JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Serum Peak Sulfamethoxazole Concentrations Demonstrate Difficulty in Achieving a Target Range: A Retrospective Cohort Study.
Curr Ther Res Clin Exp
PUBLISHED: 12-01-2014
Show Abstract
Hide Abstract
Trimethoprim (TMP)/sulfamethoxazole (SMX) has consistently demonstrated great interindividual variability. Therapeutic drug monitoring may be used to optimize dosing. Optimal peak SMX concentration has been proposed as 100 to 150 ?g/mL. The objective of our work was to determine the success rate of a TMP/SMX dosing guideline in achieving a targeted serum peak SMX concentration range.
Related JoVE Video
Ultrasensitive electrochemical biosensing for DNA using quantum dots combined with restriction endonuclease.
Analyst
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
A universal and sensitive electrochemical biosensing platform for the detection and identification of DNA using CdSe quantum dots (CdSe QDs) as signal markers was designed. The detection mechanism was based on the specific recognition of MspI endonuclease combined with the signal amplification of gold nanoparticles (AuNPs). MspI endonuclease could recognize its specific sequence in the double-strand DNA (dsDNA) and cleave the dsDNA fragments linked with CdSe QDs from the electrode. The remaining attached CdSe QDs can be easily read out by square-wave voltammetry using an electrodeposited bismuth (Bi) film-modified glass carbon electrode. The concentrations of target DNA could be simultaneously detected by the signal of metal markers. Using mycobacterium tuberculosis (Mtb) DNA as a model, under the optimal conditions, the proposed biosensor could detect Mtb DNA down to 8.7 × 10(-15) M with a linear range of 5 orders of magnitude (from 1.0 × 10(-14) to 1.0 × 10(-9) M) and discriminate mismatched DNA with high selectivity. This strategy presented a universal and convenient biosensing platform for DNA assay, and its satisfactory performances make it a potential candidate for the early diagnosis of gene-related diseases.
Related JoVE Video
Large-Scale Production of Graphene Nanoribbons from Electrospun Polymers.
J. Am. Chem. Soc.
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
Graphene nanoribbons (GNRs) are promising building blocks for high-performance electronics due to their high electron mobility and dimensionality-induced bandgap. Despite many past efforts, direct synthesis of GNRs with controlled dimensions and scalability remains challenging. Here we report the scalable synthesis of GNRs using electrospun polymer nanofibers templates. Palladium-incorporated poly-(4-vinylphenol) nanofibers were prepared by electrospinning with controlled diameter and orientation. Highly graphitized GNRs as narrow as 10 nm were then synthesized from these templates by chemical vapor deposition. A transport gap can be observed in 30-nm-wide GNRs, enabling them to function as field-effect transistors at room temperature. Our results represent the first success on the scalable synthesis of highly graphitized GNRs from polymer templates. Furthermore, the generality of this method allows various polymers to be explored, which will lead to understanding of growth mechanism and rational control over crystallinity, feature size and bandgap to enable a new pathway for graphene electronics.
Related JoVE Video
A simple and convenient approach for preparing core-shell-like silica@nickel species nanoparticles: highly efficient and stable catalyst for the dehydrogenation of 1,2-cyclohexanediol to catechol.
Dalton Trans
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
A simple and convenient approach denoted as gel-deposition-precipitation (G-D-P) for the preparation of core-shell-like silica@nickel species nanoparticles was studied systematically. Core-shell-like silica@nickel species nanoparticles consisted of a Si-rich core and a Ni-rich shell. The G-D-P process included two steps: one was the deposition-precipitation of nickel over the gelled colloidal silica particle, generating core-shell-like silica@nickel species nanoparticles, and the other was the aging period. It was found that the nickel phyllosilicate layer was formed mainly during the aging period and served as the protective cover to resist against aggregation of the nanoparticles, which could be utilized for regulating the dispersion of nickel over the silica@nickel species nanoparticles. In the present paper, the silica@nickel species nanoparticles were used as the catalysts for preparing catechol via dehydrogenation of 1,2-cyclohexanediol. Their catalytic activity and long-term stability were compared to those of a catalyst prepared by a conventional deposition-precipitation (D-P) approach. The higher activity and better stability of the title reaction over the silica@nickel species nanoparticles catalyst prepared by G-D-P than those over the catalyst prepared by D-P could be due to the higher dispersion of metallic nickel stabilized by the layers of nickel phyllosilicates. Moreover, it was found that the dehydrogenation of 1,2-cyclohexanediol to catechol was a structurally sensitive reaction.
Related JoVE Video
N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins.
Chem. Commun. (Camb.)
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
N-doped graphene used as an efficient electron donor of iron catalysts for CO hydrogenation can achieve a high selectivity of around 50% for light olefins, significantly superior to the selectivity of iron catalysts on conventional carbon materials, e.g. carbon black with a selectivity of around 30% at the same reaction conditions.
Related JoVE Video
Graphene cover-promoted metal-catalyzed reactions.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-19-2014
Show Abstract
Hide Abstract
Graphitic overlayers on metals have commonly been considered as inhibitors for surface reactions due to their chemical inertness and physical blockage of surface active sites. In this work, however, we find that surface reactions, for instance, CO adsorption/desorption and CO oxidation, can take place on Pt(111) surface covered by monolayer graphene sheets. Surface science measurements combined with density functional calculations show that the graphene overlayer weakens the strong interaction between CO and Pt and, consequently, facilitates the CO oxidation with lower apparent activation energy. These results suggest that interfaces between graphitic overlayers and metal surfaces act as 2D confined nanoreactors, in which catalytic reactions are promoted. The finding contrasts with the conventional knowledge that graphitic carbon poisons a catalyst surface but opens up an avenue to enhance catalytic performance through coating of metal catalysts with controlled graphitic covers.
Related JoVE Video
Understanding Polymorphism in Organic Semiconductor Thin Films Through Nanoconfinement.
J. Am. Chem. Soc.
PUBLISHED: 10-22-2014
Show Abstract
Hide Abstract
Understanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far. The major challenges lie in the transient nature of metastable forms and the preparation of phase-pure, highly-crystalline thin films for resolving the crystal structures and evaluating the charge transport properties. Here we demonstrate that the nanoconfinement effect combined with the flow-enhanced crystal engineering technique is a powerful and likely material-agnostic method to identify existing polymorphs in OSC materials and to prepare the individual pure forms in thin films at ambient conditions. With this method we prepared high quality crystal polymorphs and resolved crystal structures of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), including a new polymorph discovered via in situ grazing incidence X-ray diffraction and confirmed by molecular mechanic simulations. We further correlated molecular packing with charge transport properties using quantum chemical calculations and charge carrier mobility measurements. In addition, we applied our methodology to a [1]benzothieno[3,2-b][1]1benzothiophene (BTBT) derivative and successfully stabilized its metastable form.
Related JoVE Video
Transmission of H7N9 influenza virus in mice by different infective routes.
Virol. J.
PUBLISHED: 10-03-2014
Show Abstract
Hide Abstract
On 19 February 2013, the first patient infected with a novel influenza A H7N9 virus from an avian source showed symptoms of sickness. More than 349 laboratory-confirmed cases and 109 deaths have been reported in mainland China since then. Laboratory-confirmed, human-to-human H7N9 virus transmission has not been documented between individuals having close contact; however, this transmission route could not be excluded for three families. To control the spread of the avian influenza H7N9 virus, we must better understand its pathogenesis, transmissibility, and transmission routes in mammals. Studies have shown that this particular virus is transmitted by aerosols among ferrets.
Related JoVE Video
Combinations of Oseltamivir and Fibrates Prolong the Mean Survival Time of Mice Infected with the Lethal H7N9 Influenza Virus.
J. Gen. Virol.
PUBLISHED: 10-03-2014
Show Abstract
Hide Abstract
The outbreak of human infections caused by the novel avian-origin H7N9 influenza viruses in China since March 2013 underscores the urgent need to find an effective treatment strategy against H7N9 infection in humans. In this study, we assessed the effectiveness of combinations of oseltamivir and two immunomodulators, simvastatin and fenofibrate, against H7N9 infection in a mouse model. Mice treated with oseltamivir plus fenofibrate exhibited the longest mean survival time, the largest reduction of viral titer in lung tissue, the highest levels of CD4+ and CD8+ T lymphocytes, and the greatest decrease in pulmonary inflammation. Thus, the combination of oseltamivir plus fenofibrate improved the outcomes of mice infected with H7N9 virus by simultaneously reducing viral replication and normalizing the aberrant immune response. This drug combination should be considered in randomized controlled trials of treatments for H7N9 patients.
Related JoVE Video
Polypyrrole/Agarose-based electronically conductive and reversibly restorable hydrogel.
ACS Nano
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
Conductive hydrogels are a class of composite materials that consist of hydrated and conducting polymers. Due to the mechanical similarity to biointerfaces such as human skin, conductive hydrogels have been primarily utilized as bioelectrodes, specifically neuroprosthetic electrodes, in an attempt to replace metallic electrodes by enhancing the mechanical properties and long-term stability of the electrodes within living organisms. Here, we report a conductive, smart hydrogel, which is thermoplastic and self-healing owing to its unique properties of reversible liquefaction and gelation in response to thermal stimuli. In addition, we demonstrated that our conductive hydrogel could be utilized to fabricate bendable, stretchable, and patternable electrodes directly on human skin. The excellent mechanical and thermal properties of our hydrogel make it potentially useful in a variety of biomedical applications such as electronic skin.
Related JoVE Video
A carbon nanotube/quantum dot based photoelectrochemical biosensing platform for the direct detection of microRNAs.
Chem. Commun. (Camb.)
PUBLISHED: 09-17-2014
Show Abstract
Hide Abstract
A versatile photoelectrochemical biosensing platform was developed based on DNA-CdS quantum dots (QDs) sensitized single-walled carbon nanotubes (SWCNTs)-COOH. Combining with cyclic enzymatic amplification, a convenient, sensitive and specific biosensor for the direct detection of microRNAs (miRNAs) was designed, which provided a novel approach for analysis of miRNAs.
Related JoVE Video
Photoelectrochemical biosensor using enzyme-catalyzed in situ propagation of CdS quantum dots on graphene oxide.
ACS Appl Mater Interfaces
PUBLISHED: 09-08-2014
Show Abstract
Hide Abstract
An innovative photoelectrochemical (PEC) biosensor platform was designed based on the in situ generation of CdS quantum dots (QDs) on graphene oxide (GO) using an enzymatic reaction. Horseradish peroxidase catalyzed the reduction of sodium thiosulfate with hydrogen peroxide to generate H2S, which reacted with Cd(2+) to form CdS QDs. CdS QDs could be photoexcited to generate an elevated photocurrent as a readout signal. This strategy offered a "green" alternative to inconvenient presynthesis procedures for the fabrication of semiconducting nanoparticles. The nanomaterials and assembly procedures were characterized by microscopy and spectroscopy techniques. Combined with immune recognition and on the basis of the PEC activity of CdS QDs on GO, the strategy was successfully applied to a PEC assay to detect carcinoembryonic antigen and displayed a wide linear range from 2.5 ng mL(-1) to 50 ?g mL(-1) and a detection limit of 0.72 ng mL(-1) at a signal-to-noise ratio of 3. The PEC biosensor showed satisfactory performance for clinical sample detection and was convenient for determining high concentrations of solute without dilution. This effort offers a new opportunity for the development of numerous rapid and convenient analytical techniques using the PEC method that may be applied in the design and preparation of various solar-energy-driven applications.
Related JoVE Video
Selective metal deposition at graphene line defects by atomic layer deposition.
Nat Commun
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
One-dimensional defects in graphene have a strong influence on its physical properties, such as electrical charge transport and mechanical strength. With enhanced chemical reactivity, such defects may also allow us to selectively functionalize the material and systematically tune the properties of graphene. Here we demonstrate the selective deposition of metal at chemical vapour deposited graphene's line defects, notably grain boundaries, by atomic layer deposition. Atomic layer deposition allows us to deposit Pt predominantly on graphene's grain boundaries, folds and cracks due to the enhanced chemical reactivity of these line defects, which is directly confirmed by transmission electron microscopy imaging. The selective functionalization of graphene defect sites, together with the nanowire morphology of deposited Pt, yields a superior platform for sensing applications. Using Pt-graphene hybrid structures, we demonstrate high-performance hydrogen gas sensors at room temperature and show its advantages over other evaporative Pt deposition methods, in which Pt decorates the graphene surface non-selectively.
Related JoVE Video
Highly Skin-Conformal Microhairy Sensor for Pulse Signal Amplification.
Adv. Mater. Weinheim
PUBLISHED: 08-20-2014
Show Abstract
Hide Abstract
A bioinspired microhairy sensor is developed to enable ultraconformability on nonflat surfaces and significant enhancement in the signal-to-noise ratio of the retrieved signals. The device shows ?12 times increase in the signal-to-noise ratio in the generated capacitive signals, allowing that the ultraconformal microhair pressure sensors are capable of measuring weak pulsations of internal jugular venous pulses stemming from a human neck.
Related JoVE Video
Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.
Nat Commun
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.
Related JoVE Video
Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics.
Small
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
Regioregular poly(3-alkylthiophene) (P3AT) polymers have been previously reported for the selective, high-yield dispersion of semiconducting single-walled carbon nanotubes (SWCNTs) in toluene. Here, five alternative solvents are investigated, namely, tetrahydrofuran, decalin, tetralin, m-xylene, and o-xylene, for the dispersion of SWCNTs by poly(3-dodecylthiophene) P3DDT. The dispersion yield could be increased to over 40% using decalin or o-xylene as the solvents while maintaining high selectivity towards semiconducting SWCNTs. Molecular dynamics (MD) simulations in explicit solvents are used to explain the improved sorting yield. In addition, a general mechanism is proposed to explain the selective dispersion of semiconducting SWCNTs by conjugated polymers. The possibility to perform selective sorting of semiconducting SWCNTs using various solvents provides a greater diversity of semiconducting SWCNT ink properties, such as boiling point, viscosity, and surface tension as well as toxicity. The efficacy of these new semiconducting SWCNT inks is demonstrated by using the high boiling point and high viscosity solvent tetralin for inkjet-printed transistors, where solvent properties are more compatible with the inkjet printing head and improved droplet formation.
Related JoVE Video
Synthesis of PbS/PbI2 nanocomposites in mixed solvent and their composition-dependent electrogenerated chemiluminescence performance.
Inorg Chem
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
PbS/PbI2 nanocomposites were prepared by choosing K[PbI3] as both a lead salt and an iodide precursor and acetone/water as a reaction medium. It was found that the amount of the PbI2 component could be controlled, to some extent, by varying the amount of water used. Further, this simple bicomponent precursor-based synthetic route can be extended to prepare other lead-containing nanocomposites such as Pb3O4/PbI2 and PbSe/PbI2. Because of the heavy-atom effect, PbS/PbI2 nanocomposites exhibited good and composition-dependent electrogenerated chemiluminescence (ECL) performance, demonstrating their potential in the development of novel ECL sensors for analytical and clinical applications. These interesting findings would encourage us to gain deep insight on these phenomena, which could lead to the further development of these new inorganic materials and their applications.
Related JoVE Video
Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy.
Langmuir
PUBLISHED: 07-02-2014
Show Abstract
Hide Abstract
Diffusion dynamics of guest molecules in nanopores has been studied intensively because diffusion is center on a number of research fields such as separation, drug delivery, chemical reactions, and sensing. In the present work, we report an experimental investigation of the self-diffusion of water inside carbon nanotube (CNT) channels using a pulsed field gradient (PFG) NMR method. The dispersion of CNTs homogeneously in water and cooling to temperatures below the melting point of bulk water allow us to probe the translational motion of confined water molecules. The results demonstrate that the self-diffusion coefficient of water in CNTs is highly dependent on the diffusion time and CNT diameter. In particular, the diffusivity of water in double-walled carbon nanotubes (DWNTs) with an average inner diameter of 2.3 ± 0.3 nm is twice that in multiwalled carbon nanotubes (MWNTs) with an average inner diameter of 6.7 ± 0.8 nm in the temperature range of 263-223 K. In addition, the effective self-diffusion coefficient in DWNTs is 1 order of magnitude higher than that reported for mesoporous silica materials with a similar pore size. The faster diffusivity of water in CNTs could be attributed to the ordered hydrogen bonds formed between water molecules within the confined channels of CNTs and the weak interaction between water and the CNT walls.
Related JoVE Video
Self-assembled monolayers of cyclohexyl-terminated phosphonic acids as a general dielectric surface for high-performance organic thin-film transistors.
Adv. Mater. Weinheim
PUBLISHED: 06-25-2014
Show Abstract
Hide Abstract
A novel self-assembled monolayer (SAM) on AlOy /TiOx is terminated with cyclohexyl groups, an unprecedented terminal group for all kinds of SAMs. The SAM-modified AlOy /TiOx functions as a general dielectric, enabling organic thin-film transistors with a field-effect mobility higher than 5 cm(2) V(-1) s(-1) for both holes and electrons, good air stability with low operating voltage, and general applicability to solution-processed and vacuum-deposited n-type and p-type organic semiconductors.
Related JoVE Video
Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.
ACS Appl Mater Interfaces
PUBLISHED: 06-23-2014
Show Abstract
Hide Abstract
Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.
Related JoVE Video
Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene.
Nano Lett.
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Graphene is a highly promising material for high speed, broadband, and multicolor photodetection. Because of its lack of bandgap, individually gated P- and N-regions are needed to fabricate photodetectors. Here we report a technique for making a large-area photodetector on the basis of controllable fabrication of graphene P-N junctions. Our selectively doped chemical vapor deposition (CVD) graphene photodetector showed a ?5% modulation of conductance under global IR irradiation. By comparing devices of various geometries, we identify that both the homogeneous and the P-N junction regions contribute competitively to the photoresponse. Furthermore, we demonstrate that our two-terminal graphene photodetector can be fabricated on both transparent and flexible substrates without the need for complex fabrication processes used in electrically gated three-terminal devices. This represents the first demonstration of a fully transparent and flexible graphene-based IR photodetector that exhibits both good photoresponsivity and high bending capability. This simple approach should facilitate the development of next generation high-performance IR photodetectors.
Related JoVE Video
Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes.
Adv. Mater. Weinheim
PUBLISHED: 06-11-2014
Show Abstract
Hide Abstract
The first stretchable energy-harvesting electronic-skin device capable of differentiating and generating energy from various mechanical stimuli, such as normal pressure, lateral strain, bending, and vibration, is presented. A pressure sensitivity of 0.7 kPa(-1) is achieved in the pressure region <1 kPa with power generation of tens of ?W cm(-2) from a gentle finger touch.
Related JoVE Video
Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen.
Science
PUBLISHED: 05-10-2014
Show Abstract
Hide Abstract
The efficient use of natural gas will require catalysts that can activate the first C-H bond of methane while suppressing complete dehydrogenation and avoiding overoxidation. We report that single iron sites embedded in a silica matrix enable direct, nonoxidative conversion of methane, exclusively to ethylene and aromatics. The reaction is initiated by catalytic generation of methyl radicals, followed by a series of gas-phase reactions. The absence of adjacent iron sites prevents catalytic C-C coupling, further oligomerization, and hence, coke deposition. At 1363 kelvin, methane conversion reached a maximum at 48.1% and ethylene selectivity peaked at 48.4%, whereas the total hydrocarbon selectivity exceeded 99%, representing an atom-economical transformation process of methane. The lattice-confined single iron sites delivered stable performance, with no deactivation observed during a 60-hour test.
Related JoVE Video
Biomimetic superoxide dismutase stabilized by photopolymerization for superoxide anions biosensing and cell monitoring.
Anal. Chem.
PUBLISHED: 05-06-2014
Show Abstract
Hide Abstract
Photopolymerization strategy, as one of the immobilization methods, has attracted considerable interest because of some advantages, such as easy operation, harmlessness to the biomolecules, and long storage stability. (E)-4-(4-Formylstyryl) pyridine (formylstyrylpyridine) was prepared through Heck reaction and used as a photopolymer material to immobilize biomimetic superoxide dismutase under ultraviolet irradiation (UV) irradiation in a short time. The styrylpyridinium moiety of Formylstyrylpyridine was photoreactive and formed a dimer under UV irradiation. Mn2P2O7 multilayer sheet, a novel superoxide dismutase mimic, was synthesized. The formed photopolymer can immobilize Mn2P2O7 firmly under UV irradiation. On the basis of high catalytic activity of Mn2P2O7 biomimetic enzyme and long-term stability of Mn2P2O7-formylstyrylpyridine film, after introducing multiwalled carbon nanotubes (MWCNTs), a novel electrochemical biosensing platform called MWCNTs/Mn2P2O7-formylstyrylpyridine for superoxide anion (O2(•-)) detection was constructed. The biosensor displayed good performance for O2(•-) detection and provided a reliable platform to adhere living cells directly on the modified electrode surface. Therefore, the biosensor was successfully applied to vitro determination of O2(•-) released from living cells, which had a promising prospect for living cells monitoring and diagnosis of reactive oxygen species-related diseases.
Related JoVE Video
Electronic readout enzyme-linked immunosorbent assay with organic field-effect transistors as a preeclampsia prognostic.
Adv. Mater. Weinheim
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
Organic field-effect transistor (OFET) sensors can meet the need for portable and real-time diagnostics. An electronicreadout enzyme-linked immunosorbent assay using OFETs for the detection of a panel of three biomarkers in complex media to create a pre-eclampsia prognostic is demonstrated, along with biodetection utilizing a fully inkjet-printed and flexible OFET to underscore our ability to produce disposable devices.
Related JoVE Video
[Histopathological changes in EV71-infected mouse model:a transmission electron microscopic study].
Zhonghua Bing Li Xue Za Zhi
PUBLISHED: 04-19-2014
Show Abstract
Hide Abstract
To document ultrastructural changes of brain, spinal cord, skeletal muscle, jejunum and lung of EV71 infection mouse model, and to explore the myotropism and pathogenesis of EV71 in nervous system.
Related JoVE Video
Distribution of enterovirus 71 RNA in inflammatory cells infiltrating different tissues in fatal cases of hand, foot, and mouth disease.
Arch. Virol.
PUBLISHED: 04-16-2014
Show Abstract
Hide Abstract
In previous studies of hand, foot, and mouth disease patients fatally infected with enterovirus 71 (EV71), the distribution of viral protein, but not the genome, was determined. To understand the pathogenesis of EV71, however, it is important to investigate the spread of the viral genome. There have been no pathological studies of in situ EV71 viral RNA in inflammatory cells infiltrating various tissues of fatal cases. We therefore first investigated the distribution and classification of inflammatory cells in various tissues and then performed in situ EV71 RNA hybridization in these tissues to better understand the pathogenesis of EV71 infection. EV71 RNA was found mainly in inflammatory cells infiltrating the central nervous system (CNS), intestines, lungs, and tonsils. Most EV71 RNA-positive inflammatory cells in the CNS were macrophages/microglia and neutrophils infiltrating the perivascular cuffing, microglial nodule, neuronophagia, and meninges. CD68+ macrophages and CD15+ neutrophils were diffusely distributed in tissues with severe pathological changes. This study demonstrates the presence of EV71 RNA in inflammatory cells infiltrating tissues in fatally infected patients. Our findings suggest that fatal EV71 infection with extensive infiltration of macrophages/microglia and neutrophils into the CNS results in severe neurological lesions.
Related JoVE Video
Isolated pancreatic tuberculosis in non-immunocompromised patient treated by Whipple's procedure: a case report.
Chin. Med. Sci. J.
PUBLISHED: 04-05-2014
Show Abstract
Hide Abstract
PANCREATIC tuberculosis (TB) is a rare disease and its diagnosis is difficult because of the lack of specific clinical manifestations. Computed tomography (CT) and magnetic resonance imaging (MRI) have some diagnostic values in this disease, but it is easy to misdiagnose pancreatic TB as a pancreatic tumor.1 In this article, we present a case of non-immunocompromised patient developing an isolated pancreatic TB, report the CT and MRI findings, and the surgical procedure for it.
Related JoVE Video
Induction of neutralizing antibodies to influenza A virus H7N9 by inactivated whole virus in mice and nonhuman primates.
Antiviral Res.
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
We evaluated the immunogenicity of hemagglutinin (HA) in the context of inactivated H7N9/AH/1/13-PR8 whole-virion. At 4weeks after immunization with 15?g HA, mice produced hemagglutination inhibition (HI) titers of 1:192 and neutralizing antibodies of 1:317. Aluminum hydroxide (alum), or a booster immunization, or both increased HI to 1:768, 1:384, 1:896 and neutralizing antibodies to 1:1868, 1:2302, 1:10,000, respectively. Macaques generated HI of 1:190 or 1:360 and virus neutralizing titers of 1:280 or 1:658 at 3weeks after immunization with HA alone or with alum. Sera from immunized mice and macaques protected mice from infection of A/Anhui/1/2013 (H7N9), suggesting an H7N9 vaccine is immunologically feasible.
Related JoVE Video
VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.
Nano Lett.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
Single-wall carbon nanotubes (SWCNTs) have great potential to become the channel material for future high-speed transistor technology. However, as-made carbon nanotube field effect transistors (CNFETs) are p-type in ambient, and a consistent and reproducible n-type carbon nanotube (CNT) doping technique has yet to be realized. In addition, for very large scale integration (VLSI) of CNT transistors, it is imperative to use a solid-state method that can be applied on the wafer scale. Herein we present a novel, VLSI-compatible doping technique to fabricate n-type CNT transistors using low work-function metal oxides as gate dielectrics. Using this technique we demonstrate wafer-scale, aligned CNT transistors with yttrium oxide (Y2Ox) gate dielectrics that exhibit n-type behavior with Ion/Ioff of 10(6) and inverse subthreshold slope of 95 mV/dec. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses confirm that slow (?1 Å/s) evaporation of yttrium on the CNTs can form a smooth surface that provides excellent wetting to CNTs. Further analysis of the yttrium oxide gate dielectric using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques revealed that partially oxidized elemental yttrium content increases underneath the surface where it acts as a reducing agent on nanotubes by donating electrons that gives rise to n-type doping in CNTs. We further confirm the mechanism for this technique with other low work-function metals such as lanthanum (La), erbium (Er), and scandium (Sc) which also provide similar CNT NFET behavior after transistor fabrication. This study paves the way to exploiting a wide range of materials for an effective n-type carbon nanotube transistor for a complementary (p- and n-type) transistor technology.
Related JoVE Video
Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene.
Nat Commun
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
Acetylene hydrochlorination is an important coal-based technology for the industrial production of vinyl chloride, however it is plagued by the toxicity of the mercury chloride catalyst. Therefore extensive efforts have been made to explore alternative catalysts with various metals. Here we report that a nanocomposite of nitrogen-doped carbon derived from silicon carbide activates acetylene directly for hydrochlorination in the absence of additional metal species. The catalyst delivers stable performance during a 150 hour test with acetylene conversion reaching 80% and vinyl chloride selectivity over 98% at 200 °C. Experimental studies and theoretical simulations reveal that the carbon atoms bonded with pyrrolic nitrogen atoms are the active sites. This proof-of-concept study demonstrates that such a nanocomposite is a potential substitute for mercury while further work is still necessary to bring this to the industrial stage. Furthermore, the finding also provides guidance for design of carbon-based catalysts for activation of other alkynes.
Related JoVE Video
Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives processed via either solution coating or vacuum deposition. The threshold voltages of our polythiophene-sorted SWNT thin-film transistors can be tuned accurately and continuously over a wide range. Photoelectron spectroscopy measurements confirmed that the SWNT Fermi level shifted to the conduction band edge with increasing doping concentration. Using this doping approach, we proceeded to fabricate SWNT complementary inverters by inkjet printing of the dopants. We observed an unprecedented noise margin of 28 V at V(DD) = 80 V (70% of 1/2V(DD)) and a gain of 85. Additionally, robust SWNT complementary metal-oxide-semiconductor inverter (noise margin 72% of 1/2VDD) and logic gates with rail-to-rail output voltage swing and subnanowatt power consumption were fabricated onto a highly flexible substrate.
Related JoVE Video
Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.
ACS Nano
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors.
Related JoVE Video
One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films.
Nat Commun
PUBLISHED: 03-06-2014
Show Abstract
Hide Abstract
A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.
Related JoVE Video
High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors.
ACS Nano
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
We describe herein a high-yield method to selectively disperse semiconducting CoMoCAT (CO disproportionation on Co-Mo catalysts) single-walled carbon nanotubes (SWNTs) with regioregular poly(3-alkylthiophenes) polymers. We observed that the dispersion yield was directly related to the length of the polymer's alkyl side chains. Molecular dynamics simulations in explicit toluene (real toluene molecules) indicate that polythiophenes with longer alkyl side chains bind strongly to SWNTs, due to the increased overall surface contact area with the nanotube. Furthermore, the sorting process selectively enriches smaller-diameter CoMoCAT SWNTs with larger bandgaps, which is ideal for solar cell applications. Compared to the larger diameter sorted HiPco (High-Pressure CO) SWNTs, solar cells fabricated using our sorted CoMoCAT SWNTs demonstrated higher open-circuit voltage (Voc) and infrared external quantum efficiency (EQE). The Voc achieved is the highest reported for solar cells based on SWNT absorbers under simulated AM1.5 solar illumination. Additionally, we employed the sorted CoMoCAT SWNTs to fabricate thin film transistors with excellent uniformity and device performance.
Related JoVE Video
A flexible bimodal sensor array for simultaneous sensing of pressure and temperature.
Adv. Mater. Weinheim
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Diverse signals generated from the sensing elements embedded in flexible electronic skins (e-skins) are typically interfered by strain energy generated through processes such as touching, bending, stretching or twisting. Herein, we demonstrate a flexible bimodal sensor that can separate a target signal from the signal by mechanical strain through the integration of a multi-stimuli responsive gate dielectric and semiconductor channel into the single field-effect transistor (FET) platform.
Related JoVE Video
Highly stable carbon nanotube top-gate transistors with tunable threshold voltage.
Adv. Mater. Weinheim
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
Carbon-nanotube top-gate transistors with fluorinated dielectrics are presented. With PTrFE as the dielectric, the devices have absent or small hysteresis at different sweep rates and excellent bias-stress stability under ambient conditions. Ambipolar single-walled carbon nanotube (SWNT) transistors are observed when P(VDF-TrFE-CTFE) is utilized as a topgate dielectric. Furthermore, continuous tuning of the threshold voltages of both unipolar and ambipolar SWNT thin-film transistors (TFTs) is demonstrated for the first time.
Related JoVE Video
Expression of stromal cell-derived factor 1 and CXCR7 ligand receptor system in pancreatic adenocarcinoma.
World J Surg Oncol
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
Stromal cell-derived factor 1 (SDF-1) is a chemokine that is expressed in some cancer cells and is involved in tumor cell migration and metastasis. CXCR7, a novel receptor for SDF-1, has been identified recently. Research has demonstrated that SDF-1/CXCR7 interaction could play an important role in cancer progression. In this study, we aimed to investigate the expression of the SDF-1/CXCR7 ligand receptor system and the relationship between this expressions and clinicopathological characteristics in pancreatic adenocarcinoma.
Related JoVE Video
Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice.
Nat Nanotechnol
PUBLISHED: 01-26-2014
Show Abstract
Hide Abstract
Photoacoustic imaging holds great promise for the visualization of physiology and pathology at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this potential, photoacoustic molecular imaging probes have to be developed. Here, we introduce near-infrared light absorbing semiconducting polymer nanoparticles as a new class of contrast agents for photoacoustic molecular imaging. These nanoparticles can produce a stronger signal than the commonly used single-walled carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph-node photoacoustic mapping in living mice at a low systemic injection mass. Furthermore, the semiconducting polymer nanoparticles possess high structural flexibility, narrow photoacoustic spectral profiles and strong resistance to photodegradation and oxidation, enabling the development of the first near-infrared ratiometric photoacoustic probe for in vivo real-time imaging of reactive oxygen species--vital chemical mediators of many diseases. These results demonstrate semiconducting polymer nanoparticles to be an ideal nanoplatform for developing photoacoustic molecular probes.
Related JoVE Video
Rapid adaptation of avian H7N9 virus in pigs.
Virology
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
How the H7N9 avian influenza virus gained the distinct ability to infect humans is unclear. Pigs are an important host in influenza virus ecology because they are susceptible to infection with both avian and human influenza viruses and are often involved in interspecies transmission. Here, we passaged one avian isolate and one human isolate in pigs to examine the mammalian host adaptation of the H7N9 virus. The avian virus replicated to a high titer after one passage, whereas the human isolate replicated poorly after three passages in pig lungs. Sequence analysis found nine substitutions in the HA, NA, M and NS segments of the avian isolate, which enhanced the binding affinity for human-type receptors. These results indicate that avian H7N9 influenza viruses can be easily adapted to pigs and that pigs may act as an important intermediate host for the reassortment and transmission of such novel viruses.
Related JoVE Video
Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing.
Nanoscale
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Using ruthenium polypyridyl functionalized ZnO mesocrystals as bionanolabels, a universal biological recognition and biosensing platform based on gold nanoparticle (AuNP) dotted reduced graphene oxide (rGO) composite was developed. AuNP-rGO accelerated electron transfer between the detection probe and the electrode, and increased the surface area of the working electrode to load greater amounts of the capture antibodies. The large surface area of ZnO mesocrystals was beneficial for loading a high content ruthenium polypyridyl complex, leading to an enhanced electrochemiluminescence signal. Using ?-fetoprotein (AFP) as a model, a simple and sensitive sandwich-type electrochemiluminescence biosensor with tripropylamine (TPrA) as a coreactant for detection of AFP was constructed. The designed biosensor provided a good linear range from 0.04 to 500 ng mL(-1) with a low detection limit of 0.031 ng mL(-1) at a S/N of 3 for AFP determination. The proposed biological recognition and biosensing platform extended the application of ruthenium polypyridyl functionalized ZnO mesocrystals, which provided a new promising prospect.
Related JoVE Video
Electrochemical monitoring of an important biomarker and target protein: VEGFR2 in cell lysates.
Sci Rep
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is a potential cell-type biomarker in clinical diagnoses. Besides, it's the target protein of many tyrosine kinase inhibitors and its expression significantly associates with clinical performance of these inhibitors. VEGFR2 detection provides an early warning for diseases and a basis for therapy and drug screening. Some methods have been developed for VEGFR2 determination. However, they are usually performed indirectly and complexly. Herein, an electrochemical biosensing platform for VEGFR2 analysis has been first proposed. It can detect the total concentrations of the VEGFR2 protein in cells lysates directly and can be used to monitor the changes of VEGFR2 expression levels induced by treatments of different inhibitors. Moreover, the inhibitor-VEGFR2 interactions are illuminated through theoretical simulation. The simulation results agree well with the experimental data, indicating the veracity of the proposed method. The electrochemical detection methodology for VEGFR2 would be promising in clinical diagnosis and drug screening.
Related JoVE Video
Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Podlike nitrogen-doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)-FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I(-)/I3(-) redox reaction of dye-sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)-FeNi composite. DSSCs with Pod(N)-FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82%, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)-FeNi composite thus shows promise as an environmentally friendly, low-cost, and highly efficient CE material for DSSCs.
Related JoVE Video
In situ generated AgBr-enhanced ZnO nanorod-based photoelectrochemical aptasensing via layer-by-layer assembly.
Chem. Commun. (Camb.)
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
A robust aptasensor for Ag(+) was proposed for the first time using an enhanced ZnO nanorod-based photoelectrochemistry by in situ generated AgBr via layer-by-layer assembly. This work opens up new avenues for application of one-dimensional ZnO nanorod arrays in photoelectrochemical sensing. Additionally, the strategy of employing in situ generated narrow-bandgap semiconductors paves a new way for photoelectrochemical sensing.
Related JoVE Video
Well-coupled graphene and Pd-based bimetallic nanocrystals nanocomposites for electrocatalytic oxygen reduction reaction.
ACS Appl Mater Interfaces
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
In this paper, a series of well-coupled graphene (G) and MPd3 (M = Fe, Cu, Ag, Au, Cr, Mo, W) nanocrystals nanocomposites (G-MPd3 NCPs) have been synthesized via a versatile electrostatic assembly and hydrogen reduction strategy, i.e., sequential assembly of coordination anions and cations on excess cationic polymer modified graphene oxide to form composite precursors and then thermal treating under H2/Ar gases atmosphere. In those NCPs, the MPd3 components are uniform and smaller than 10 nm, which are well anchored on G with "naked" or "clean" surfaces. By adjusting reaction temperature, the interplay of MPd3 nanocrystals and G can be well-controlled. Below 700 °C, no sintering phenomena are observed, indicating the unprecedented dispersion and stability effect of G for MPd3 nanocrystals. All the obtained NCPs can be directly used to catalyze oxygen reduction reaction in alkaline media. Compared with single component, monometallic, and some reported non-Pt catalysts, greatly enhanced electrocatalytic performances are observed in those NCPs due to strong synergistic or coupling of their constituents. Among them, G-FePd3 NCPs exhibit the highest catalytic activity, but their current density needs to be improved compared with G-CrPd3, G-MoPd3, and G-WPd3 ones. This work not only provides a general strategy for fabricating well-coupled G-MPd3 NCPs but also paves the way for future designing multicomponent NCPs with multiple interfaces to apply in alkaline fuel cells.
Related JoVE Video
Histopathological features and distribution of EV71 antigens and SCARB2 in human fatal cases and a mouse model of enterovirus 71 infection.
Virus Res.
PUBLISHED: 01-12-2014
Show Abstract
Hide Abstract
Enterovirus 71 (EV71) is a neurotropic pathogen that causes hand, foot, and mouth disease. While infection is usually self-limiting, a minority of patients infected with EV71 develop severe neurological complications. In humans, EV71 has been reported to utilize the scavenger receptor class B, member 2 (SCARB2) as a receptor for infectious cellular entry. In this study, we define the pathological features of EV71-associated disease as well as the distribution of EV71 antigen and SCARB2 in human fatal cases and a mouse model. Histopathologically, human fatal cases showed severe central nervous system (CNS) changes, mainly in the brainstems, spinal cords, and thalamus. These patient further exhibited pulmonary edema and necrotic enteritis. Immunohistochemical analysis of human fatal cases demonstrated that EV71 antigen and SCARB2 were observed mainly in neurons, microglia cells and inflammatory cells in the CNS, and epithelial cells in the intestines. However, skeletal muscle tissue was negative for EV71 antigen. In a mouse model of EV71 infection, we observed massive necrotic myositis, different degrees of viral diseases in CNS, and extensive interstitial pneumonia. In mice, EV71 exhibits strong myotropism compared to the neurotropism seen in humans. EV71 antigen was detected in the spinal cord and brainstem of mice. However, there was no clear correlation between mouse SCARB2 and EV71 antigen distribution in the mouse model, consistent with previous results that SCARB2 functions as a receptor for EV71 in humans but not mice. The EV71-induced lesions seen in the mouse model resembled the pathological changes seen in human samples. These results increase our understanding of EV71 pathogenesis and will inform further work developing a mouse model for EV71 infection.
Related JoVE Video
Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method.
Nat Commun
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43?cm(2)?Vs(-1) (25?cm(2)?Vs(-1) on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.
Related JoVE Video
An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film.
Nat Commun
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Pressure sensing is an important function of electronic skin devices. The development of pressure sensors that can mimic and surpass the subtle pressure sensing properties of natural skin requires the rational design of materials and devices. Here we present an ultra-sensitive resistive pressure sensor based on an elastic, microstructured conducting polymer thin film. The elastic microstructured film is prepared from a polypyrrole hydrogel using a multiphase reaction that produced a hollow-sphere microstructure that endows polypyrrole with structure-derived elasticity and a low effective elastic modulus. The contact area between the microstructured thin film and the electrodes increases with the application of pressure, enabling the device to detect low pressures with ultra-high sensitivity. Our pressure sensor based on an elastic microstructured thin film enables the detection of pressures of less than 1Pa and exhibits a short response time, good reproducibility, excellent cycling stability and temperature-stable sensing.
Related JoVE Video
Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment.
Nat Commun
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
In recent decades, the susceptibility to degradation in both ambient and aqueous environments has prevented organic electronics from gaining rapid traction for sensing applications. Here we report an organic field-effect transistor sensor that overcomes this barrier using a solution-processable isoindigo-based polymer semiconductor. More importantly, these organic field-effect transistor sensors are stable in both freshwater and seawater environments over extended periods of time. The organic field-effect transistor sensors are further capable of selectively sensing heavy-metal ions in seawater. This discovery has potential for inexpensive, ink-jet printed, and large-scale environmental monitoring devices that can be deployed in areas once thought of as beyond the scope of organic materials.
Related JoVE Video
Intranasal Immunization of Mice with Inactivated Virus and Mast Cell Activator C48/80 Elicits Protective Immunity against Influenza H1 but not H5.
Immunol. Invest.
PUBLISHED: 12-02-2013
Show Abstract
Hide Abstract
Vaccination represents the most economic and effective strategy of preventing influenza pandemics. We previously demonstrated that intranasal immunization of mice with recombinant hemagglutinin and the mast cell activator C48/80 elicited protective immunity against challenge with the 2009 pandemic H1N1 influenza in mice, demonstrating that the novel C48/80 mucosal adjuvant was safe and effective. The present study demonstrated that intranasal immunization with inactivated H1N1 virus and C48/80 elicited protective immunity against lethal challenge with homologous virus, however, when the immunogen was replaced with inactivated H5N1 virus protection was lost. These observations suggested that the adjuvant effects conferred by C48/80 were virus subtype specific and that its use as a broad-spectrum adjuvant for use in immunizations against all influenza viruses needs to be further analyzed.
Related JoVE Video
Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing.
Anal. Chem.
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
On the basis of the absorption and emission spectra overlap, an enhanced resonance energy transfer caused by excition-plasmon resonance between reduced graphene oxide (RGO)-Au nanoparticles (AuNPs) and CdTe quantum dots (QDs) was obtained. With the synergy of AuNPs and RGO as a planelike energy acceptor, it resulted in the enhancement of energy transfer between excited CdTe QDs and RGO-AuNPs nanocomposites. Upon the novel sandwichlike structure formed via DNA hybridization, the exciton produced in CdTe QDs was annihilated. A damped photocurrent was obtained, which was acted as the background signal for the development of a universal photoelectrochemical (PEC) platform. With the use of carcinoembryonic antigen (CEA) as a model which bonded to its specific aptamer and destroyed the sandwichlike structure, the energy transfer efficiency was lowered, leading to PEC response augment. Thus a signal-on PEC aptasensor was constructed. Under 470 nm irradiation at -0.05 V, the PEC aptasensor for CEA determination exhibited a linear range from 0.001 to 2.0 ng mL(-1) with a detection limit of 0.47 pg mL(-1) at a signal-to-noise ratio of 3 and was satisfactory for clinical sample detection. Since different aptamers can specifically bind to different target molecules, the designed strategy has an expansive application for the construction of versatile PEC platforms.
Related JoVE Video
An Animal Model of MERS Produced by Infection of Rhesus Macaques With MERS Coronavirus.
J. Infect. Dis.
PUBLISHED: 11-11-2013
Show Abstract
Hide Abstract
In 2012, a novel coronavirus (CoV) associated with severe respiratory disease, Middle East respiratory syndrome (MERS-CoV; previously known as human coronavirus-Erasmus Medical Center or hCoV-EMC), emerged in the Arabian Peninsula. To date, 114 human cases of MERS-CoV have been reported, with 54 fatalities. Animal models for MERS-CoV infection of humans are needed to elucidate MERS pathogenesis and to develop vaccines and antivirals. In this study, we developed rhesus macaques as a model for MERS-CoV using intratracheal inoculation. The infected monkeys showed clinical signs of disease, virus replication, histological lesions, and neutralizing antibody production, indicating that this monkey model is suitable for studies of MERS-CoV infection.
Related JoVE Video
Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene.
Phys Chem Chem Phys
PUBLISHED: 10-08-2013
Show Abstract
Hide Abstract
Formation of wrinkles at graphene/Pt(111) surface was investigated by low energy electron microscopy (LEEM). Reversible wrinkling and unwrinkling of graphene sheets were observed upon cycled heating and cooling treatments, exhibiting a hysteresis effect with the temperature. In situ LEEM studies of graphene oxidation show preferential oxidation of the wrinkles than flat graphene sheets and graphene edges. The function of the wrinkles as one-dimensional (1D) nanosized gas inlets for oxygen and the strain at the distorted sp(2)-hybridized carbon atoms of the wrinkle sites can be attributed to the enhanced reactivity of wrinkles to the oxidation. Meanwhile, wrinkles also served as nanosized gas inlets for oxidation of CO intercalated between graphene and Pt(111). Considering that wrinkles are frequently present in graphene structures, the role of wrinkles as 1D reaction channels and their enhanced reactivity to reactions may have an important effect on graphene chemistry.
Related JoVE Video
Antigenicity and transmissibility of a novel clade 2.3.2.1 avian influenza H5N1 virus.
J. Gen. Virol.
PUBLISHED: 09-28-2013
Show Abstract
Hide Abstract
A genetic variant of the H5N1 influenza virus, termed subclade 2.3.2.1, was first identified in Bulgaria in 2010 and has subsequently been found in Vietnam and Laos. Several cases of human infections with this virus have been identified. Thus, it is important to understand the antigenic properties and transmissibility of this variant. Our results showed that, although it is phylogenetically closely related to other previously characterized clade 2.3 viruses, this novel 2.3.2.1 variant exhibited distinct antigenic properties and showed little cross-reactivity to sera raised against other H5N1 viruses. Like other H5N1 viruses, this variant bound preferentially to avian-type receptors, but contained substitutions at positions 190 and 158 of the haemagglutinin (HA) protein that have been postulated to facilitate HA binding to human-type receptors and to enhance viral transmissibility among mammals, respectively. However, this virus did not appear to have acquired the capacity for airborne transmission between ferrets. These findings highlight the challenges in selecting vaccine candidates for H5N1 influenza because these viruses continue to evolve rapidly in the field. It is important to note that some variants have obtained mutations that may gain transmissibility between model animals, and close surveillance of H5N1 viruses in poultry is warranted.
Related JoVE Video
Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives.
J. Am. Chem. Soc.
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
The discovery of air-stable n-dopants for organic semiconductor materials has been hindered by the necessity of high-energy HOMOs and the air sensitivity of compounds that satisfy this requirement. One strategy for circumventing this problem is to utilize stable precursor molecules that form the active doping complex in situ during the doping process or in a postdeposition thermal- or photo-activation step. Some of us have reported on the use of 1H-benzimidazole (DMBI) and benzimidazolium (DMBI-I) salts as solution- and vacuum-processable n-type dopant precursors, respectively. It was initially suggested that DMBI dopants function as single-electron radical donors wherein the active doping species, the imidazoline radical, is generated in a postdeposition thermal annealing step. Herein we report the results of extensive mechanistic studies on DMBI-doped fullerenes, the results of which suggest a more complicated doping mechanism is operative. Specifically, a reaction between the dopant and host that begins with either hydride or hydrogen atom transfer and which ultimately leads to the formation of host radical anions is responsible for the doping effect. The results of this research will be useful for identifying applications of current organic n-doping technology and will drive the design of next-generation n-type dopants that are air stable and capable of doping low-electron-affinity host materials in organic devices.
Related JoVE Video
Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential.
Biosens Bioelectron
PUBLISHED: 09-10-2013
Show Abstract
Hide Abstract
A low potential and competitive photoelectrochemical biosensing platform was developed using quantum dots sensitized titanium dioxide decorated reduced graphene oxide (TiO2-RGO) nanocomposites. The nanocomposites were prepared through electrostatic interaction between mercaptoacetic acid wrapped CdSe quantum dots with negative charge and TiO2-RGO hybrids with positive charge obtained via ultrasonic and acid treatments. Electron microscopes and spectroscopes were used to characterize the functionalized nanocomposites films of CdSe/TiO2-RGO, and the fabrication process of the photoelectrochemical biosensor. Based on the high photovoltaic conversion efficiency of CdSe/TiO2-RGO nanocomposites films, after introducing biological recognition and competitive immunoreaction, a low potential and competitive photoelectrochemical biosensor for carcinoembryonic antigen (CEA) detection was fabricated. The synergic effect of horseradish peroxide and benzo-4-chlorohexadienone decreased the background signal, leading to signal amplification. Under the light irradiation of 430nm and the applied potential of 0V, the biosensor detected CEA with a linear range from 0.003 to 100ngmL(-1) and the detection limit was estimated to be 1.38pgmL(-1) at a S/N of 3. It was satisfactory for clinical sample detection. The proposed competitive and low potential photoelectrochemical biosensor under irradiation of visible light exhibited good performance, which has a promising prospect in clinical diagnose.
Related JoVE Video
Novel Avian-Origin Human Influenza A(H7N9) Can Be Transmitted Between Ferrets via Respiratory Droplets.
J. Infect. Dis.
PUBLISHED: 08-29-2013
Show Abstract
Hide Abstract
The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.
Related JoVE Video
Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-26-2013
Show Abstract
Hide Abstract
We demonstrate that reactions confined within single-walled carbon nanotube (SWCNT) channels are modulated by the metallic and semiconducting character of the hosts. In situ Raman and X-ray absorption near-edge structure spectroscopies provide complementary information about the electronic state of carbon nanotubes and the encapsulated rhenium species, which reveal electronic interactions between encapsulated species and nanotubes. More electrons are transferred from metallic tubes (m-SWCNTs) to oxidic rhenium clusters, leading to a lower valence state rhenium oxide than that in semiconducting tubes (s-SWCNTs). Reduction in 3.5% (vol/vol) H2/Ar leads to weakened host-guest electronic interaction. The high valence state Re within s-SWCNTs is more readily reduced when raising the temperature, whereas only a sluggish change is observed for Re within m-SWCNTs. Only at 400 °C does Re reach a similar electronic state (mixture of Re(0) and Re(4+)) in both types of tubes. Subsequent oxidation in 1% O2/Ar does not show changes for Re in s-SWCNTs up to 200 °C. In comparison, m-SWCNTs facilitate the oxidation of reduced rhenium (160 °C). This can be exploited for rational design of active catalysts with stable species as a desired valence state can be obtained by selecting specific-type SWCNTs and a controlled thermal treatment. These results also provide a chemical approach to modulate reversibly the electronic structure of SWCNTs without damaging the sidewalls of SWCNTs.
Related JoVE Video
Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries.
Nat Chem
PUBLISHED: 08-18-2013
Show Abstract
Hide Abstract
The ability to repair damage spontaneously, which is termed self-healing, is an important survival feature in nature because it increases the lifetime of most living creatures. This feature is highly desirable for rechargeable batteries because the lifetime of high-capacity electrodes, such as silicon anodes, is shortened by mechanical fractures generated during the cycling process. Here, inspired by nature, we apply self-healing chemistry to silicon microparticle (SiMP) anodes to overcome their short cycle-life. We show that anodes made from low-cost SiMPs (~3-8 µm), for which stable deep galvanostatic cycling was previously impossible, can now have an excellent cycle life when coated with a self-healing polymer. We attain a cycle life ten times longer than state-of-art anodes made from SiMPs and still retain a high capacity (up to ~3,000 mA h g(-1)). Cracks and damage in the coating during cycling can be healed spontaneously by the randomly branched hydrogen-bonding polymer used.
Related JoVE Video
Reversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis.
Phys Chem Chem Phys
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
Understanding dynamic changes of catalytically active nanostructures under reaction conditions is a pivotal challenge in catalysis research, which has been extensively addressed in metal nanoparticles but is less explored in supported oxide nanocatalysts. Here, structural changes of iron oxide (FeO(x)) nanostructures supported on Pt in a gaseous environment were examined by scanning tunneling microscopy, ambient pressure X-ray photoelectron spectroscopy, and in situ X-ray absorption spectroscopy using both model systems and real catalysts. O-Fe (FeO) bilayer nanostructures can be stabilized on Pt surfaces in reductive environments such as vacuum conditions and H2-rich reaction gas, which are highly active for low temperature CO oxidation. In contrast, exposure to H2-free oxidative gases produces a less active O-Fe-O (FeO2) trilayer structure. Reversible transformation between the FeO bilayer and FeO2 trilayer structures can be achieved under alternating reduction and oxidation conditions, leading to oscillation in the catalytic oxidation performance.
Related JoVE Video
Aligned SWNT films from low-yield stress gels and their transparent electrode performance.
ACS Appl Mater Interfaces
PUBLISHED: 07-29-2013
Show Abstract
Hide Abstract
Carbon nanotube films are promising for transparent electrodes for solar cells and displays. Large-area alignment of the nanotubes in these films is needed to minimize the sheet resistance. We present a novel coating method to coat high-density, aligned nanotubes over large areas. Carbon nanotube gel dispersions used in this study have aligned domains and a low yield stress. A simple shearing force allows these domains to uniformly align. We use this to correlate the transparent electrode performance of single-walled carbon nanotube films with the level of partial alignment. We have found that the transparent electrode performance improves with increasing levels of alignment and in a manner slightly better than what has been previously predicted.
Related JoVE Video
Dual signal amplification of zinc oxide nanoparticles and quantum dots-functionalized zinc oxide nanoparticles for highly sensitive electrochemiluminescence immunosensing.
Analyst
PUBLISHED: 07-24-2013
Show Abstract
Hide Abstract
A novel electrochemiluminescence (ECL) immunosensor for highly sensitive detection of ?-fetoprotein (AFP) based on a dual signal amplification strategy was developed. Zinc oxide (ZnO) nanoparticles were employed as the carriers for immobilizing the capture AFP antibody (Ab1) and CdSe quantum dots (QDs). CdSe QDs-functionalized ZnO nanoparticles were used as the tracer to label the signal AFP antibody (Ab2). CdSe QDs-functionalized ZnO nanoparticles were prepared through an amide dehydration reaction and they were characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The Ab2 was bound to the CdSe QDs-functionalized ZnO nanoparticles to obtain the detection probe. ZnO nanoparticles could accelerate electron transfer between the detection probe and the electrode, and their large surface area was beneficial for loading more CdSe QDs, leading to an enhanced ECL signal (0.9-fold increase) by a sandwich immunoreaction. This also indicated efficient association of the detection probe on the immunosensor surface. The designed immunoassay showed a wide linear range from 0.5 to 600 ng mL(-1) with a detection limit of 0.48 ng mL(-1) at a S/N ratio of 3 for AFP detection. The ECL immunosensor exhibited good analytical performance and was successfully applied to clinical sample detection, showing a promising application in ECL biosensing.
Related JoVE Video
Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure.
J. Am. Chem. Soc.
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5bis(4-alkylphenyl)-2,2-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling.
Related JoVE Video
Abundance and community structure of ammonia-oxidizing microorganisms in reservoir sediment and adjacent soils.
Appl. Microbiol. Biotechnol.
PUBLISHED: 07-06-2013
Show Abstract
Hide Abstract
Ammonia oxidation is an important process for global nitrogen cycling. Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) can be the important players in nitrification process. However, their relative contribution to nitrification remains controversial. This study investigated the abundance and community structure of AOA and AOB in sediment of Miyun Reservoir and adjacent soils. Quantitative PCR assays indicated that the highest AOA abundance occurred in unplanted riparian soil, followed by reservoir sediment, reed-planted riparian soil and agricultural soil. The AOB community size in agricultural soil was much larger than that in the other habitats. Large variations in the structures of AOA and AOB were also observed among the different habitats. The abundance of Nitrosospira-like AOB species were detected in the agricultural soil and reservoir sediment. Pearsons correlation analysis showed the AOB diversity had positive significant correlations with pH and total nitrogen, while the AOA diversity might be negatively affected by nitrate nitrogen and ammonia nitrogen. This work could add new insights towards nitrification in aquatic and terrestrial ecosystems.
Related JoVE Video
A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide.
Adv. Mater. Weinheim
PUBLISHED: 06-28-2013
Show Abstract
Hide Abstract
A self-healing thermo-reversible elastomer is synthesized by cross-linking a hydrogen bonding polymer network with chemically-modified graphene oxide. This nanocomposite allows for both rapid and efficient self-healing (in only several minutes) at room temperature, without the need for any external stimuli (e.g., heating or light exposure), healing agents, plasticizers or solvents.
Related JoVE Video
The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus.
Virol. J.
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus.
Related JoVE Video
Solution-grown organic single-crystalline p-n junctions with ambipolar charge transport.
Adv. Mater. Weinheim
PUBLISHED: 06-07-2013
Show Abstract
Hide Abstract
Organic single-crystalline p-n junctions are grown from mixed solutions. First, C60 crystals (n-type) form and, subsequently, C8-BTBT crystals (p-type) nucleate heterogeneously on the C60 crystals. Both crystals continue to grow simultaneously into single-crystalline p-n junctions that exhibit ambipolar charge transport characteristics. This work provides a platform to study organic single-crystalline p-n junctions.
Related JoVE Video
High-Mobility, Aligned Crystalline Domains of TIPS-Pentacene with Metastable Polymorphs Through Lateral Confinement of Crystal Growth.
Adv. Mater. Weinheim
PUBLISHED: 05-28-2013
Show Abstract
Hide Abstract
Patterns composed of solvent wetting and dewetting regions promote lateral confinement of solution sheared and lattice strained TIPS-pentacene crystals. This lateral confinement causes aligned crystal growth, and the smallest patterns of 0.5 ?m wide solvent wetting regions promotes formation of highly strained, aligned, and single crystalline TIPS-pentacene regions with mobility as high as 2.7 cm(2) V(-1) s(-1) .
Related JoVE Video
Identification of genes and candidate agents associated with pancreatic cancer.
Tumour Biol.
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. A major challenge in current cancer research is biological interpretation of complexity of cancer somatic mutation profiles. It has been suggested that several molecular alterations may play important roles in pancreatic carcinogenesis. In this study, by using the GSE28735 affymetrix microarray data accessible from Gene Expression Omnibus (GEO) database, we identified differentially expressed genes (DEGs) between paired pancreatic cancer tissues and adjacent nontumor tissues, followed the protein-protein interaction of the DEGs. Our study identified thousands of DEGs involved in regulation of cell cycle and apoptosis in progression of pancreatic cancer. Sp1 was predicted to be the major regulator by transcription factors analysis. From the protein-protein interaction networks, we found that Tk1 might play an important role in the progression of pancreatic cancer. Finally, we predicted candidate agents, including tomatidine and nialamide, which may be used as drugs to treat pancreatic cancer. In conclusion, our data provide a comprehensive bioinformatics analysis of genes and pathways which may be involved in the progression of pancreatic cancer.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.