion-binding sites. This is in agreement with molecular dynamics simulations and mutational studies and is in striking analogy to a similar pathway recently described for the related sodium pump. We therefore suggest a model for the ion exchange mechanism in P(II)-ATPases including not one, but two cytoplasmic pathways working in concert.
Related JoVE Video
On allosteric modulation of P-type Cu(+)-ATPases.
J. Mol. Biol.
PUBLISHED: 01-11-2013
Show Abstract
Hide Abstract
P-type ATPases perform active transport of various compounds across biological membranes and are crucial for ion homeostasis and the asymmetric composition of lipid bilayers. Although their functional cycle share principles of phosphoenzyme intermediates, P-type ATPases also show subclass-specific sequence motifs and structural elements that are linked to transport specificity and mechanistic modulation. Here we provide an overview of the Cu(+)-transporting ATPases (of subclass PIB) and compare them to the well-studied sarco(endo)plasmic reticulum Ca(2+)-ATPase (of subclass PIIA). Cu(+) ions in the cell are delivered by soluble chaperones to Cu(+)-ATPases, which expose a putative "docking platform" at the intracellular interface. Cu(+)-ATPases also contain heavy-metal binding domains providing a basis for allosteric control of pump activity. Database analysis of Cu(+) ligating residues questions a two-site model of intramembranous Cu(+) binding, and we suggest an alternative role for the proposed second site in copper translocation and proton exchange. The class-specific features demonstrate that topological diversity in P-type ATPases may tune a general energy coupling scheme to the translocation of compounds with remarkably different properties.
Related JoVE Video
The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm.
Nature
PUBLISHED: 01-11-2013
Show Abstract
Hide Abstract
The contraction and relaxation of muscle cells is controlled by the successive rise and fall of cytosolic Ca(2+), initiated by the release of Ca(2+) from the sarcoplasmic reticulum and terminated by re-sequestration of Ca(2+) into the sarcoplasmic reticulum as the main mechanism of Ca(2+) removal. Re-sequestration requires active transport and is catalysed by the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), which has a key role in defining the contractile properties of skeletal and heart muscle tissue. The activity of SERCA is regulated by two small, homologous membrane proteins called phospholamban (PLB, also known as PLN) and sarcolipin (SLN). Detailed structural information explaining this regulatory mechanism has been lacking, and the structural features defining the pathway through which cytoplasmic Ca(2+) enters the intramembranous binding sites of SERCA have remained unknown. Here we report the crystal structure of rabbit SERCA1a (also known as ATP2A1) in complex with SLN at 3.1?Å resolution. The regulatory SLN traps the Ca(2+)-ATPase in a previously undescribed E1 state, with exposure of the Ca(2+) sites through an open cytoplasmic pathway stabilized by Mg(2+). The structure suggests a mechanism for selective Ca(2+) loading and activation of SERCA, and provides new insight into how SLN and PLB inhibition arises from stabilization of this E1 intermediate state without bound Ca(2+). These findings may prove useful in studying how autoinhibitory domains of other ion pumps modulate transport across biological membranes.
Related JoVE Video
Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation.
Biochemistry
PUBLISHED: 09-12-2011
Show Abstract
Hide Abstract
The amyloid fold is usually considered a result of protein misfolding. However, a number of studies have recently shown that the amyloid structure is also used in nature for functional purposes. CsgA is the major subunit of Escherichia coli curli, one of the most well-characterized functional amyloids. Here we show, using a highly efficient approach to prepare monomeric CsgA, that in vitro fibrillation of CsgA occurs under a wide variety of environmental conditions and that the resulting fibrils exhibit similar structural features. This highlights how fibrillation is "hardwired" into amyloid that has evolved for structural purposes in a fluctuating extracellular environment and represents a clear contrast to disease-related amyloid formation. Furthermore, we show that CsgA polymerization in vitro is preceded by the formation of thin needlelike protofibrils followed by aggregation of the amyloid fibrils.
Related JoVE Video
Crystal structure of plasminogen activator inhibitor-1 in an active conformation with normal thermodynamic stability.
J. Biol. Chem.
PUBLISHED: 06-21-2011
Show Abstract
Hide Abstract
The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 ? resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting ?-strand 3A with the F helix, in which a previously observed 3(10)-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1.
Related JoVE Video
The Plasmodium falciparum Ca(2+)-ATPase PfATP6: insensitive to artemisinin, but a potential drug target.
Biochem. Soc. Trans.
PUBLISHED: 05-24-2011
Show Abstract
Hide Abstract
The disease malaria, caused by the parasite Plasmodium falciparum, remains one of the most important causes of morbidity and mortality in sub-Saharan Africa. In the absence of an efficient vaccine, the medical treatment of malaria is dependent on the use of drugs. Since artemisinin is a powerful anti-malarial drug which has been proposed to target a particular Ca2+-ATPase (PfATP6) in the parasite, it has been important to characterize the molecular properties of this enzyme. PfATP6 is a 139 kDa protein composed of 1228 amino acids with a 39% overall identity with rabbit SERCA1a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1a). PfATP6 conserves all sequences and motifs that are important for the function and/or structure of a SERCA, such as two high-affinity Ca2+-binding sites, a nucleotide-binding site and a phosphorylation site. We have been successful in isolating PfATP6 after heterologous expression in yeast and affinity chromatography in a pure, active and stable detergent-solubilized form. With this preparation, we have characterized and compared with the eukaryotic SERCA1a isoform the substrate (Ca2+ and ATP) -dependency for PfATP6 activity as well as the specific inhibition/interaction of the protein with drugs. Our data fully confirm that PfATP6 is a SERCA, but with a distinct pharmacological profile: compared with SERCA1a, it has a lower affinity for thapsigargin and much higher affinity for cyclopiazonic acid. On the other hand, we were not able to demonstrate any inhibition by artemisinin and were also not able to monitor any binding of the drug to the isolated enzyme. Thus it is unlikely that PfATP6 plays an important role as a target for artemisinin in the parasite P. falciparum.
Related JoVE Video
The pumps that fuel a sperms journey.
Biochem. Soc. Trans.
PUBLISHED: 05-24-2011
Show Abstract
Hide Abstract
The sole purpose of a sperm cell is to carry genetic information from a male to a female egg. In order to accomplish this quest, the sperm cell must travel a long distance through a constantly changing environment. The success of this journey depends on membrane proteins that are uniquely expressed in sperm cells. One of these proteins is the ?4 isoform of the sodium pump. This pump is optimized to cope with the ionic environment characteristic of the female reproductive tract, and its activity may be tightly coupled with secondary transporters that maintain cytoplasmic pH. Pharmacological inhibition of ?4 is sufficient to inhibit sperm motility, and significant differences around the inhibitor-binding site compared with the ubiquitous ?1 isoform, make ?4 a feasible target in rational drug development.
Related JoVE Video
Crystal structure of a copper-transporting PIB-type ATPase.
Nature
PUBLISHED: 05-11-2011
Show Abstract
Hide Abstract
Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B proteins associated with Menkes and Wilsons diseases.
Related JoVE Video
Structure of the RACK1 dimer from Saccharomyces cerevisiae.
J. Mol. Biol.
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.
Related JoVE Video
Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes.
Nat Commun
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.
Related JoVE Video
Crystallization and preliminary structural analysis of the Listeria monocytogenes Ca(2+)-ATPase LMCA1.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
PUBLISHED: 04-08-2011
Show Abstract
Hide Abstract
Ca(2+)-ATPases are ATP-driven membrane pumps that are responsible for the transport of Ca(2+) ions across the membrane. The Listeria monocytogenes Ca(2+)-ATPase LMCA1 has been crystallized in the Ca(2+)-free state stabilized by AlF(4)(-), representing an occluded E2-P(i)-like state. The crystals belonged to space group P2(1)2(1)2 and a complete data set extending to 4.3?Å resolution was collected. A molecular-replacement solution was obtained, revealing type I packing of the molecules in the crystal. Unbiased electron-density features were observed for AlF(4)(-) and for shifts of the helices, which were indicative of a reliable structure determination.
Related JoVE Video
Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain.
J. Comp. Neurol.
PUBLISHED: 03-19-2011
Show Abstract
Hide Abstract
The Na(+)/K(+)-ATPase1 alpha subunit 3 (ATP1?(3)) is one of many essential components that maintain the sodium and potassium gradients across the plasma membrane in animal cells. Mutations in the ATP1A3 gene cause rapid-onset of dystonia parkinsonism (RDP), a rare movement disorder characterized by sudden onset of dystonic spasms and slowness of movement. To achieve a better understanding of the pathophysiology of the disease, we used immunohistochemical approaches to describe the regional and cellular distribution of ATP1?(3) in the adult mouse brain. Our results show that localization of ATP1?(3) is restricted to neurons, and it is expressed mostly in projections (fibers and punctuates), but cell body expression is also observed. We found high expression of ATP1?(3) in GABAergic neurons in all nuclei of the basal ganglia (striatum, globus pallidus, subthalamic nucleus, and substantia nigra), which is a key circuitry in the fine movement control. Several thalamic nuclei structures harboring connections to and from the cortex expressed high levels of the ATP1?(3) isoform. Other structures with high expression of ATP1?(3) included cerebellum, red nucleus, and several areas of the pons (reticulotegmental nucleus of pons). We also found high expression of ATP1?(3) in projections and cell bodies in hippocampus; most of these ATP1?(3)-positive cell bodies showed colocalization to GABAergic neurons. ATP1?(3) expression was not significant in the dopaminergic cells of substantia nigra. In conclusion, and based on our data, ATP1?(3) is widely expressed in neuronal populations but mainly in GABAergic neurons in areas and nuclei related to movement control, in agreement with RDP symptoms.
Related JoVE Video
P-type ATPases.
Annu Rev Biophys
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
P-type ATPases form a large superfamily of cation and lipid pumps. They are remarkably simple with only a single catalytic subunit and carry out large domain motions during transport. The atomic structure of P-type ATPases in different conformations, together with ample mutagenesis evidence, has provided detailed insights into the pumping mechanism by these biological nanomachines. Phylogenetically, P-type ATPases are divided into five subfamilies, P1-P5. These subfamilies differ with respect to transported ligands and the way they are regulated.
Related JoVE Video
A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps.
Nat. Rev. Mol. Cell Biol.
PUBLISHED: 01-22-2011
Show Abstract
Hide Abstract
Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.
Related JoVE Video
Thapsigargin affinity purification of intracellular P(2A)-type Ca(2+) ATPases.
Biochim. Biophys. Acta
PUBLISHED: 01-04-2011
Show Abstract
Hide Abstract
The ubiquitous sarco(endo)plasmic reticulum (SR/ER) Ca(2+) ATPase (SERCA2b) and secretory-pathway Ca(2+) ATPase (SPCA1a) belong both to the P(2A)-type ATPase subgroup of Ca(2+) transporters and play a crucial role in the Ca(2+) homeostasis of respectively the ER and Golgi apparatus. They are ubiquitously expressed, but their low abundance precludes purification for crystallization. We have developed a new strategy for purification of recombinant hSERCA2b and hSPCA1a that is based on overexpression in yeast followed by a two-step affinity chromatography method biasing towards properly folded protein. In a first step, these proteins were purified with the aid of an analogue of the SERCA inhibitor thapsigargin (Tg) coupled to a matrix. Wild-type (WT) hSERCA2b bound efficiently to the gel, but its elution was hampered by the high affinity of SERCA2b for Tg. Therefore, a mutant was generated carrying minor modifications in the Tg-binding site showing a lower affinity for Tg. In a second step, reactive dye chromatography was performed to further purify and concentrate the properly folded pumps and to exchange the detergent to one more suitable for crystallization. A similar strategy was successfully applied to purify WT SPCA1a. This study shows that it is possible to purify functionally active intracellular Ca(2+) ATPases using successive thapsigargin and reactive dye affinity chromatography for future structural studies. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Related JoVE Video
Structural identification of cation binding pockets in the plasma membrane proton pump.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-22-2010
Show Abstract
Hide Abstract
The activity of P-type plasma membrane H(+)-ATPases is modulated by H(+) and cations, with K(+) and Ca(2+) being of physiological relevance. Using X-ray crystallography, we have located the binding site for Rb(+) as a K(+) congener, and for Tb(3+) and Ho(3+) as Ca(2+) congeners. Rb(+) is found coordinated by a conserved aspartate residue in the phosphorylation domain. A single Tb(3+) ion is identified positioned in the nucleotide-binding domain in close vicinity to the bound nucleotide. Ho(3+) ions are coordinated at two distinct sites within the H(+)-ATPase: One site is at the interface of the nucleotide-binding and phosphorylation domains, and the other is in the transmembrane domain toward the extracellular side. The identified binding sites are suggested to represent binding pockets for regulatory cations and a H(+) binding site for protons leaving the pump molecule. This implicates Ho(3+) as a novel chemical tool for identification of proton binding sites.
Related JoVE Video
Characterization of a Listeria monocytogenes Ca(2+) pump: a SERCA-type ATPase with only one Ca(2+)-binding site.
J. Biol. Chem.
PUBLISHED: 11-03-2010
Show Abstract
Hide Abstract
We have characterized a putative Ca(2+)-ATPase from the pathogenic bacterium Listeria monocytogenes with the locus tag lmo0841. The purified and detergent-solubilized protein, which we have named Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1), performs a Ca(2+)-dependent ATP hydrolysis and actively transports Ca(2+) after reconstitution in dioleoylphosphatidyl-choline vesicles. Despite a high sequence similarity to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and plasma membrane Ca(2+)-ATPase (PMCA), LMCA1 exhibits important biochemical differences such as a low Ca(2+) affinity (K(0.5) ?80 ?m) and a high pH optimum (pH ?9). Mutational studies indicate that the unusually high pH optimum can be partially ascribed to the presence of an arginine residue (Arg-795), corresponding in sequence alignments to the Glu-908 position at Ca(2+) binding site I of rabbit SERCA1a, but probably with an exposed position in LMCA1. The arginine is characteristic of a large group of putative bacterial Ca(2+)-ATPases. Moreover, we demonstrate that H(+) is countertransported with a transport stoichiometry of 1 Ca(2+) out and 1 H(+) in per ATP hydrolyzed. The ATPase may serve an important function by removing Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH.
Related JoVE Video
Structural and biophysical characterisation of agrin laminin G3 domain constructs.
Protein Eng. Des. Sel.
PUBLISHED: 10-30-2010
Show Abstract
Hide Abstract
Agrin mediates accumulation of acetylcholine receptors (AChRs) at the developing neuromuscular junction, but has also been implicated as a regulator of central nervous system (CNS) synapses. A C-terminal region of agrin (Ag-C20) binds to the ?3 subunit of the sodium-potassium ATPase (NKA) in CNS neurons suggesting that ?3NKA is a neuronal agrin receptor, whereas a shorter agrin fragment (Ag-C15) was shown to act as a competitive antagonist. Here, we show that the agrin C22 construct, which represents the naturally occurring neurotrypsin cleavage product, constitutes a well-folded, stable domain, while the deletion of 48 residues that correspond to strands ?1-?4 of the agrin laminin G3 domain imposed by the agrin C15 construct leads to a misfolded protein.
Related JoVE Video
Structural insights into the high affinity binding of cardiotonic steroids to the Na+,K+-ATPase.
J. Struct. Biol.
PUBLISHED: 10-28-2010
Show Abstract
Hide Abstract
The Na+,K+-ATPase belongs to the P-ATPase family, whose characteristic property is the formation of a phosphorylated intermediate. The enzyme is also a defined target for cardiotonic steroids which inhibit its functional activity and initiate intracellular signaling. Here we describe the 4.6 Å resolution crystal structure of the pig kidney Na+,K+-ATPase in its phosphorylated form stabilized by high affinity binding of the cardiotonic steroid ouabain. The steroid binds to a site formed at transmembrane segments ?M1-?M6, plugging the ion pathway from the extracellular side. This structure differs from the previously reported low affinity complex with potassium. Most importantly, the A domain has rotated in response to phosphorylation and ?M1-2 move towards the ouabain molecule, providing for high affinity interactions and closing the ion pathway from the extracellular side. The observed re-arrangements of the Na+,K+-ATPase stabilized by cardiotonic steroids may affect protein-protein interactions within the intracellular signal transduction networks.
Related JoVE Video
The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.
Q. Rev. Biophys.
PUBLISHED: 09-03-2010
Show Abstract
Hide Abstract
The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.
Related JoVE Video
What can be learned about the function of a single protein from its various X-ray structures: the example of the sarcoplasmic calcium pump.
Methods Mol. Biol.
PUBLISHED: 07-29-2010
Show Abstract
Hide Abstract
Improvements in the handling of membrane proteins for crystallization, combined with better synchrotron sources for X-ray diffraction analysis, are leading to clarification of the structural details of an ever increasing number of membrane transporters and receptors. Here we describe how this development has resulted in the elucidation at atomic resolution of a large number of structures of the sarcoplasmic Ca(2+)-ATPase (SERCA1a) present in skeletal muscle. The structures corresponding to the various intermediary states have been obtained after stabilization with structural analogues of ATP and of metal fluorides as mimicks of inorganic phosphate. From these results it is possible, in accordance with previous biochemical and molecular biology data, to give a detailed structural description of both ATP hydrolysis and Ca(2+) transport through the membrane, to serve as the starting point for a fuller understanding of the pump mechanism and, in future studies, on the regulatory role of this ubiquitous intracellular Ca(2+)-ATPase in cellular Ca(2+) metabolism in normal and pathological conditions.
Related JoVE Video
Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+-ATPase with thapsigargin and thapsigargin analogs.
J. Biol. Chem.
PUBLISHED: 06-15-2010
Show Abstract
Hide Abstract
Thapsigargin (Tg), a specific inhibitor of sarco/endoplasmic Ca(2+)-ATPases (SERCA), binds with high affinity to the E2 conformation of these ATPases. SERCA inhibition leads to elevated calcium levels in the cytoplasm, which in turn induces apoptosis. We present x-ray crystallographic and intrinsic fluorescence data to show how Tg and chemical analogs of the compound with modified or removed side chains bind to isolated SERCA 1a membranes. This occurs by uptake via the membrane lipid followed by insertion into a resident intramembranous binding site with few adaptative changes. Our binding data indicate that a balanced hydrophobicity and accurate positioning of the side chains, provided by the central guaianolide ring structure, defines a pharmacophore of Tg that governs both high affinity and access to the protein-binding site. Tg analogs substituted with long linkers at O-8 extend from the binding site between transmembrane segments to the putative N-terminal Ca(2+) entry pathway. The long chain analogs provide a rational basis for the localization of the linker, the presence of which is necessary for enabling prostate-specific antigen to cleave peptide-conjugated prodrugs targeting SERCA of cancer cells (Denmeade, S. R., Jakobsen, C. M., Janssen, S., Khan, S. R., Garrett, E. S., Lilja, H., Christensen, S. B., and Isaacs, J. T. (2003) J. Natl. Cancer Inst. 95, 990-1000). Our study demonstrates the usefulness of a simple in vitro system to test and direct development toward the formulation of new Tg derivatives with improved properties for SERCA targeting. Finally, we propose that the Tg binding pocket may be a regulatory site that, for example, is sensitive to cholesterol.
Related JoVE Video
In and out of the cation pumps: P-type ATPase structure revisited.
Curr. Opin. Struct. Biol.
PUBLISHED: 05-20-2010
Show Abstract
Hide Abstract
Active transport across membranes is a crucial requirement for life. P-type ATPases build up electrochemical gradients at the expense of ATP by forming and splitting a covalent phosphoenzyme intermediate, coupled to conformational changes in the transmembrane section where the ions are translocated. The marked increment during the last three years in the number of crystal structures of P-type ATPases has greatly improved our understanding of the similarities and differences of pumps with different ion specificities, since the structures of the Ca2+-ATPase, the Na+,K+-ATPase and the H+-ATPase can now be compared directly. Mechanisms for ion gating, charge neutralization and backflow prevention are starting to emerge from comparative structural analysis; and in combination with functional studies of mutated pumps this provides a framework for speculating on how the ions are bound and released as well as on how specificity is achieved.
Related JoVE Video
Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase.
FEBS Lett.
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na(+),K(+)- and H(+),K(+)-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.
Related JoVE Video
Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin.
J. Struct. Biol.
PUBLISHED: 03-17-2010
Show Abstract
Hide Abstract
Human serum albumin (HSA), the major protein component in blood plasma and in extravascular spaces, is known to participate in the binding and transport of a variety of endogenous and exogenous organic compounds with anionic or electronegative features. We here report on the 3.3A resolution crystal structure of HSA complexed with the cationic, and widely used, anesthetic lidocaine. We find that lidocaine and HSA co-crystallise as a dimer in the unusual space group I4(1). The dimer consists of one HSA molecule without ligand and one HSA molecule with a single, bound lidocaine. HSA is a heart-shaped protein composed of three homologous helical domains (I-III), which can be subdivided into two subdomains (A and B), and lidocaine binds to a unique site formed by residues from subdomain IB facing the central, interdomain crevice. In the crystal, binding seems to introduce only local conformational changes in the protein. According to intrinsic fluorescence experiments with aqueous HSA binding results in widespread conformational changes involving Trp214 in subdomain IIA. Results obtained with equilibrium dialysis and isothermal titration calorimetry show that lidocaine binding is of a low affinity and occurs at one discrete binding site in accordance with the X-ray data. Another crystal form of ligand-free HSA obtained in the presence of ammonium sulphate was determined at 2.3A resolution revealing a sulphate ion accepting cavity at the surface of subdomain IIIA. The present results contribute to a further characterisation of the exceptional binding properties of HSA.
Related JoVE Video
How are ion pumps and agrin signaling integrated?
Trends Biochem. Sci.
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
Na(+),K(+)-ATPase (NKA) has a fundamental role in ion transport across the plasma membrane of animal cells and uses approximately 50% of brain energy consumption. Recent work has uncovered additional roles for NKA in signal transduction. How might such different functions of the sodium-potassium pump be connected and regulated? We envision an integrated model of ion pumping and signaling, considering in particular the recently discovered regulation of the sodium-potassium pump by agrin, a protein that is cleaved specifically by neurotrypsin at the synapse. Based on the recently solved structure of NKA and sequence analysis, we propose a molecular model for the agrin-NKA interaction, in which agrin displaces the NKA ?-subunit and exploits the ouabain-binding pocket.
Related JoVE Video
Structure determination using poorly diffracting membrane-protein crystals: the H+-ATPase and Na+,K+-ATPase case history.
Acta Crystallogr. D Biol. Crystallogr.
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
An approach is presented for the structure determination of membrane proteins on the basis of poorly diffracting crystals which exploits molecular replacement for heavy-atom site identification at 6-9 A maximum resolution and improvement of the heavy-atom-derived phases by multi-crystal averaging using quasi-isomorphous data sets. The multi-crystal averaging procedure allows real-space density averaging followed by phase combination between non-isomorphous native data sets to exploit crystal-to-crystal nonisomorphism despite the crystals belonging to the same space group. This approach has been used in the structure determination of H(+)-ATPase and Na(+),K(+)-ATPase using Ca(2+)-ATPase models and its successful application to the Mhp1 symporter using LeuT as a search model is demonstrated.
Related JoVE Video
Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPase.
Nature
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when potassium is released the proton will also return to the cytoplasm, thus allowing an overall asymmetric stoichiometry of the transported ions. The C terminus controls the gate to the pathway. Its structure is crucial for pump function, as demonstrated by at least eight mutations in the region that cause severe neurological diseases. This novel model for ion transport by the Na(+)/K(+)-ATPase is established by electrophysiological studies of C-terminal mutations in familial hemiplegic migraine 2 (FHM2) and is further substantiated by molecular dynamics simulations. A similar ion regulation is likely to apply to the H(+)/K(+)-ATPase and the Ca(2+)-ATPase.
Related JoVE Video
A thermodynamic analysis of fibrillar polymorphism.
Biophys. Chem.
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
We explore the thermodynamic properties of three different fibrils of the peptide hormone glucagon, formed under different salt conditions (glycine, sulfate and NaCl, respectively), and differing considerably in compactness. The three fibrils display a large variation in the specific heat capacity DeltaC(p) determined by isothermal titration calorimetry. Sulfate fibrils show a negative DeltaC(p) expected from a folding reaction, while the DeltaC(p) for glycine fibrils is essentially zero. NaCl fibrils, which are less stable than the other fibrils, have a large and positive C(p). The predicted change in solvent accessible area is not a useful predictor of fibrillar DeltaC(p) unlike the case for globular proteins. We speculate that strong backbone interactions may lead to the unfavorable burial of polar side residues, water and/or charged groups which all can have major influence on the change in C(p). These results highlight differences in the driving forces of native folding and fibril formation.
Related JoVE Video
Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
PUBLISHED: 01-30-2010
Show Abstract
Hide Abstract
Plasma-membrane Ca(2+)-ATPases (PMCAs) are calcium pumps that expel Ca(2+) from eukaryotic cells to maintain overall Ca(2+) homoeostasis and to provide local control of intracellular Ca(2+) signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca(2+) regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca(2+)-CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca(2+)-ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 A, beta = 113.2 degrees. A complete data set was collected to 3.0 A resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin.
Related JoVE Video
The C terminus of Na+,K+-ATPase controls Na+ affinity on both sides of the membrane through Arg935.
J. Biol. Chem.
PUBLISHED: 05-05-2009
Show Abstract
Hide Abstract
The Na(+),K(+)-ATPase C terminus has a unique location between transmembrane segments, appearing to participate in a network of interactions. We have examined the functional consequences of amino acid substitutions in this region and deletions of the C terminus of varying lengths. Assays revealing separately the mutational effects on internally and externally facing Na(+) sites, as well as E(1)-E(2) conformational changes, have been applied. The results pinpoint the two terminal tyrosines, Tyr(1017) and Tyr(1018), as well as putative interaction partners, Arg(935) in the loop between transmembrane segments M8 and M9 and Lys(768) in transmembrane segment M5, as crucial to Na(+) activation of phosphorylation of E(1), a partial reaction reflecting Na(+) interaction on the cytoplasmic side of the membrane. Tyr(1017), Tyr(1018), and Arg(935) are furthermore indispensable to Na(+) interaction on the extracellular side of the membrane, as revealed by inability of high Na(+) concentrations to drive the transition from E(1)P to E(2)P backwards toward E(1)P and inhibit Na(+)-ATPase activity in mutants. Lys(768) is not important for Na(+) binding from the external side of the membrane but is involved in stabilization of the E(2) form. These data demonstrate that the C terminus controls Na(+) affinity on both sides of the membrane and suggest that Arg(935) constitutes an important link between the C terminus and the third Na(+) site, involving an arginine-pi stacking interaction between Arg(935) and the C-terminal tyrosines. Lys(768) may interact preferentially with the C terminus in E(1) and E(1)P forms and with the loop between transmembrane segments M6 and M7 in E(2) and E(2)P forms.
Related JoVE Video
P-type ATPases as drug targets: tools for medicine and science.
Biochim. Biophys. Acta
PUBLISHED: 04-24-2009
Show Abstract
Hide Abstract
P-type ATPases catalyze the selective active transport of ions like H+, Na+, K+, Ca2+, Zn2+, and Cu2+ across diverse biological membrane systems. Many members of the P-type ATPase protein family, such as the Na+,K+-, H+,K+-, Ca2+-, and H+-ATPases, are involved in the development of pathophysiological conditions or provide critical function to pathogens. Therefore, they seem to be promising targets for future drugs and novel antifungal agents and herbicides. Here, we review the current knowledge about P-type ATPase inhibitors and their present use as tools in science, medicine, and biotechnology. Recent structural information on a variety of P-type ATPase family members signifies that all P-type ATPases can be expected to share a similar basic structure and a similar basic machinery of ion transport. The ion transport pathway crossing the membrane lipid bilayer is constructed of two access channels leading from either side of the membrane to the ion binding sites at a central cavity. The selective opening and closure of the access channels allows vectorial access/release of ions from the binding sites. Recent structural information along with new homology modeling of diverse P-type ATPases in complex with known ligands demonstrate that the most proficient way for the development of efficient and selective drugs is to target their ion transport pathway.
Related JoVE Video
Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
The first crystal structure of the neurotransmitter/sodium symporter homolog LeuT revealed an occluded binding pocket containing leucine and 2 Na(+); later structures showed tricyclic antidepressants (TCAs) in an extracellular vestibule approximately 11 A above the bound leucine and 2 Na(+). We recently found this region to be a second binding (S2) site and that binding of substrate to this site triggers Na(+)-coupled substrate symport. Here, we show a profound inhibitory effect of n-octyl-beta-d-glucopyranoside (OG), the detergent used for LeuT crystallization, on substrate binding to the S2 site. In parallel, we determined at 2.8 A the structure of LeuT-E290S, a mutant that, like LeuT-WT, binds 2 substrate molecules. This structure was similar to that of WT and clearly revealed an OG molecule in the S2 site. We also observed electron density at the S2 site in LeuT-WT crystals, and this also was accounted for by an OG molecule in that site. Computational analyses, based on the available crystal structures of LeuT, indicated the nature of structural arrangements in the extracellular region of LeuT that differentiate the actions of substrates from inhibitors bound in the S2 site. We conclude that the current LeuT crystal structures, all of which have been solved in OG, represent functionally blocked forms of the transporter, whereas a substrate bound in the S2 site will promote a different state that is essential for Na(+)-coupled symport.
Related JoVE Video
Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase.
J. Biol. Chem.
PUBLISHED: 03-16-2009
Show Abstract
Hide Abstract
We have determined the structure of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in an E2.P(i)-like form stabilized as a complex with MgF(4)(2-), an ATP analog, adenosine 5-(beta,gamma-methylene)triphosphate (AMPPCP), and cyclopiazonic acid (CPA). The structure determined at 2.5A resolution leads to a significantly revised model of CPA binding when compared with earlier reports. It shows that a divalent metal ion is required for CPA binding through coordination of the tetramic acid moiety at a characteristic kink of the M1 helix found in all P-type ATPase structures, which is expected to be part of the cytoplasmic cation access pathway. Our model is consistent with the biochemical data on CPA function and provides new measures in structure-based drug design targeting Ca(2+)-ATPases, e.g. from pathogens. We also present an extended structural basis of ATP modulation pinpointing key residues at or near the ATP binding site. A structural comparison to the Na(+),K(+)-ATPase reveals that the Phe(93) side chain occupies the equivalent binding pocket of the CPA site in SERCA, suggesting an important role of this residue in stabilization of the potassium-occluded E2 state of Na(+),K(+)-ATPase.
Related JoVE Video
A Trojan horse in drug development: targeting of thapsigargins towards prostate cancer cells.
Anticancer Agents Med Chem
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
Available chemotherapeutics take advantage of the fast proliferation of cancer cells. Consequently slow growth makes androgen refractory prostate cancer resistant towards available drugs. No treatment is available at the present, when the cancer has developed metastases outside the prostate (T4 stage). Cytotoxins killing cells irrespective of the phase of the cell cycle will be able to kill slowly proliferating prostate cancer cells. Lack of selectivity, however, prevents their use as systemic drugs. Prostate cancer cells secrete characteristic proteolytic enzymes, e.g. PSA and hK2, with unusual substrate specificity. Conjugation of cytotoxins with peptides, which are selective substrates for PSA or hK2, will afford prodrugs, from which the active drug only will be released in close vicinity of the cancer cells. Based on this strategy prodrugs targeted at prostate cancer cells have been constructed and evaluated as potential drugs for prostate cancer. The potency of the thapsigargins as apoptotic agents make these naturally occurring sesquiterpene lactones attractive lead compounds. Intensive studies on structure-activity relationships and chemistry of the thapsigargins have enabled construction of potent derivatives enabling conjugation with peptides. Studies on the mechanism of action of the thapsigargins have revealed that the cytoxicity is based on their ability to inhibit the intracellular sarco-/endoplasmtic calcium pump.
Related JoVE Video
The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations.
Philos. Trans. R. Soc. Lond., B, Biol. Sci.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
The Na+,K+-ATPase transforms the energy of ATP to the maintenance of steep electrochemical gradients for sodium and potassium across the plasma membrane. This activity is tissue specific, in particular due to variations in the expressions of the alpha subunit isoforms one through four. Several mutations in alpha2 and 3 have been identified that link the specific function of the Na+,K+-ATPase to the pathophysiology of neurological diseases such as rapid-onset dystonia parkinsonism and familial hemiplegic migraine type 2. We show a mapping of the isoform differences and the disease-related mutations on the recently determined crystal structure of the pig renal Na+,K+-ATPase and a structural comparison to Ca2+-ATPase. Furthermore, we present new experimental data that address the role of a stretch of three conserved arginines near the C-terminus of the alpha subunit (Arg1003-Arg1005).
Related JoVE Video
A first low-resolution difference Fourier map of phosphorus in a membrane protein from near-edge anomalous diffraction.
J Synchrotron Radiat
PUBLISHED: 02-10-2009
Show Abstract
Hide Abstract
Crystal diffraction of three membrane proteins (cytochrome bc(1) complex, sarcoplasmic reticulum Ca(2+) ATPase, ADP-ATP carrier) and of one nucleoprotein complex (leucyl tRNA synthetase bound to tRNAleu, leuRS:tRNAleu) was tested at wavelengths near the X-ray K-absorption edge of phosphorus using a new set-up for soft X-ray diffraction at the beamline ID01 of the ESRF. The best result was obtained from crystals of Ca(2+) ATPase [adenosin-5-(beta,gamma-methylene) triphosphate complex] which diffracted out to 7 A resolution. Data were recorded at a wavelength at which the real resonant scattering factor of phosphorus reaches the extreme value of -20 electron units. The positions of the four triphosphates of the monoclinic unit cell of the ATPase have been obtained from a difference Fourier synthesis based on a limited set of anomalous diffraction data.
Related JoVE Video
A tomato ER-type Ca2+-ATPase, LCA1, has a low thapsigargin-sensitivity and can transport manganese.
Arch. Biochem. Biophys.
PUBLISHED: 02-04-2009
Show Abstract
Hide Abstract
Recombinant Ca(2+)-ATPase from tomato (i.e. LCA1 for Lycopersicon esculentum [Since the identification and naming of LCA1, the scientific name for the tomato has been changed to Solanum lycopersicum.] Ca-ATPase) was heterologously expressed in yeast for structure-function characterization. We investigate the differences between plant and animal Ca pumps utilizing comparisons between chicken and rabbit SERCA-type pumps with Arabidopsis (ECA1) and tomato plant (LCA1) Ca(2+)-ATPases. Enzyme function was confirmed by the ability of each Ca(2+)-ATPase to rescue K616 growth on EGTA-containing agar and directly via in vitro ATP hydrolysis. We found LCA1 to be approximately 300-fold less sensitive to thapsigargin than animal SERCAs, whereas ECA1 was thapsigargin-resistant. LCA1 showed typical pharmacological sensitivities to cyclopiazonic acid, vanadate, and eosin, consistent with it being a P(IIA)-type Ca(2+)-ATPase. Possible amino acid changes responsible for the reduced plant thapsigargin-sensitivity are discussed. We found that LCA1 also complemented K616 yeast growth in the presence of Mn(2+), consistent with moving Mn(2+) into the secretory pathway and functionally compensating for the lack of secretory pathway Ca-ATPases (SPCAs) in plants.
Related JoVE Video
Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain.
Nat. Struct. Mol. Biol.
PUBLISHED: 01-04-2009
Show Abstract
Hide Abstract
The structure of the Sortilin ectodomain in complex with neurotensin has been determined at 2-A resolution, revealing that the C-terminal part of neurotensin binds in the tunnel of a ten-bladed beta-propeller domain. Binding competition studies suggest that additional binding sites, for example, for the prodomain of nerve growth factor-beta, are present in the tunnel and that competition for binding relates to the restricted space inside the propeller.
Related JoVE Video
Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-02-2009
Show Abstract
Hide Abstract
In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-A cryo-electron microscopy map of the aminoacyl-tRNA x EF-Tu x GDP x kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism.
Related JoVE Video
The ?2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish.
J. Cell. Sci.
Show Abstract
Hide Abstract
The Na(+)/K(+)-ATPase generates ion gradients across the plasma membrane, essential for multiple cellular functions. In mammals, four different Na(+)/K(+)-ATPase ?-subunit isoforms are associated with characteristic cell-type expression profiles and kinetics. We found the zebrafish ?2Na(+)/K(+)-ATPase associated with striated muscles and that knockdown causes a significant depolarization of the resting membrane potential in slow-twitch fibers of skeletal muscles. Abrupt mechanosensory responses were observed in ?2Na(+)/K(+)-ATPase-deficient embryos, possibly linked to a postsynaptic defect. The ?2Na(+)/K(+)-ATPase deficiency reduced the heart rate and caused a loss of left-right asymmetry in the heart tube. Similar phenotypes from knockdown of the Na(+)/Ca(2+) exchanger indicated a role for the interplay between these two proteins in the observed phenotypes. Furthermore, proteomics identified up- and downregulation of specific phenotype-related proteins, such as parvalbumin, CaM, GFAP and multiple kinases, thus highlighting a potential proteome change associated with the dynamics of ?2Na(+)/K(+)-ATPase. Taken together, our findings show that zebrafish ?2Na(+)/K(+)-ATPase is important for skeletal and heart muscle functions.
Related JoVE Video
A bimodular mechanism of calcium control in eukaryotes.
Nature
Show Abstract
Hide Abstract
Calcium ions (Ca(2+)) have an important role as secondary messengers in numerous signal transduction processes, and cells invest much energy in controlling and maintaining a steep gradient between intracellular (?0.1-micromolar) and extracellular (?2-millimolar) Ca(2+) concentrations. Calmodulin-stimulated calcium pumps, which include the plasma-membrane Ca(2+)-ATPases (PMCAs), are key regulators of intracellular Ca(2+) in eukaryotes. They contain a unique amino- or carboxy-terminal regulatory domain responsible for autoinhibition, and binding of calcium-loaded calmodulin to this domain releases autoinhibition and activates the pump. However, the structural basis for the activation mechanism is unknown and a key remaining question is how calmodulin-mediated PMCA regulation can cover both basal Ca(2+) levels in the nanomolar range as well as micromolar-range Ca(2+) transients generated by cell stimulation. Here we present an integrated study combining the determination of the high-resolution crystal structure of a PMCA regulatory-domain/calmodulin complex with in vivo characterization and biochemical, biophysical and bioinformatics data that provide mechanistic insights into a two-step PMCA activation mechanism mediated by calcium-loaded calmodulin. The structure shows the entire PMCA regulatory domain and reveals an unexpected 2:1 stoichiometry with two calcium-loaded calmodulin molecules binding to different sites on a long helix. A multifaceted characterization of the role of both sites leads to a general structural model for calmodulin-mediated regulation of PMCAs that allows stringent, highly responsive control of intracellular calcium in eukaryotes, making it possible to maintain a stable, basal level at a threshold Ca(2+) concentration, where steep activation occurs.
Related JoVE Video
Active detergent-solubilized H+,K+-ATPase is a monomer.
J. Biol. Chem.
Show Abstract
Hide Abstract
The H(+),K(+)-ATPase pumps protons or hydronium ions and is responsible for the acidification of the gastric fluid. It is made up of an ?-catalytic and a ?-glycosylated subunit. The relation between cation translocation and the organization of the protein in the membrane are not well understood. We describe here how pure and functionally active pig gastric H(+),K(+)-ATPase with an apparent Stokes radius of 6.3 nm can be obtained after solubilization with the non-ionic detergent C(12)E(8), followed by exchange of C(12)E(8) with Tween 20 on a Superose 6 column. Mass spectroscopy indicates that the ?-subunit bears an excess mass of 9 kDa attributable to glycosylation. From chemical analysis, there are 0.25 g of phospholipids and around 0.024 g of cholesterol bound per g of protein. Analytical ultracentrifugation shows one main complex, sedimenting at s(20,)(w) = 7.2 ± 0.1 S, together with minor amounts of irreversibly aggregated material. From these data, a buoyant molecular mass is calculated, corresponding to an H(+),K(+)-ATPase ?,?-protomer of 147.3 kDa. Complementary sedimentation velocity with deuterated water gives a picture of an ?,?-protomer with 0.9-1.4 g/g of bound detergent and lipids and a reasonable frictional ratio of 1.5, corresponding to a Stokes radius of 7.1 nm. An ?(2),?(2) dimer is rejected by the data. Light scattering coupled to gel filtration confirms the monomeric state of solubilized H(+),K(+)-ATPase. Thus, ?,? H(+),K(+)-ATPase is active at least in detergent and may plausibly function as a monomer, as has been established for other P-type ATPases, Ca(2+)-ATPase and Na(+),K(+)-ATPase.
Related JoVE Video
Structural models of the human copper P-type ATPases ATP7A and ATP7B.
Biol. Chem.
Show Abstract
Hide Abstract
The human copper exporters ATP7A and ATP7B contain domains common to all P-type ATPases as well as class-specific features such as six sequential heavy-metal binding domains (HMBD1-HMBD6) and a type-specific constellation of transmembrane helices. Despite the medical significance of ATP7A and ATP7B related to Menkes and Wilson diseases, respectively, structural information has only been available for isolated, soluble domains. Here we present homology models based on the existing structures of soluble domains and the recently determined structure of the homologous LpCopA from the bacterium Legionella pneumophila. The models and sequence analyses show that the domains and residues involved in the catalytic phosphorylation events and copper transfer are highly conserved. In addition, there are only minor differences in the core structures of the two human proteins and the bacterial template, allowing protein-specific properties to be addressed. Furthermore, the mapping of known disease-causing missense mutations indicates that among the heavy-metal binding domains, HMBD5 and HMBD6 are the most crucial for function, thus mimicking the single or dual HMBDs found in most copper-specific P-type ATPases. We propose a structural arrangement of the HMBDs and how they may interact with the core of the proteins to achieve autoinhibition.
Related JoVE Video
The C-terminal cavity of the Na,K-ATPase analyzed by docking and electrophysiology.
Mol. Membr. Biol.
Show Abstract
Hide Abstract
The Na,K-ATPase is essential to all animals, since it maintains the electrochemical gradients that energize the plasma membrane. Naturally occurring inhibitors of the pump from plants have been used pharmaceutically in cardiac treatment for centuries. The inhibitors block the pump by binding on its extracellular side and thereby locking it. To explore the possibilities for designing an alternative way of targeting the pump function, we have examined the structural requirements for binding to a pocket that accommodates the two C-terminal residues, YY, in the crystal structures of the pump. To cover the sample space of two residues, we first performed docking studies with the 400 possible dipeptides. For validation of the in silico predictions, pumps with 13 dipeptide sequences replacing the C-terminal YY were expressed in Xenopus laevis oocytes and examined with electrophysiology. Our data show a significant correlation between the docking scores from two different methods and the experimentally determined sodium affinities, which strengthens the previous hypothesis that sodium binding is coupled to docking of the C-terminus. From the dipeptides that dock the best and better than wild-type YY, it may therefore be possible to develop specific drugs targeting a previously unexplored binding pocket in the sodium pump.
Related JoVE Video
Flexible P-type ATPases interacting with the membrane.
Curr. Opin. Struct. Biol.
Show Abstract
Hide Abstract
Cation pumps and lipid flippases of the P-type ATPase family maintain electrochemical gradients and asymmetric lipid distributions across membranes, and offer significant insight of protein:membrane interactions. The sarcoplasmic reticulum Ca(2+)-ATPase features flexible and adaptive interactions with the surrounding membrane, while the Na(+),K(+)-ATPase complex is modulated by membrane components and a role for the ?-subunit as a stabilizer of a specific lipid interaction with the ?-subunit has been proposed. The first crystal structure of a heavy-metal transporting ATPase shows a markedly amphipathic helix at the cytoplasmic membrane surface, highlighting this structure as a general motif of all P-type ATPases although with specialization to different membranes. Residues of central importance for the lipid flippase activity of the P4-type ATPase subfamily have been pinpointed by mutational studies, but the transport pathway and mechanism remain unknown.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.